1
|
Komives EA. Dynamic allostery in thrombin-a review. Front Mol Biosci 2023; 10:1200465. [PMID: 37457835 PMCID: PMC10339233 DOI: 10.3389/fmolb.2023.1200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Thrombin is a serine protease that catalyzes a large number of different reactions including proteolytic cleave of fibrinogen to make the fibrin clot (procoagulant activity), of the protease activated receptors (for cell signaling) and of protein C generating activated protein C (anticoagulant activity). Thrombin has an effector binding site called the anion binding exosite 1 that is allosterically coupled to the active site. In this review, we survey results from thermodynamic characterization of the allosteric coupling as well as hydrogen-deuterium exchange mass spectrometry to reveal which parts of the thrombin structure are changed upon effector binding and/or mutagenesis, and finally NMR spectroscopy to characterize the different timescales of motions elicited by the effectors. We also relate the experimental work to computational network analysis of the thrombin-thrombomodulin complex.
Collapse
|
2
|
Role of the I16-D194 ionic interaction in the trypsin fold. Sci Rep 2019; 9:18035. [PMID: 31792294 PMCID: PMC6889508 DOI: 10.1038/s41598-019-54564-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215–217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.
Collapse
|
3
|
Peacock RB, Davis JR, Markwick PRL, Komives EA. Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin. Biochemistry 2018; 57:2694-2703. [PMID: 29634247 DOI: 10.1021/acs.biochem.8b00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220sCT) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170sCT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220sCT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170sCT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.
Collapse
|
4
|
Pozzi N, Zerbetto M, Acquasaliente L, Tescari S, Frezzato D, Polimeno A, Gohara DW, Di Cera E, De Filippis V. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin. Biochemistry 2016; 55:3984-94. [PMID: 27347732 DOI: 10.1021/acs.biochem.6b00385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | | | | | | | | | | | - David W Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | | |
Collapse
|
5
|
Kromann-Hansen T, Lund IK, Liu Z, Andreasen PA, Høyer-Hansen G, Sørensen HP. Allosteric inactivation of a trypsin-like serine protease by an antibody binding to the 37- and 70-loops. Biochemistry 2013; 52:7114-26. [PMID: 24079451 DOI: 10.1021/bi400491k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine protease catalytic activity is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. Inhibitory monoclonal antibodies binding to such exosites are potential therapeutics and offer opportunities for elucidating fundamental allosteric mechanisms. The monoclonal antibody mU1 has previously been shown to be able to inhibit the function of murine urokinase-type plasminogen activator in vivo. We have now mapped the epitope of mU1 to the catalytic domain's 37- and 70-loops, situated about 20 Å from the S1 specificity pocket of the active site. Our data suggest that binding of mU1 destabilizes the catalytic domain and results in conformational transition into a state, in which the N-terminal amino group of Ile16 is less efficiently stabilizing the oxyanion hole and in which the active site has a reduced affinity for substrates and inhibitors. Furthermore, we found evidence for functional interactions between residues in uPA's C-terminal catalytic domain and its N-terminal A-chain, as deletion of the A-chain facilitates the mU1-induced conformational distortion. The inactive, distorted state is by several criteria similar to the E* conformation described for other serine proteases. Hence, agents targeting serine protease conformation through binding to exosites in the 37- and 70-loops represent a new class of potential therapeutics.
Collapse
Affiliation(s)
- Tobias Kromann-Hansen
- Danish-Chinese Centre for Proteases and Cancer and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Conformational dynamics of threonine 195 and the S1 subsite in functional trypsin variants. J Mol Model 2012; 18:4941-54. [DOI: 10.1007/s00894-012-1541-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
|
8
|
Pozzi N, Vogt AD, Gohara DW, Di Cera E. Conformational selection in trypsin-like proteases. Curr Opin Struct Biol 2012; 22:421-31. [PMID: 22664096 DOI: 10.1016/j.sbi.2012.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023]
Abstract
For over four decades, two competing mechanisms of ligand recognition--conformational selection and induced-fit--have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
9
|
Huntington JA. Thrombin plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:246-52. [PMID: 21782041 DOI: 10.1016/j.bbapap.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
Abstract
Thrombin is the final protease generated in the blood coagulation cascade. It has multiple substrates and cofactors, and serves both pro- and anti-coagulant functions. How thrombin activity is directed throughout the evolution of a clot and the role of conformational change in determining thrombin specificity are issues that lie at the heart of the haemostatic balance. Over the last 20 years there have been a great number of studies supporting the idea that thrombin is an allosteric enzyme that can exist in two conformations differing in activity and specificity. However, recent work has shown that thrombin in its unliganded state is inherently flexible in regions that are important for activity. The effect of flexibility on activity is discussed in this review in context of the zymogen-to-protease conformational transition. Understanding thrombin function in terms of 'plasticity' provides a new conceptual framework for understanding regulation of enzyme activity in general. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.
| |
Collapse
|
10
|
Allostery in trypsin-like proteases suggests new therapeutic strategies. Trends Biotechnol 2011; 29:577-85. [PMID: 21726912 DOI: 10.1016/j.tibtech.2011.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/19/2011] [Accepted: 06/02/2011] [Indexed: 11/21/2022]
Abstract
Trypsin-like proteases (TLPs) are a large family of enzymes responsible for digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity. A current paradigm posits that the irreversible transition from an inactive zymogen to the active protease form enables productive interaction with substrate and catalysis. Analysis of the entire structural database reveals two distinct conformations of the active site: one fully accessible to substrate (E) and the other occluded by the collapse of a specific segment (E*). The allosteric E*-E equilibrium provides a reversible mechanism for activity and regulation in addition to the irreversible zymogen to protease conversion and points to new therapeutic strategies aimed at inhibiting or activating the enzyme. In this review, we discuss relevant examples, with emphasis on the rational engineering of anticoagulant thrombin mutants.
Collapse
|
11
|
Niu W, Chen Z, Gandhi PS, Vogt AD, Pozzi N, Pelc LA, Zapata F, Di Cera E. Crystallographic and kinetic evidence of allostery in a trypsin-like protease. Biochemistry 2011; 50:6301-7. [PMID: 21707111 DOI: 10.1021/bi200878c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 Å between the two forms, causing a displacement of 6.6 Å of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications.
Collapse
|
13
|
Pozzi N, Chen R, Chen Z, Bah A, Di Cera E. Rigidification of the autolysis loop enhances Na(+) binding to thrombin. Biophys Chem 2011; 159:6-13. [PMID: 21536369 DOI: 10.1016/j.bpc.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
Abstract
Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.
Collapse
Affiliation(s)
- Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Enzyme activation by monovalent cations is widely documented in plants and the animal world. In type II enzymes, activation entails two steps: binding of the monovalent cation to its allosteric site and transduction of this event into enhanced catalytic activity. The effect has exquisite specificity for either Na(+) or K(+), the most abundant cations present in physiological environments. Enzymes requiring K(+) such as kinases and molecular chaperones are not activated as well or at all by the larger cation Cs(+) or the smaller cations Na(+) and Li(+). Enzymes requiring Na(+) such as β-galactosidase and clotting proteases are not activated as well by Li(+), or the larger cations K(+), Rb(+), and Cs(+). Efforts to switch specificity between Na(+) and K(+) in this large class of enzymes and completely redesign the mechanism of allosteric transduction leading to enhanced catalytic activity have so far been unsuccessful. Here we show how mutagenesis of two loops defining the Na(+) binding site of thrombin, a Na(+)-activated clotting protease, generates a construct that is most active in the presence of K(+) toward synthetic and physiological substrates. The effect is the result of a higher binding affinity and more efficient allosteric transduction of binding into enhanced catalytic activity for K(+) compared to Na(+), which represents a complete reversal of the properties of wild type. In addition, the construct features altered specificity toward physiological substrates resulting in a significant anticoagulant profile. The findings are relevant to all Na(+)-activated proteases involved in blood coagulation and the complement system.
Collapse
Affiliation(s)
- Sadhna Rana
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Leslie A. Pelc
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
15
|
Di Cera E. Thrombin as an Anticoagulant. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:145-84. [DOI: 10.1016/b978-0-12-385504-6.00004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-Å resolution shows an overall conformation significantly different (rmsd = 3.6 Å) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29° and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na(+) binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 Å apart in meizothrombin desF1, to come within 3.3 Å of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen → protease conversion in trypsin-like proteases.
Collapse
|
17
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
18
|
Kamath P, Huntington JA, Krishnaswamy S. Ligand binding shuttles thrombin along a continuum of zymogen- and proteinase-like states. J Biol Chem 2010; 285:28651-8. [PMID: 20639195 DOI: 10.1074/jbc.m110.154914] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical and multiple roles of thrombin in blood coagulation are regulated by ligands and cofactors. Zymogen activation imparts proteolytic activity to thrombin and also affects the binding of ligands to its two principal exosites. We have used the activation peptide fragment 1.2 (F12), a ligand for anion-binding exosite 2, to probe the zymogenicity of thrombin by isothermal titration calorimetry. We show that F12 binding is sensitive to subtle aspects of proteinase formation beyond simply reporting on zymogen cleavage. Large thermodynamic differences in F12 binding distinguish between a series of thrombin species poised along the transition of zymogen to proteinase. Active-site ligands transitioned a zymogen-like state to a proteinase-like state. Conversely, removal of Na(+) converted proteinase-like thrombin to a more zymogen-like form. Thrombin mutants, with deformed x-ray structures, previously considered to be emblematic of specific regulated states of the enzyme, are instead shown to be variously zymogen-like and can be made proteinase-like by active-site ligation. Thermodynamic linkage between anion-binding exosite 2, the Na(+)-binding site, and the active site arises from interconversions of thrombin between a continuum of zymogen- and proteinase-like states. These interconversions, reciprocally regulated by different ligands, cast new light on the problem of thrombin allostery and provide a thermodynamic framework to explain the regulation of thrombin by different ligands.
Collapse
Affiliation(s)
- Parvathi Kamath
- Research Institute, Children's Hospital of Philadelphia, USA
| | | | | |
Collapse
|
19
|
Marino F, Pelc LA, Vogt A, Gandhi PS, Di Cera E. Engineering thrombin for selective specificity toward protein C and PAR1. J Biol Chem 2010; 285:19145-52. [PMID: 20404340 DOI: 10.1074/jbc.m110.119875] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin elicits functional responses critical to blood homeostasis by interacting with diverse physiological substrates. Ala-scanning mutagenesis of 97 residues covering 53% of the solvent accessible surface area of the enzyme identifies Trp(215) as the single most important determinant of thrombin specificity. Saturation mutagenesis of Trp(215) produces constructs featuring k(cat)/K(m) values for the hydrolysis of fibrinogen, protease-activated receptor PAR1, and protein C that span five orders of magnitude. Importantly, the effect of Trp(215) replacement is context dependent. Mutant W215E is 10-fold more specific for protein C than fibrinogen and PAR1, which represents a striking shift in specificity relative to wild-type that is 100-fold more specific for fibrinogen and PAR1 than protein C. However, when the W215E mutation is combined with deletion of nine residues in the autolysis loop, which by itself shifts the specificity of the enzyme from fibrinogen and PAR1 to protein C, the resulting construct features significant activity only toward PAR1. These findings demonstrate that thrombin can be re-engineered for selective specificity toward protein C and PAR1. Mutations of Trp(215) provide important reagents for dissecting the multiple functional roles of thrombin in the blood and for clinical applications.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
20
|
Niu W, Chen Z, Bush-Pelc LA, Bah A, Gandhi PS, Di Cera E. Mutant N143P reveals how Na+ activates thrombin. J Biol Chem 2009; 284:36175-36185. [PMID: 19846563 PMCID: PMC2794733 DOI: 10.1074/jbc.m109.069500] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/12/2009] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of thrombin activation by Na(+) remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na(+) forms. The extended scheme establishes that analysis of k(cat) unequivocally identifies allosteric transduction of Na(+) binding into enhanced catalytic activity. The thrombin mutant N143P features no Na(+)-dependent enhancement of k(cat) yet binds Na(+) with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na(+) confirm that Pro(143) abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu(192), which in turn controls the orientation of the Glu(192)-Gly(193) peptide bond and the correct architecture of the oxyanion hole. We conclude that Na(+) activates thrombin by securing the correct orientation of the Glu(192)-Gly(193) peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na(+) activation is present in all Na(+)-activated trypsin-like proteases.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhiwei Chen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Leslie A Bush-Pelc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Alaji Bah
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Prafull S Gandhi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
21
|
Gandhi PS, Page MJ, Chen Z, Bush-Pelc L, Di Cera E. Mechanism of the anticoagulant activity of thrombin mutant W215A/E217A. J Biol Chem 2009; 284:24098-105. [PMID: 19586901 DOI: 10.1074/jbc.m109.025403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215-217 beta-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve the design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* --> E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.
Collapse
Affiliation(s)
- Prafull S Gandhi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|