1
|
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, Zeng X, Tian G, Deng G, Shi J, Liu L, Chen H, Li C. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog 2022; 18:e1010446. [PMID: 35377920 PMCID: PMC9009768 DOI: 10.1371/journal.ppat.1010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xuyuan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| |
Collapse
|
2
|
Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang JW, Luo Z, Gong XD, Fu JL, Wang Y, Zheng SY, Xiao Y, Gan YW, Gao Q, Bai YY, Wang JM, Zhang L, Tang XC, Hu X, Gong L, Liu Y, Li DWC. The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Front Cell Dev Biol 2021; 9:660494. [PMID: 34195189 PMCID: PMC8237824 DOI: 10.3389/fcell.2021.660494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Cheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Xu W, Xu J, Wang T, Liu W, Wei H, Yang X, Yan W, Zhou W, Xiao J. Ellagic acid and Sennoside B inhibit osteosarcoma cell migration, invasion and growth by repressing the expression of c-Jun. Oncol Lett 2018; 16:898-904. [PMID: 29963161 PMCID: PMC6019914 DOI: 10.3892/ol.2018.8712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/06/2017] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is a mesenchymally derived, high-grade bone sarcoma that is the most frequently diagnosed primary malignant bone tumor. Today, chemoprevention is regarded as a promising and realistic approach in the prevention of human cancer. Previous studies have suggested ellagic acid (EA) and Sennoside B have potential in this regard. The aim of the present study was to elucidate the anti-osteosarcoma effects of EA and Sennoside B by using Saos-2 and MG63 osteosarcoma cells. It was identified that EA or Sennoside B treatment could inhibit the growth, migration and invasion of the cells, and induce G1 cell cycle arrest by repressing the transcription of c-Jun. These results may provide a cellular basis for the application of EA or Sennoside B in the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jinjin Xu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Ting Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Weibo Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wangjun Yan
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wang Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
4
|
Tao CC, Hsu WL, Ma YL, Cheng SJ, Lee EH. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ 2017; 24:597-614. [PMID: 28186506 PMCID: PMC5384022 DOI: 10.1038/cdd.2016.161] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/04/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023] Open
Abstract
Amyloid-β (Aβ) produces neurotoxicity in the brain and causes neuronal death, but the endogenous defense mechanism that is activated on Aβ insult is less well known. Here we found that acute Aβ increases the expression of PIAS1 and Mcl-1 via activation of MAPK/ERK, and Aβ induction of PIAS1 enhances HDAC1 SUMOylation in rat hippocampus. Knockdown of PIAS1 decreases endogenous HDAC1 SUMOylation and blocks Aβ induction of Mcl-1. Sumoylated HDAC1 reduces it association with CREB, increases CREB binding to the Mcl-1 promoter and mediates Aβ induction of Mcl-1 expression. Transduction of SUMO-modified lenti-HDAC1 vector to the hippocampus of APP/PS1 mice rescues spatial learning and memory deficit and long-term potentiation impairment in APP/PS1 mice. It also reduces the amount of amyloid plaque and the number of apoptotic cells in CA1 area of APP/PS1 mice. Meanwhile, HDAC1 SUMOylation decreases HDAC1 binding to the neprilysin promoter. These results together reveal an important role of HDAC1 SUMOylation as a naturally occurring defense mechanism protecting against Aβ toxicity and provide an alternative therapeutic strategy against AD.
Collapse
Affiliation(s)
- Chih Chieh Tao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sin Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Neuroscience Program in Academia Sinica, Taipei, Taiwan
| | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Gur I, Fujiwara K, Hasegawa K, Yoshikawa K. Necdin promotes ubiquitin-dependent degradation of PIAS1 SUMO E3 ligase. PLoS One 2014; 9:e99503. [PMID: 24911587 PMCID: PMC4049815 DOI: 10.1371/journal.pone.0099503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023] Open
Abstract
Necdin, a pleiotropic protein that promotes differentiation and survival of mammalian neurons, is a member of MAGE (melanoma antigen) family proteins that share a highly conserved MAGE homology domain. Several MAGE proteins interact with ubiquitin E3 ligases and modulate their activities. However, it remains unknown whether MAGE family proteins interact with SUMO (small ubiquitin-like modifier) E3 ligases such as PIAS (protein inhibitor of activated STAT) family, Nsmce2/Mms21 and Cbx4/Pc2. In the present study, we examined whether necdin interacts with these SUMO E3 ligases. Co-immunoprecipitation analysis revealed that necdin, MAGED1, MAGEF1 and MAGEL2 bound to PIAS1 but not to Nsmce2 or Cbx4. These SUMO E3 ligases bound to MAGEA1 but failed to interact with necdin-like 2/MAGEG1. Necdin bound to PIAS1 central domains that are highly conserved among PIAS family proteins and suppressed PIAS1-dependent sumoylation of the substrates STAT1 and PML (promyelocytic leukemia protein). Remarkably, necdin promoted degradation of PIAS1 via the ubiquitin-proteasome pathway. In transfected HEK293A cells, amino- and carboxyl-terminally truncated mutants of PIAS1 bound to necdin but failed to undergo necdin-dependent ubiquitination. Both PIAS1 and necdin were associated with the nuclear matrix, where the PIAS1 terminal deletion mutants failed to localize, implying that the nuclear matrix is indispensable for necdin-dependent ubiquitination of PIAS1. Our data suggest that necdin suppresses PIAS1 both by inhibiting SUMO E3 ligase activity and by promoting ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Ibrahim Gur
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazushiro Fujiwara
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koichi Hasegawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
6
|
Chiou HYC, Liu SY, Lin CH, Lee EH. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival. J Biomed Sci 2014; 21:53. [PMID: 24894488 PMCID: PMC4071220 DOI: 10.1186/1423-0127-21-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/22/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also implicate that SUMOylation could be an important posttranslational modification that regulates cell survival.
Collapse
Affiliation(s)
| | | | | | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
7
|
Zhang L, Yang Z, Liu Y. GADD45 proteins: roles in cellular senescence and tumor development. Exp Biol Med (Maywood) 2014; 239:773-778. [PMID: 24872428 DOI: 10.1177/1535370214531879] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growth arrest and DNA damage 45 (GADD45) family genes regulate DNA repair, cell cycle, cell survival, apoptosis, senescence, and DNA demethylation in the cells under various stress stimuli, such as oxidative stress, UV radiation, and oncogenic stress. Recent studies have provided important insights regarding how different oncogenic stresses activate GADD45 signaling pathway and lead to disparate influences on tumor initiation. In this review, we discuss the deregulation and cellular function of GADD45 proteins in the context of cancer development. We also highlight recent advances in exploring the tumor suppressive function of GADD45 proteins-triggered cellular senescence.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
8
|
Pellagatti A, Fidler C, Wainscoat JS, Boultwood J. Gene expression profiling in the myelodysplastic syndromes. Hematology 2013; 10:281-7. [PMID: 16085540 DOI: 10.1080/10245330500065680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous group of haematopoietic malignancies, characterized by blood cytopenias, ineffective hematopoiesis and hypercellular bone marrow. Several genetic alterations have been reported in MDS but these are not MDS-specific and the underlying molecular causes of the disease remain poorly understood. Gene expression microarray technology allows the simultaneous parallel analysis of many thousands of genes and has already provided novel insights into cancer pathogenesis. In this review we discuss the results of several recent studies which utilize the enormous power of microarray technology for the study of MDS. Several exciting findings have emerged from these early studies that highlight the potential of this technology to further our understanding of the molecular pathogenesis of this disorder. It is clear, however, that these findings should be confirmed in larger sets of MDS patients.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
9
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
10
|
Zuch D, Giang AH, Shapovalov Y, Schwarz E, Rosier R, O'Keefe R, Eliseev RA. Targeting radioresistant osteosarcoma cells with parthenolide. J Cell Biochem 2012; 113:1282-91. [PMID: 22109788 DOI: 10.1002/jcb.24002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is a devastating tumor of bone, primarily affecting adolescents. Osteosarcoma tumors are notoriously radioresistant. Radioresistant cancers, including osteosarcoma, typically exhibit a considerable potential for relapse and development of metastases following treatment. Relapse and metastatic potential can, in part, be due to a specific radioresistant subpopulation of cells with stem-like characteristics, cancer stem cells, which maintain the capacity to regenerate entire tumors. In the current study, we have investigated whether in vitro treatments with parthenolide, a naturally occurring small molecule that interferes with NF-κB signaling and has various other effects, will re-sensitize cancer stem cells and the entire cell population to radiotherapy in osteosarcoma. Our results indicate that parthenolide and ionizing radiation synergistically induce cell death in LM7 osteosarcoma cells. Importantly, the combination treatment results in a significant reduction in the viability of both the overall population of osteosarcoma cells and the cancer stem cell subpopulation. This effect is dependent on the ability of parthenolide to induce oxidative stress. Therefore, as a supplement to current multimodal therapy, parthenolide may sensitize osteosarcoma tumors to radiation and greatly reduce the prevalence of relapse and metastatic progression.
Collapse
Affiliation(s)
- Daniel Zuch
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 575 Elmwood Ave., Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sudharsan R, Azuma Y. The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci 2012; 125:5819-29. [PMID: 22976298 DOI: 10.1242/jcs.110825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) ligase PIAS1 (Protein Inhibitor of Activated Stat-1) has been shown to play a role in cellular stress response by SUMOylating several proteins that are involved in DNA repair, apoptosis and transcription. In this paper, we show that PIAS1 regulates ultraviolet (UV)-induced apoptosis by recruiting Death-associated protein 6 (Daxx) to PIAS1-generated SUMO-foci. Cells that ectopically express PIAS1, but not other PIASes, show increased sensitivity to UV irradiation, suggesting that PIAS1 has a distinct function in UV-dependent apoptosis. Domain analysis of PIAS1 indicates that both PIAS1 SUMO-ligase activity and the specific localization of PIAS1 through its N-terminal and C-terminal domains are essential for UV-induced cell death. Daxx colocalizes with PIAS1-generated SUMOylated foci, and the reduction of Daxx using RNAi alleviates UV-induced apoptosis in PIAS1-expressing cells. PIAS1-mediated recruitment of Daxx and apoptosis following UV irradiation are dependent upon the Daxx C-terminal SUMO-interacting motif (SIM). Overall, our data suggest that the pro-apoptotic protein Daxx specifically interacts with one or more substrates SUMOylated by PIAS1 and this interaction leads to apoptosis following UV irradiation.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Haworth Hall, Rm. 3037, Lawrence, KS 66045, USA
| | | |
Collapse
|
12
|
Sau A, Filomeni G, Pezzola S, D'Aguanno S, Tregno FP, Urbani A, Serra M, Pasello M, Picci P, Federici G, Caccuri AM. Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. ACTA ACUST UNITED AC 2012; 8:994-1006. [DOI: 10.1039/c1mb05295k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Tsai CT, Ikematsu K, Sakai S, Matsuo A, Nakasono I. Expression of Bcl2l1, Clcf1, IL-28ra and Pias1 in the mouse heart after single and repeated administration of chlorpromazine. Leg Med (Tokyo) 2011; 13:221-5. [PMID: 21683644 DOI: 10.1016/j.legalmed.2011.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/16/2022]
Abstract
Several chlorpromazine (CPZ)-related deaths have been suspected in forensic autopsies but these are difficult to identify precisely because only low concentrations of CPZ can usually be detected. Patients on CPZ therapy exhibit various cardiovascular diseases, such as arrhythmia and cardiomyopathy. As our previous study revealed that CPZ administration affects the expression of immediate early genes that are induced before any other genes, we expected that CPZ probably affects the heart and, in particular, the gene expression in heart. CPZ changes tumor necrosis factor (TNF) production. After stimulation of TNF, the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway is activated via TNF receptor (TNF-R), and the pathway participates in the regulation of cellular responses such as apoptosis [1]. We used semi-arrays to determine the JAK-STAT signaling pathway in a mouse cardiomyocyte cell line, HL-1, and real-time quantitative-PCR to determine whether the semi-array data applied in vivo in mouse heart after single and once-daily repeated (1-4weeks) low-dose (0.75mg/kg) or high-dose (7.5mg/kg) CPZ treatment. We found that expression of B cell lymphoma 2 like 1 (Bcl2l1), Cardiotrophin-like cytokine factor 1 (Clcf1), Interleukin-28 receptor alpha (IL-28ra) and Protein inhibitor of activated STAT-1 (Pias1) were significantly changed in vivo. All these genes are associated with apoptosis. The expression level of Bcl2l1 was elevated after a single high-dose CPZ treatment and after 1week of repeated high doses, but returned to baseline from week 2 to week 4. Clcf1 and IL-28ra expression increased from week 2 or 3 after low-dose CPZ treatment. Pias1 also increased from week 2 after low-dose CPZ treatment. Our results indicate that different doses of CPZ can induce distinct patterns of gene expression for preventing the apoptotic progression in mouse cardiomyocytes, suggesting that CPZ can affect cardiomyocytes via the JAK-STAT signaling pathway and that this might lead to cardiomyopathy. In addition, our data may help to clarify the pathophysiology of cardiomyopathy induced by CPZ and to diagnose cardiac sudden death following CPZ treatment.
Collapse
Affiliation(s)
- Chung-Ting Tsai
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
14
|
Leitao BB, Jones MC, Brosens JJ. The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J 2011; 25:3416-25. [PMID: 21676946 PMCID: PMC3177572 DOI: 10.1096/fj.11-186346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human endometrial stromal cells (HESCs) exposed to reactive oxygen species (ROS) mount a hypersumoylation response in a c-Jun N-terminal kinase (JNK)-dependent manner. The mechanism that couples JNK signaling to the small ubiquitin-related modifier (SUMO) pathway and its functional consequences are not understood. We show that ROS-dependent JNK activation converges on the SUMO pathway via PIAS1 (protein inhibitor of activated STAT1). Unexpectedly, PIAS1 knockdown not only prevented ROS-dependent hypersumoylation but also enhanced JNK signaling in HESCs. Conversely, PIAS overexpression increased sumoylation of various substrates, including c-Jun, yet inhibited basal and ROS-dependent JNK activity independently of its SUMO ligase function. Expression profiling demonstrated that PIAS1 knockdown enhances and profoundly modifies the transcriptional response to oxidative stress signals. Using a cutoff of 2-fold change or more, a total of 250 ROS-sensitive genes were identified, 97 of which were not dependent on PIAS1. PIAS1 knockdown abolished the regulation of 43 genes but also sensitized 110 other genes to ROS. Importantly, PIAS1 silencing was obligatory for the induction of several cellular defense genes in response to oxidative stress. In agreement, PIAS1 knockdown attenuated ROS-dependent caspase-3/7 activation and subsequent apoptosis. Thus, PIAS1 determines the level of JNK activity in HESCs, couples ROS signaling to the SUMO pathway, and promotes oxidative cell death.
Collapse
Affiliation(s)
- Beatriz B Leitao
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
15
|
Leaner VD, Chick JF, Donninger H, Linniola I, Mendoza A, Khanna C, Birrer MJ. Inhibition of AP-1 transcriptional activity blocks the migration, invasion, and experimental metastasis of murine osteosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:265-75. [PMID: 19074613 DOI: 10.2353/ajpath.2009.071006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A well-characterized murine osteosarcoma model for metastasis and invasion was used in this study to determine the role of AP-1 in the progression of this disease. We analyzed K12 and K7M2 cells, two clonally related murine osteosarcoma cell lines that have been characterized as low metastatic or high metastatic, respectively, for AP-1 components and activity. AP-1 DNA binding was similar between the two cell lines; however AP-1 transcriptional activity was enhanced by 3- to 5-fold in K7M2 cells relative to that in K12 cells. The AP-1 complexes in K12 and K7M2 cells was composed primarily of cJun, JunD, FosB, Fra1, and Fra2, with the contribution of individual components in the complex varying between the two cell lines. In addition, an increase in phosphorylated cJun, JNK activity, and phosphorylated ERK1/2 was associated with the more metastatic osteosarcoma phenotype. The significance of AP-1 activation was confirmed by conditional expression of TAM67, a dominant negative mutant of cJun. Under conditions where TAM67 inhibited AP-1 activity in K7M2 cells, migration and invasion potential was significantly blocked. Tam67 expression in aggressive osteosarcoma cells decreased long-term in vivo experimental metastasis and increased survival of mice. This study shows that differences in metastatic activity can be due to AP-1 activation. The inhibition of AP-1 activity may serve as a therapeutic tool in the management of osteosarcoma.
Collapse
Affiliation(s)
- Virna D Leaner
- Cell and Cancer Biology Department, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The modification of proteins by SUMO (small ubiquitin-related modifier) conjugation is becoming increasingly recognized as an important regulatory event. Protein SUMOylation can control a whole range of activities, including subcellular localization, protein-protein interactions and enzymatic activity. However, the SUMOylation process can itself be controlled. In the present review, the mechanisms through which protein SUMOylation is regulated are discussed, with particular emphasis on the impact of signalling pathways. A major point of regulation of the SUMO pathway is through targeting the E3 ligases, and a number of different ways to achieve this have been identified. More generally, the MAPK (mitogen-activated protein kinase) pathways represent one way through which SUMOylation of specific proteins is controlled, by using molecular mechanisms that at least in part also function by modifying the activity of SUMO E3 ligases. Further intricacies in signalling pathway interactions are hinted at through the growing number of examples of cross-talk between different post-translational modifications and SUMO modification.
Collapse
|
17
|
Ghoshal Gupta S, Baumann H, Wetzler M. Epigenetic regulation of signal transducer and activator of transcription 3 in acute myeloid leukemia. Leuk Res 2008; 32:1005-14. [PMID: 18192010 DOI: 10.1016/j.leukres.2007.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/25/2007] [Accepted: 11/26/2007] [Indexed: 12/22/2022]
Abstract
We have demonstrated that constitutive signal transducer and activator of transcription (STAT) 3 activity, observed in approximately 50% of acute myeloid leukemia (AML) cases, is associated with adverse treatment outcome. Constitutive STAT3 activation may result from the expression of oncogenic protein tyrosine kinases or from autocrine stimulation by hematopoietic growth factors. These causes are generally neither necessary nor sufficient for leukemogenesis; additional transforming events or growth stimulatory processes are needed. Here we review the literature addressing epigenetic regulation as a mechanism controlling STAT3 signaling in AML. A better understanding of mechanisms of dysregulation of STAT signaling pathways may serve as a basis for designing novel therapeutic strategies that target these pathways in leukemia cells.
Collapse
Affiliation(s)
- Sampa Ghoshal Gupta
- Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | | | | |
Collapse
|
18
|
Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N. A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 2007; 26:6665-76. [PMID: 17533377 DOI: 10.1038/sj.onc.1210486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein inhibitor of activated STAT (Pias) and human homologues of seven in absentia (hSiah) proteins both exhibit properties of ubiquitin-family peptides conjugating enzymes. Pias present E3-ligase activity for small ubiquitin-related modifiers (Sumo) covalent attachment to their targets. This post-translational modification is responsible for the activation of different transcription factors such as AP1. HSiah proteins possess ubiquitin-E3-ligase activity that triggers their partners to proteasomal-dependent degradation. The present study identifies Pias as a new hSiah2-interacting protein. We demonstrate that hSiah2 regulates specifically the proteasome-dependent degradation of Pias proteins. On reverse, Pias does not prevent hSiah2 degradation. We provide evidences for hSiah2-dependent degradation of Pias as being a mechanism in the regulation of c-jun N-terminal kinase-activating pathways. This report describes a new interconnection between sumoylation and ubiquitination pathways by regulating the levels of the E3-ligases available for these processes.
Collapse
Affiliation(s)
- A Depaux
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | |
Collapse
|
19
|
Eliseev RA, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi H, Rosier RN. Increased radiation-induced apoptosis of Saos2 cells via inhibition of NFκB: A role for c-Jun N-terminal kinase. J Cell Biochem 2005; 96:1262-73. [PMID: 16167336 DOI: 10.1002/jcb.20607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To elucidate the possible effect of NFkappaB on radioresistance, we used the osteosarcoma cell line Saos2, stably expressing the NFkappaB constitutive inhibitor, mIkappaB (Saos2-mIkappaB) or stably transfected with the empty vector (Saos2-EV). Ionizing radiation induced "intrinsic" apoptosis in Saos2-mIkappaB cells but not in Saos2-EV control cells, with intact NFkappaB activity. We find as expected, that this NFkappaB activity was enhanced following irradiation in the Saos2-EV control cells. On the other hand, inhibition of NFkappaB signaling in Saos2-mIkappaB cells led to the upregulation of the pro-apoptotic systems, such as Bax protein and c-Jun N-terminal Kinase (JNK)/c-Jun/AP1 signaling. Inhibition of NFkappaB resulted in decreased expression of the DNA damage protein GADD45beta, a known inhibitor of JNK. Subsequently, JNK activation of c-Jun/AP-1 proteins increased radiation-induced apoptosis in these mutants. Radiation-induced apoptosis in Saos2-mIkappaB cells was inhibited by the JNK specific inhibitor SP600125 as well as by Bcl-2 over-expression. Furthermore, release of cytochrome-c from mitochondria was increased and caspase-9 and -3 were activated following irradiation in Saos2-mIkappaB cells. Antisense inhibition of GADD45beta in Saos2-EV cells significantly enhanced apoptosis following irradiation. Our results demonstrate that radioresistance of Saos2 osteosarcoma cells is due to NFkappaB-mediated inhibition of JNK. Our study brings new insight into the mechanisms underlying radiation-induced apoptosis of osteosarcoma, and may lead to development of new therapeutic strategies against osteosarcoma.
Collapse
Affiliation(s)
- Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M, Schmidt D, Muller S, Jariel-Encontre I, Piechaczyk M. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 2005; 25:6964-79. [PMID: 16055710 PMCID: PMC1190241 DOI: 10.1128/mcb.25.16.6964-6979.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The inducible transcriptional complex AP-1, composed of c-Fos and c-Jun proteins, is crucial for cell adaptation to many environmental changes. While its mechanisms of activation have been extensively studied, how its activity is restrained is poorly understood. We report here that lysine 265 of c-Fos is conjugated by the peptidic posttranslational modifiers SUMO-1, SUMO-2, and SUMO-3 and that c-Jun can be sumoylated on lysine 257 as well as on the previously described lysine 229. Sumoylation of c-Fos preferentially occurs in the context of c-Jun/c-Fos heterodimers. Using nonsumoylatable mutants of c-Fos and c-Jun as well as a chimeric protein mimicking sumoylated c-Fos, we show that sumoylation entails lower AP-1 transactivation activity. Interestingly, single sumoylation at any of the three acceptor sites of the c-Fos/c-Jun dimer is sufficient to substantially reduce transcription activation. The lower activity of sumoylated c-Fos is not due to inhibition of protein entry into the nucleus, accelerated turnover, and intrinsic inability to dimerize or to bind to DNA. Instead, cell fractionation experiments suggest that decreased transcriptional activity of sumoylated c-Fos is associated with specific intranuclear distribution. Interestingly, the phosphorylation of threonine 232 observed upon expression of oncogenically activated Ha-Ras is known to superactivate c-Fos transcriptional activity. We show here that it also inhibits c-Fos sumoylation, revealing a functional antagonism between two posttranslational modifications, each occurring within a different moiety of a bipartite transactivation domain of c-Fos. Finally we report that the sumoylation of c-Fos is a dynamic process that can be reversed via multiple mechanisms. This supports the idea that this modification does not constitute a final inactivation step that necessarily precedes protein degradation.
Collapse
Affiliation(s)
- Guillaume Bossis
- Institute of Molecular Genetics of Montpellier, UMR5535/IFR122, CNRS 1919, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005; 15:27-33. [PMID: 15653075 DOI: 10.1016/j.tcb.2004.11.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteasomes perform the majority of proteolysis that occurs in the cytosol and nucleus of eukaryotic cells and, thereby, perform crucial roles in cellular regulation and homeostasis. Isolated proteasomes are inactive because substrates cannot access the proteolytic sites. PA28 and PA200 are activators that bind to proteasomes and stimulate the hydrolysis of peptides. Several protein inhibitors of the proteasome have also been identified, and the properties of these activators and inhibitors have been characterized biochemically. By contrast, their physiological roles--which have been reported to include production of antigenic peptides, proteasome assembly and DNA repair--are controversial. In this article, we briefly review the biochemical data and discuss the possible biological roles of PA28, PA200 and proteasome inhibitors.
Collapse
Affiliation(s)
- Martin Rechsteiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
22
|
Liu B, Yang R, Wong KA, Getman C, Stein N, Teitell MA, Cheng G, Wu H, Shuai K. Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 2005; 25:1113-23. [PMID: 15657437 PMCID: PMC544018 DOI: 10.1128/mcb.25.3.1113-1123.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/18/2004] [Accepted: 11/10/2004] [Indexed: 12/11/2022] Open
Abstract
The NF-kappaB family of transcription factors is activated by a wide variety of signals to regulate a spectrum of cellular processes. The proper regulation of NF-kappaB activity is critical, since abnormal NF-kappaB signaling is associated with a number of human illnesses, such as chronic inflammatory diseases and cancer. We report here that PIAS1 (protein inhibitor of activated STAT1) is an important negative regulator of NF-kappaB. Upon cytokine stimulation, the p65 subunit of NF-kappaB translocates into the nucleus, where it interacts with PIAS1. The binding of PIAS1 to p65 inhibits cytokine-induced NF-kappaB-dependent gene activation. PIAS1 blocks the DNA binding activity of p65 both in vitro and in vivo. Consistently, chromatin immunoprecipitation assays indicate that the binding of p65 to the promoters of NF-kappaB-regulated genes is significantly enhanced in Pias1-/- cells. Microarray analysis indicates that the removal of PIAS1 results in an increased expression of a subset of NF-kappaB-mediated genes in response to tumor necrosis factor alpha and lipopolysaccharide. Consistently, Pias1 null mice showed elevated proinflammatory cytokines. Our results identify PIAS1 as a novel negative regulator of NF-kappaB.
Collapse
Affiliation(s)
- Bin Liu
- Division of Hematology-Oncology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1678, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
Collapse
Affiliation(s)
- Erica S Johnson
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
24
|
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) modulates viral and cellular gene expression, including interleukin 6 (IL-6), a growth factor for KSHV-associated diseases. LANA-driven IL-6 expression is dependent on the activator protein 1 (AP1) response element (RE) within the IL-6 promoter. We show that LANA activates the AP1 RE in a Jun-dependent fashion and that LANA enhances the transcriptional activity of a GAL4-Jun fusion protein. Coimmunoprecipitation studies documented a physical interaction between LANA and c-Jun in transiently transfected 293 cells as well as the KSHV-infected BCBL-1 primary effusion lymphoma (PEL) cell line. Taken together, these data indicate that LANA is a transcriptional coactivator of c-Jun. In addition, electrophoretic mobility shift assays demonstrated that LANA induces binding of a c-Jun-Fos heterodimer to the AP1 RE, but does not itself bind to the AP1 RE. RNA interference experiments confirmed that LANA activates the AP1 RE, stimulates binding of a c-Jun-Fos heterodimer to the AP1 RE, and induces expression of IL-6. These data indicate that LANA is a transcriptional coactivator of c-Jun, a function that may have implications for the pathogenesis of KSHV-associated diseases.
Collapse
Affiliation(s)
- Jiabin An
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
25
|
Duval D, Duval G, Kedinger C, Poch O, Boeuf H. The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 2003; 554:111-8. [PMID: 14596924 DOI: 10.1016/s0014-5793(03)01116-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PIAS proteins, cytokine-dependent STAT-associated repressors, exhibit intrinsic E3-type SUMO ligase activities and form a family of transcriptional modulators. Three conserved domains have been identified so far in this protein family, the SAP box, the MIZ-Zn finger/RING module and the acidic C-terminal domain, which are essential for protein interactions, DNA binding or SUMO ligase activity. We have identified a novel conserved domain of 180 residues in PIAS proteins and shown that its 'PINIT' motif as well as other conserved motifs (in the SAP box and in the RING domain) are independently involved in nuclear retention of PIAS3L, the long form of PIAS3, that we have characterized in mouse embryonic stem cells.
Collapse
Affiliation(s)
- D Duval
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, P.O. Box 10142, C.U. de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
26
|
Ueda M, Ota J, Yamashita Y, Choi YL, Ohki R, Wada T, Koinuma K, Kano Y, Ozawa K, Mano H. DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome. Br J Haematol 2003; 123:288-96. [PMID: 14531911 DOI: 10.1046/j.1365-2141.2003.04601.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disorder of haematopoietic stem cells. Despite the high incidence of MDS in the elderly, effective treatment of individuals in its advanced stages is problematic. DNA microarray analysis is a potentially informative approach to the development of new treatments for MDS. However, a simple comparison of 'transcriptomes' of bone marrow mononuclear cells among individuals at distinct stages of MDS would result in the identification of genes whose expression differences only reflect differences in the proportion of MDS blasts within bone marrow. Such a 'population shift' effect has now been avoided by purification of haematopoietic stem-like cells that are positive for the cell surface marker AC133 from the bone marrow of healthy volunteers and 30 patients at various stages of MDS. Microarray analysis with the AC133+ cells from these individuals resulted in the identification of sets of genes with expression that was specific to either indolent or advanced stages of MDS. The former group of genes included that for PIASy, which catalyses protein modification with the ubiquitin-like molecule SUMO. Induction of PIASy expression in a mouse myeloid cell line induced apoptosis. A loss of PIASy expression may therefore contribute directly to the growth of MDS blasts and stage progression.
Collapse
Affiliation(s)
- Masuzu Ueda
- Division of Hematology, Jichi Medical School, Kawachigun, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
|
28
|
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374:1-20. [PMID: 12773095 PMCID: PMC1223585 DOI: 10.1042/bj20030407] [Citation(s) in RCA: 2389] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/30/2003] [Accepted: 05/29/2003] [Indexed: 12/11/2022]
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
Affiliation(s)
- Peter C Heinrich
- Institut für Biochemie, RWTH Aachen, Universitätsklinikum, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Sah NK, Munshi A, Kurland JF, McDonnell TJ, Su B, Meyn RE. Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 2003; 278:20593-602. [PMID: 12663665 DOI: 10.1074/jbc.m211010200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in several human tumors both in vitro and in vivo, however, some tumors remain resistant for poorly understood reasons. Using a quantitative DNA fragmentation assay for apoptosis, we have shown that human prostate cancer cells are resistant to a wide range of TRAIL doses up to 500 ng/ml. However, translation inhibitors, such as anisomycin, cycloheximide, emetine, harringtonine, and puromycin, unlike several transcription inhibitors, significantly sensitized PC3-neomycin (PC3-neo) cells to TRAIL-induced apoptosis. These effects were inhibited in PC3 cells engineered to express bcl2 (PC3-bcl2). Translation inhibitors led to activation of c-Jun N-terminal kinase (JNK), which plays a role in this sensitization process because inhibition of JNK activation resulted in protection against TRAIL plus translation inhibitor-induced apoptosis. JNK activation may be required for this process, but it is not sufficient because activation of JNK using an MEKK2 expression vector did not mimic the sensitizing effect of translation inhibitors. Other stress-activated protein kinases, such as ERK and p38, play an insignificant role in determining the apoptotic sensitivity. We conclude that activation of JNK is required for sensitization of PC3 cells to TRAIL-induced apoptosis by translation inhibitors in cells that are otherwise TRAIL-resistant. However, in addition to JNK activation, other aspects of translation inhibition such as the suppressed activity of apoptosis-inhibitory proteins or activation of other signal transduction pathways must also be involved.
Collapse
Affiliation(s)
- Nand K Sah
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
An J, Sun Y, Sun R, Rettig MB. Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene 2003; 22:3371-85. [PMID: 12776188 DOI: 10.1038/sj.onc.1206407] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a FADD-like interferon converting enzyme or caspase 8 (FLICE) inhibitory protein (vFLIP) that prevents death receptor-mediated apoptosis by inhibiting the recruitment and activation of FLICE. Since vFLIP physically interacts with tumor necrosis factor receptor associated factor 2 (TRAF2) and TRAF2 mediates activation of the jun NH(2)-terminal kinase (JNK)/activation protein 1 (AP1) pathway, we hypothesized that vFLIP might also activate this pathway. To evaluate this hypothesis, we transiently and stably transfected a vFLIP expression construct and performed several complementary assays to document that vFLIP activates the JNK/AP1 pathway and does so in a TRAF-dependent fashion. As vFLIP also activates the nuclear factor kappaB (NF-kappaB) signaling pathway and the NF-kappaB and JNK/AP1 pathways both modulate cellular interleukin-6 (cIL-6) expression, we postulated that vFLIP induces expression of this cytokine. We show that vFLIP induces cIL-6 expression and activates the cIL-6 promoter, and maximal activation of the cIL-6 promoter by vFLIP requires NF-kappaB and AP1 activation. In addition, vFLIP and latency-associated nuclear antigen (LANA), another KSHV-encoded latent protein, potentiate each other's ability to activate the cIL-6 promoter. Gene silencing experiments by RNA interference demonstrate that vFLIP in BCBL-1 endogenously infected primary effusion lymphoma (PEL) cells mediates JNK/AP1 activation and cIL-6 expression. Thus, we conclude that vFLIP, in addition to its known effects on NF-kappaB activation, also modulates the JNK/AP1 pathway and induces gene expression from the cIL-6 promoter in a JNK/AP1-dependent fashion.
Collapse
Affiliation(s)
- Jiabin An
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
31
|
Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D. Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem 2003; 278:11802-10. [PMID: 12556466 DOI: 10.1074/jbc.m210279200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the majority of aggressive tumorigenic prostate cancer cells, the transcription factor Egr1 is overexpressed. We provide new insights of Egr1 involvement in proliferation and survival of TRAMP C2 prostate cancer cells by the identification of several new target genes controlling growth, cell cycle progression, and apoptosis such as cyclin D2, P19ink4d, and Fas. Egr1 regulation of these genes, identified by Affymetrix microarray, was confirmed by real-time PCR, immunoblot, and chromatin immunoprecipitation assays. Furthermore we also showed that Egr1 is responsible for cyclin D2 overexpression in tumorigenic DU145 human prostate cells. The regulation of these genes by Egr1 was demonstrated using Egr1 antisense oligonucleotides that further implicated Egr1 in resistance to apoptotic signals. One mechanism was illustrated by the ability of Egr1 to inhibit CD95 (Fas/Apo) expression, leading to insensitivity to FasL. The results provide a mechanistic basis for the oncogenic role of Egr1 in TRAMP C2 prostate cancer cells.
Collapse
Affiliation(s)
- Thierry Virolle
- Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
32
|
Papachristou DJ, Batistatou A, Sykiotis GP, Varakis I, Papavassiliou AG. Activation of the JNK-AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone 2003; 32:364-71. [PMID: 12689679 DOI: 10.1016/s8756-3282(03)00026-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Osteosarcomas represent the most common primary malignant bone tumors; however, comprehension of the molecular mechanisms underlying their pathogenesis is far from thorough. Studies in cultured cells have demonstrated that the c-Jun N-terminal kinase (JNK) signal transduction pathway participates in the proliferation, differentiation, and apoptosis of osteoblasts. Phosphorylated JNKs activate the oncoprotein c-Jun, which is known to form the activator protein-1 (AP-1) transcription factor as a homo- or heterodimer. c-Jun's principal dimerization partner is c-Fos, which participates in the differentiation and function of osteoblasts and in the pathogenesis of osteosarcomas. A similar role for the JNK cascade in the malignant transformation of human osteoblasts and in the generation of osteosarcomas has not been documented. Our study addressed the possibility that a functional upregulation of the JNK pathway is implicated in the pathogenesis of osteosarcomas. To this end, we employed immunohistochemistry to examine normal bone and osteosarcoma cells in paraffin-embedded sections from 56 patients with high-grade tumors and 15 patients with low-grade tumors. We assessed the protein levels of the two major JNK isoforms (JNK1 and JNK2); their phosphorylated-hence activated-species, p-JNK; their substrate, c- Jun; its phosphorylated (activated) form, pc-Jun; and c-Jun's heterodimeric partner, c-Fos. We also examined the immunohistochemical profile of the alpha chain of the nascent polypeptide-associated complex (alpha-NAC), an osteoblast-specific AP-1 coactivator that potentiates the transcriptional activity of the c-Jun/c-Jun homodimer. Positive immunostaining for JNK1, JNK2, p-JNK, c-Jun, pc-Jun, c-Fos, and alpha-NAC was observed in 86, 93, 94, 99, 97, 99, and 97.5% of the samples, respectively, whereas normal bone was devoid of these immunoreactivities. The cellular levels of all proteins were significantly correlated to each other (P < 0.001 for each correlation). Moreover, significantly higher expression levels of all proteins were detected in high-grade tumors compared to levels in low-grade ones. The observed expression profile of alpha-NAC implies that the active AP-1 in human osteosarcomas most likely comprises c-Jun/c-Jun homodimers. When cellular levels of the JNK pathway components and c-Fos were evaluated as possible biological markers of tumor grade, high expression of c-Jun and abundant pc-Jun predicted a high-grade tumor. Our findings provide novel evidence that the JNK signaling pathway is functionally operative in the malignant transformation of osteoblasts and the subsequent development and progression of human osteosarcomas. Evaluation of c-Jun expression and JNK-dependent activation may facilitate an improved prediction of the tumor's clinical behavior and potentially be exploited in designing patient-tailored treatment regimens.
Collapse
Affiliation(s)
- D J Papachristou
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | | | | | | | |
Collapse
|
33
|
Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem 2002; 277:42981-6. [PMID: 12223491 DOI: 10.1074/jbc.m208099200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin is a multifunctional protein, regulating Wnt signaling and the c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK) pathway as well as tumorigenesis. In the present study, we found that Axin interacts with three SUMO-1 (small ubiquitin-related modifier) conjugating enzymes 3 (E3), PIAS1, PIASxbeta, and PIASy. The extreme C-terminal six amino acid residues of Axin are critical for the Axin/E3 interaction as deletion of the six residues (AxinDeltaC6) completely abolished the ability of Axin to interact with E3 enzymes. AxinDeltaC6 also failed to activate JNK, although it was intact in both its interaction with MEKK1 and homodimerization. Consistent with the presence of a doublet of the KV(E/D) sumoylation consensus motif at the C-terminal end (KVEKVD), we found that Axin is heavily sumoylated. Deletion of the C-terminal six amino acids drastically reduced sumoylation, indicating that the C-terminal six amino acids stretch is the main sumoylation site for Axin. Sumoylation-defective mutants failed to activate JNK but effectively destabilized beta-catenin and attenuated LEF1 transcriptional activity. In addition, we show that dominant negative Axin mutants blocked PIAS-mediated JNK activation, in accordance with the requirement of sumoylation for Axin-mediated JNK activation. Taken together, we demonstrate that sumoylation plays a role for Axin to function in the JNK pathway.
Collapse
Affiliation(s)
- Hong-Liang Rui
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
34
|
Kirsh O, Seeler JS, Pichler A, Gast A, Müller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F, Dejean A. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 2002; 21:2682-91. [PMID: 12032081 PMCID: PMC125385 DOI: 10.1093/emboj/21.11.2682] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 04/09/2002] [Accepted: 04/11/2002] [Indexed: 11/14/2022] Open
Abstract
Transcriptional repression mediated through histone deacetylation is a critical component of eukaryotic gene regulation. Here we demonstrate that the class II histone deacetylase HDAC4 is covalently modified by the ubiquitin-related SUMO-1 modifier. A sumoylation-deficient point mutant (HDAC4-K559R) shows a slightly impaired ability to repress transcription as well as reduced histone deacetylase activity. The ability of HDAC4 to self-aggregate is a prerequisite for proper sumoylation in vivo. Calcium/calmodulin-dependent protein kinase (CaMK) signalling, which induces nuclear export, abrogates SUMO-1 modification of HDAC4. Moreover, the modification depends on the presence of an intact nuclear localization signal and is catalysed by the nuclear pore complex (NPC) RanBP2 protein, a factor newly identified as a SUMO E3 ligase. These findings suggest that sumoylation of HDAC4 takes place at the NPC and is coupled to its nuclear import. Finally, modification experiments indicate that the MEF2-interacting transcription repressor (MITR) as well as HDAC1 and -6 are similarly SUMO modified, indicating that sumoylation may be an important regulatory mechanism for the control of transcriptional repression mediated by both class I and II HDACs.
Collapse
Affiliation(s)
- Olivier Kirsh
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Jacob-S. Seeler
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Andrea Pichler
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Andreas Gast
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Stefan Müller
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Eric Miska
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Marion Mathieu
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Annick Harel-Bellan
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Tony Kouzarides
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Frauke Melchior
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| | - Anne Dejean
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, IFC-O1, F-94801 Villejuif, France, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany and Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK Present address: Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Corresponding author e-mail: and J.-S.Seeler contributed equally to this work
| |
Collapse
|
35
|
Wible BA, Wang L, Kuryshev YA, Basu A, Haldar S, Brown AM. Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3beta in prostate cancer cells. J Biol Chem 2002; 277:17852-62. [PMID: 11877452 DOI: 10.1074/jbc.m201689200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K(+) channel-associated protein/protein inhibitor of activated STAT (KChAP/PIAS3beta) is a potassium (K(+)) channel modulatory protein that boosts protein expression of a subset of K(+) channels and increases currents without affecting gating. Since increased K(+) efflux is an early event in apoptosis, we speculated that KChAP might induce apoptosis through its up-regulation of K(+) channel expression. KChAP belongs to the protein inhibitor of activated STAT family, members of which also interact with a variety of transcription factors including the proapoptotic protein, p53. Here we report that KChAP induces apoptosis in the prostate cancer cell line, LNCaP, which expresses both K(+) currents and wild-type p53. Infection with a recombinant adenovirus encoding KChAP (Ad/KChAP) increases K(+) efflux and reduces cell size as expected for an apoptotic volume decrease. The apoptosis inducer, staurosporine, increases endogenous KChAP levels, and LNCaP cells, 2 days after Ad/KChAP infection, show increased sensitivity to staurosporine. KChAP increases p53 levels and stimulates phosphorylation of p53 residue serine 15. Consistent with activation of p53 as a transcription factor, p21 levels are increased in infected cells. Wild-type p53 is not essential for induction of apoptosis by KChAP, however, since KChAP also induces apoptosis in DU145 cells, a prostate cancer cell line with mutant p53. Consistent with its proapoptotic properties, KChAP prevents growth of DU145 and LNCaP tumor xenografts in nude mice, indicating that infection with Ad/KChAP might represent a novel method of cancer treatment.
Collapse
Affiliation(s)
- Barbara A Wible
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Megidish T, Xu JH, Xu CW. Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J Biol Chem 2002; 277:8255-9. [PMID: 11788578 DOI: 10.1074/jbc.c200001200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein p53 functions as a transcriptional factor that activates genes controlling cell cycle arrest and apoptosis. Here, we report that protein inhibitor of activated Stat1 (PIAS1) interacts with the tetramerization and C-terminal regulatory domains of p53 in yeast two-hybrid analyses. Endogenous PIAS1 is also associated with endogenous p53 in mammalian cells. Ectopic expression of PIAS1 activates p53-mediated expression in mouse embryonic fibroblast cells (p53(-/-)) as well as a variety of other cell lines. Furthermore, ectopic expression of PIAS1 induces p53-mediated expression of cyclin-dependent kinase inhibitor p21 and G(1) arrest of the cell cycle in H1299 cells. In addition, a PIAS1 mutant without the RING-finger domain required for sumoylation could still activate p53-mediated gene expression, indicating that activation of p53 by PIAS1 does not require the RING-finger domain. Taken together, our results suggest that PIAS1 is a novel activator of p53.
Collapse
Affiliation(s)
- Tamar Megidish
- Molecular Pharmacology Program, Sloan-Kettering Institute, Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|