1
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
2
|
Tome L, Steindorf D, Schneider D. Genetic systems for monitoring interactions of transmembrane domains in bacterial membranes. Methods Mol Biol 2013; 1063:57-91. [PMID: 23975772 DOI: 10.1007/978-1-62703-583-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years several systems have been developed to study interactions of TM domains within the inner membrane of the Gram-negative bacterium Escherichia coli. Mostly, a transmembrane domain of interest is fused to a soluble DNA-binding domain, which dimerizes in E. coli cytoplasm after interactions of the transmembrane domains. The dimeric DNA-binding domain subsequently binds to a promoter/operator region and thereby activates or represses a reporter gene. In 1996 the first bacterial system has been introduced to measure interactions of TM helices within a bacterial membrane, which is based on fusion of a transmembrane helix of interest to the DNA-binding domain of the Vibrio cholerae ToxR protein. Interaction of a transmembrane helix of interest within the membrane environment results in dimerization of the DNA-binding domain in the bacterial cytoplasm, and the dimeric DNA-binding domain then binds to the DNA and activates a reporter gene. Subsequently, systems with improved features, such as the TOXCAT- or POSSYCCAT system, which allow screening of TM domain libraries, or the GALLEX system, which allows measuring heterotypic interactions of TM helices, have been developed and successfully applied. Here we briefly introduce the currently most applied systems and discuss their advantages together with their limitations.
Collapse
Affiliation(s)
- Lydia Tome
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
3
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
4
|
Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid 2009; 61:141-50. [PMID: 19254745 DOI: 10.1016/j.plasmid.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The Escherichia coli SeqA protein contributes to regulation of chromosome replication by preventing re-initiation at newly replicated origins. SeqA protein binds to new DNA which is hemimethylated at the adenine of GATC sequences. Most of the cellular SeqA is found complexed with the new DNA at the replication forks. In vitro the SeqA protein binds as a dimer to two GATC sites and is capable of forming a helical fiber of dimers through interactions of the N-terminal domain. SeqA can also bind, with less affinity, to fully methylated origins and affect timing of "primary" initiations. In addition to its roles in replication, the SeqA protein may also act in chromosome organization and gene regulation.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
5
|
Daghfous D, Chatti A, Hammami R, Landoulsi A. Modeling of the full-length Escherichia coli SeqA protein, in complex with DNA. ACTA ACUST UNITED AC 2008; 57:e61-6. [PMID: 18849124 DOI: 10.1016/j.patbio.2008.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/18/2008] [Indexed: 11/27/2022]
Abstract
The Escherichia coli SeqA protein, a negative regulator of chromosome DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated GATC sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the SeqA protein biological activity, we performed a SeqA protein model to examine its architecture. SeqA has a bipartite structure composed of a large and small lobe. The SeqA spatial conformation contributes to its ability to bind to a pair of hemimethylated GATC sequences and to its cooperative behavior.
Collapse
Affiliation(s)
- D Daghfous
- Laboratoire de biochimie et de biologie moléculaire, faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia.
| | | | | | | |
Collapse
|
6
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G. Modulation of lambda plasmid and phage DNA replication by Escherichia coli SeqA protein. MICROBIOLOGY-SGM 2007; 153:1653-1663. [PMID: 17464080 DOI: 10.1099/mic.0.2006/005546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the lambda plasmid, is decreased, and that the activity of the lambda p(R) promoter (whose function is required for stimulation of ori lambda) is lower than that in the wild-type host. Here, SeqA-mediated regulation of lambda phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on ori lambda-dependent DNA replication in vitro was observed, indicating that a direct regulation of lambda DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled lambda DNA was monitored after phage infection of host cells, strongly suggested the early appearance of sigma replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of lambda plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable lambda replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the lambda O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent lambda DNA replication, the efficiency of lambda plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of lambda plasmid replication. These results indicate that unlike oriC, SeqA modulates lambda DNA replication indirectly, most probably by influencing the stability of the lambda replication complex and the transcriptional activation of ori lambda.
Collapse
Affiliation(s)
- Magdalena Narajczyk
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Monika Glinkowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
8
|
Kang S, Han JS, Kim SH, Park JH, Hwang DS. Aggregation of SeqA protein requires positively charged amino acids in the hinge region. Biochem Biophys Res Commun 2007; 360:63-9. [PMID: 17586464 DOI: 10.1016/j.bbrc.2007.05.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/23/2022]
Abstract
SeqA proteins of Escherichia coli bound to the hemimethylated GATC sequences (hemi-sites) interact with each other and eventually form an aggregate. SeqA foci, which are suggested to be formed by aggregation, play important roles in the regulation of chromosome replication and segregation. We found that aggregation of SeqA proteins was preceded by cooperative interactions between these proteins bound to hemi-sites. Positively charged amino acids in the hinge region, which connects the N-terminal and C-terminal domain of SeqA, were critical for SeqA aggregation on hemimethylated DNA. Although the substitution of positively charged amino acids with negatively charged or neutral amino acids maintained the binding and cooperative interaction of mutant proteins, these proteins were defective in aggregation and foci formation in vitro and in vivo, respectively. Our results suggest that in vivo SeqA foci were formed by aggregation following cooperative interactions between SeqA proteins bound to hemi-sites.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
10
|
Odsbu I, Klungsøyr HK, Fossum S, Skarstad K. Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 2006; 10:1039-49. [PMID: 16236133 DOI: 10.1111/j.1365-2443.2005.00898.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein binds preferentially to hemimethylated DNA and is required for inactivation (sequestration) of newly formed origins. A mutant SeqA protein, SeqA4 (A25T), which is deficient in origin sequestration in vivo, was found here to have lost the ability to form multimers, but could bind as dimers with wild-type affinity to a pair of hemimethylated GATC sites. In vitro, binding of SeqA dimers to a plasmid first generates a topology change equivalent to a few positive supercoils, then the binding leads to a topology change in the "opposite" direction, resulting in a restraint of negative supercoils. Binding of SeqA4 mutant dimers produced the former effect, but not the latter, showing that a topology change equivalent to positive supercoiling is caused by the binding of single dimers, whereas restraint of negative supercoils requires multimerization via the N-terminus. In vivo, mutant SeqA4 protein was not capable of forming foci observed by immunofluorescence microscopy, showing that N-terminus-dependent multimerization is required for building SeqA foci. Overproduction of SeqA4 led to partially restored initiation synchrony, indicating that origin sequestration may not depend on efficient higher-order multimerization into foci, but do require a high local concentration of SeqA.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
11
|
Yamazoe M, Adachi S, Kanaya S, Ohsumi K, Hiraga S. Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli. Mol Microbiol 2005; 55:289-98. [PMID: 15612935 DOI: 10.1111/j.1365-2958.2004.04389.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
12
|
Hashiyama K, Takeuchi A, Makino O. Effects of single amino acid substitutions at the predicted coiled-coil or hydrophobic region on the self-assembly of phi29 replication protein, gp1. Biochem Biophys Res Commun 2005; 331:1310-6. [PMID: 15883018 DOI: 10.1016/j.bbrc.2005.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Gp1, the product of one of the essential genes of phi29 replication, is an RNA binding protein and self-associates to form large complexes. Furthermore, gp1 suppresses the synthesis of phi29 DNA polymerase and primer protein in the post-transcriptional process. In this report, we have employed seven variants with single amino acid substitutions to analyze the self-assembly of gp1. Using chemical cross-linking and sedimentation assays, amino acid substitutions within the predicted coiled-coil or hydrophobic region were shown to strongly affect the formation of large complexes, suggesting that these two regions were required for the self-assembly of gp1. The self-association of gp1 was suggested to be necessary for the efficient binding to RNA and the translational repression.
Collapse
Affiliation(s)
- Kazuya Hashiyama
- Department of Genetics, Life Science Institute, Sophia University, 7-1 Kioi-cho Chiyoda-Ku, Tokyo 102-8554, Japan
| | | | | |
Collapse
|
13
|
Guarné A, Brendler T, Zhao Q, Ghirlando R, Austin S, Yang W. Crystal structure of a SeqA-N filament: implications for DNA replication and chromosome organization. EMBO J 2005; 24:1502-11. [PMID: 15933720 PMCID: PMC1142570 DOI: 10.1038/sj.emboj.7600634] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 03/01/2005] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli SeqA binds clusters of transiently hemimethylated GATC sequences and sequesters the origin of replication, oriC, from methylation and premature reinitiation. Besides oriC, SeqA binds and organizes newly synthesized DNA at replication forks. Binding to multiple GATC sites is crucial for the formation of stable SeqA-DNA complexes. Here we report the crystal structure of the oligomerization domain of SeqA (SeqA-N). The structural unit of SeqA-N is a dimer, which oligomerizes to form a filament. Mutations that disrupt filament formation lead to asynchronous DNA replication, but the resulting SeqA dimer can still bind two GATC sites separated from 5 to 34 base pairs. Truncation of the linker between the oligomerization and DNA-binding domains restricts SeqA to bind two GATC sites separated by one or two full turns. We propose a model of a SeqA filament interacting with multiple GATC sites that accounts for both origin sequestration and chromosome organization.
Collapse
Affiliation(s)
- Alba Guarné
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kang S, Han JS, Kim KP, Yang HY, Lee KY, Hong CB, Hwang DS. Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences. Nucleic Acids Res 2005; 33:1524-31. [PMID: 15767277 PMCID: PMC1065253 DOI: 10.1093/nar/gki289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The binding of SeqA protein to hemi-methylated GATC sequences (hemi-sites) regulates chromosome initiation and the segregation of replicated chromosome in Escherichia coli. We have used atomic force microscopy to examine the architecture of SeqA and the mode of binding of one molecule of SeqA to a pair of hemi-sites in aqueous solution. SeqA has a bipartite structure composed of a large and a small lobe. Upon binding of a SeqA molecule to a pair of hemi-sites, the larger lobe becomes visibly separated into two DNA binding domains, each of which binds to one hemi-site. The two DNA binding domains are held together by association between the two multimerization domains that make up the smaller lobe. The binding of each DNA binding domain to a hemi-site leads to bending of the bound DNA inwards toward the bound protein. In this way, SeqA adopts a dimeric configuration when bound to a pair of hemi-sites. Mutational analysis of the multimerization domain indicates that, in addition to multimerization of SeqA polypeptides, this domain contributes to the ability of SeqA to bind to a pair of hemi-sites and to its cooperative behavior.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Joo Seok Han
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Keun Pill Kim
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Hye Yoon Yang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Kyung Yong Lee
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Choo Bong Hong
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
- To whom correspondence should be addressed. Tel: +82 2 880 7524; Fax: +82 2 874 1206;
| |
Collapse
|
15
|
Klungsøyr HK, Skarstad K. Positive supercoiling is generated in the presence of Escherichia coli SeqA protein. Mol Microbiol 2004; 54:123-31. [PMID: 15458410 DOI: 10.1111/j.1365-2958.2004.04239.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Escherichia coli, the SeqA protein is known as a negative regulator of chromosome replication. This protein is also suggested to have a role in chromosome organization. SeqA preferentially binds to hemi-methylated DNA and is by immunofluorescence microscopy seen as foci situated at the replication factories. Loss of SeqA leads to increased negative supercoiling of the DNA. We show that purified SeqA protein bound to fully methylated, covalently closed or nicked circular DNA generates positive supercoils in vitro in the presence of topoisomerase I or ligase respectively. This means that binding of SeqA changes either the twist or the writhe of the DNA. The ability to affect the topology of DNA suggests that SeqA may take part in the organization of the chromosome in vivo. The topology change performed by SeqA occurred also on unmethylated plasmids. It is, however, reasonable to suppose that in vivo the major part of such activity is performed on hemi-methylated DNA at the replication factories and presumably forms the basis for the characteristic SeqA foci observed by fluorescence microscopy.
Collapse
|
16
|
Riva A, Delorme MO, Chevalier T, Guilhot N, Hénaut C, Hénaut A. Characterization of the GATC regulatory network in E. coli. BMC Genomics 2004; 5:48. [PMID: 15265237 PMCID: PMC493266 DOI: 10.1186/1471-2164-5-48] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/20/2004] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The tetranucleotide GATC is methylated in Escherichia. coli by the DNA methyltransferase (Dam) and is known to be implicated in numerous cellular processes. Mutants lacking Dam are characterized by a pleiotropic phenotype. The existence of a GATC regulated network, thought to be involved in cold and oxygen shift, had been proposed and its existence has recently been confirmed. The aim of this article is to describe the components of the GATC regulated network of E. coli in detail and propose a role of this network in the light of an evolutionary advantage for the organism. RESULTS We have classified the genes of the GATC network according to the EcoCyc functional classes. Comparisons with all of E. coli's genes and the genes involved in the SOS and stress response show that the GATC network forms a group apart. The functional classes that characterize the network are the Energy metabolism (in particular respiration), Fatty acid/ Phospholipid metabolism and Nucleotide metabolism. CONCLUSIONS The network is thought to come into play when the cell undergoes coldshock and is likely to enter stationary phase.The respiration is almost completely under GATC control and according to our hypothesis it will be blocked at the moment of coldshock; this might give the cell a selective advantage as it increases its chances for survival when entering stationary phase under coldshock. We predict the accumulation of formate and possibly succinate, which might increase the cell's resistance, in this case to antimicrobial agents, when entering stationary phase.
Collapse
Affiliation(s)
- Alessandra Riva
- Laboratoire Génome et Informatique, UMR 8116, CNRS – Université d'Evry Val d'Essonne, Tour Evry 2, 523 Place des Terrasses, 91034 Evry cedex, France
| | - Marie-Odile Delorme
- Laboratoire Génome et Informatique, UMR 8116, CNRS – Université d'Evry Val d'Essonne, Tour Evry 2, 523 Place des Terrasses, 91034 Evry cedex, France
- Previous address: Hong Kong University- Pasteur Research Centre Ltd, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong
| | - Tony Chevalier
- METabolic EXplorer S.A., Biop ô le Clermont-Limagne, 63 360 Saint-Beauzire, France
| | - Nicolas Guilhot
- METabolic EXplorer S.A., Biop ô le Clermont-Limagne, 63 360 Saint-Beauzire, France
| | - Corinne Hénaut
- METabolic EXplorer S.A., Biop ô le Clermont-Limagne, 63 360 Saint-Beauzire, France
| | - Alain Hénaut
- Laboratoire Génome et Informatique, UMR 8116, CNRS – Université d'Evry Val d'Essonne, Tour Evry 2, 523 Place des Terrasses, 91034 Evry cedex, France
| |
Collapse
|
17
|
Han JS, Kang S, Kim SH, Ko MJ, Hwang DS. Binding of SeqA protein to hemi-methylated GATC sequences enhances their interaction and aggregation properties. J Biol Chem 2004; 279:30236-43. [PMID: 15151991 DOI: 10.1074/jbc.m402612200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein regulates chromosome initiation and is involved in segregation in Escherichia coli. One SeqA protein binds to two hemi-methylated GATC sequences to form a stable SeqA-DNA complex. We found that binding induced DNA bending, which was pronounced when the two sequences were on the same face of the DNA. Two SeqA molecules bound cooperatively to each pair of hemi-methylated sites when the spacing between the sites was < or = 30 bp. This cooperative binding was able to stabilize the binding of a wild type to a single hemi-methylated site, or mutant form of SeqA protein to hemi-methylated sites, although such binding did not occur without cooperative interaction. Two cooperatively bound SeqA molecules interacted with another SeqA bound up to 185 bp away from the two bound SeqA proteins, and this was followed by aggregation of free SeqA proteins onto the bound proteins. These results suggest that the stepwise interaction of SeqA proteins with hemi-methylated GATC sites enhances their interaction and leads to the formation of SeqA aggregates. Cooperative interaction followed by aggregation may be the driving force for formation of the SeqA foci that appear to be located behind replication forks.
Collapse
Affiliation(s)
- Joo Seok Han
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
18
|
Kang S, Han JS, Park JH, Skarstad K, Hwang DS. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem 2003; 278:48779-85. [PMID: 14512422 DOI: 10.1074/jbc.m308843200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein, which prevents overinitiation of chromosome replication, has been suggested to also participate in the segregation of chromosomes in Escherichia coli. Using a bacterial two-hybrid system, we found that SeqA interacts with the ParC subunit of topoisomerase IV (topo IV), a type II topoisomerase involved in decatenation of daughter chromosomes and relief of topological constraints generated by replication and transcription. We demonstrated that purified SeqA protein stimulates the activities of topo IV, both in relaxing supercoiled plasmid DNA and converting catenanes to monomers. The same moderate levels of SeqA protein did not affect the activities of DNA gyrase or topoisomerase I. At higher levels of SeqA, topo IV favored the formation of catenanes, caused by intermolecular strand exchange among plasmid DNA aggregates formed by SeqA. Excess SeqA inhibited the activity of all topoisomerases. We also found that stimulation of topo IV was dependent upon the affinity of SeqA for DNA. Our results suggest that this stimulation is mediated by the specific interaction of topo IV with SeqA. Some of the known phenotypes of mutant cells lacking SeqA, such as deficient chromosome segregation and increased negative superhelicity, support that the SeqA protein is required for topo IV-mediated relaxation and decatenation of chromosomes and plasmids, during and after their replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
19
|
Han JS, Kang S, Lee H, Kim HK, Hwang DS. Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes. J Biol Chem 2003; 278:34983-9. [PMID: 12824161 DOI: 10.1074/jbc.m304923200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preferential binding of the SeqA protein to hemi-methylated GATC sequences functions as a negative regulator for Escherichia coli initiation of chromosomal replication at oriC and is implicated in segregating replicated chromosomes for cell division. We demonstrate that sequential binding of one SeqA tetramer to a set of two hemi-methylated sites mediates formation of higher-order complexes. The absence of cross-binding to separate DNAs suggests that two monomers of a SeqA tetramer bind to two hemi-methylated sites on DNA. The interaction among SeqA proteins bound to at least six adjacent hemi-methylated sites induces aggregation of free proteins to bound proteins. Aggregation might be indicative of SeqA foci, which appear to track replication forks in vivo. Studies of the properties of SeqA binding will contribute to our understanding of the function of SeqA.
Collapse
Affiliation(s)
- Joo Seok Han
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
20
|
Fossum S, Søreide S, Skarstad K. Lack of SeqA focus formation, specific DNA binding and proper protein multimerization in the Escherichia coli sequestration mutant seqA2. Mol Microbiol 2003; 47:619-32. [PMID: 12535065 DOI: 10.1046/j.1365-2958.2003.t01-1-03329.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli wild-type cells newly formed origins cannot be reinitiated. The prevention of reinitiation is termed sequestration and is dependent on the hemimethylated state of newly replicated DNA. Several mutants discovered in a screen for the inability to sequester hemimethylated origins have been mapped to the seqA gene. Here, one of these mutants, seqA2, harbouring a single amino acid change in the C-terminal end of the SeqA protein, was found to also be unable to form foci in vivo. The SeqA foci seen in the wild-type cells are believed to arise from multimerization of SeqA on hemimethylated DNA at the replication fork, presumably representing organization of newly formed DNA by SeqA. The result suggests that the process of origin sequestration is closely tied to the process of focus maintenance at the replication fork. In vitro, purified SeqA2 protein was found incapable of forming highly ordered multimers that bind hemimethylated oriC. The mutant protein was also incapable of restraining negative supercoils. Both in vivo and in vitro results support the idea that origin sequestration is an integral part of organization of newly formed DNA performed by SeqA.
Collapse
Affiliation(s)
- Solveig Fossum
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|
21
|
Fujikawa N, Kurumizaka H, Yamazoe M, Hiraga S, Yokoyama S. Identification of functional domains of the Escherichia coli SeqA protein. Biochem Biophys Res Commun 2003; 300:699-705. [PMID: 12507506 DOI: 10.1016/s0006-291x(02)02891-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.
Collapse
Affiliation(s)
- Norie Fujikawa
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
The calmodulin-activated adenylate cyclase (AC) toxin is an essential virulence factor of Bordetella pertussis, the causative agent of whooping cough. This toxin has been exploited to devise screening techniques for investigating diverse biological processes. This mini-review describes several such applications. First, AC has been utilized as a selective reporter for protein translocation from bacteria to eukaryotic cells, in particular to study protein targeting by type III secretion machinery. More recently, AC has been used as a signal transducer in Escherichia coli to elaborate genetic screens for protein-protein interactions ("bacterial two-hybrid system") or site-specific proteolytic activities.
Collapse
Affiliation(s)
- N Dautin
- Department of Structural Biology and Chemistry, CNRS URA 2185, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|