1
|
Davighi MG, Clemente F, Matassini C, Cacciarini M, Tanini D, Goti A, Morrone A, Paoli P, Cardona F. Acetal functionalized iminosugars for targeting β-glucocerebrosidase modulation. Eur J Med Chem 2025; 290:117529. [PMID: 40174262 DOI: 10.1016/j.ejmech.2025.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Novel pH-sensitive drug delivery systems offer significant potential for personalized medicine by enabling targeted therapy and minimizing side effects. These systems are designed to release therapeutic agents in acidic environments to achieve localized pharmacological effects. Dysfunctions in lysosomal enzyme β-glucocerebrosidase (GCase) play a crucial role in Gaucher and Parkinson's diseases. While pharmacological chaperones (PCs) stabilize GCase, the overall efficacy in restoring enzyme functionality is often abolished by their reluctance to dissociate from the enzyme once in lysosomes. To address this limitation, we developed pH-sensitive acetal functionalized iminosugars that hydrolyze under weakly acidic conditions, exploiting the pH difference between the endoplasmic reticulum and lysosomes to promote dissociation. Additionally, antioxidant moieties, derived from coniferyl aldehyde and vanillin, were incorporated to counteract oxidative stress, which is prevalent in Gaucher and Parkinson's diseases. The newly synthesized compounds 1-4 exhibit varying degrees of pH sensitivity and GCase stabilization in fibroblast ex vivo assays, with acetal 4 showing promising response, here validated both in lysates and in intact cells.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Martina Cacciarini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy; Department of Neurosciences, Psycology, Drug Research and Child Health University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
2
|
Dal Maso T, Sinisgalli C, Zilio G, Franzin E, Tessari I, Pardon E, Steyaert J, Ballet S, Greggio E, Versées W, Plotegher N. Developing nanobodies as allosteric molecular chaperones of glucocerebrosidase function. Nat Commun 2025; 16:4890. [PMID: 40425544 PMCID: PMC12117155 DOI: 10.1038/s41467-025-60134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The enzyme glucocerebrosidase (GCase) catalyses the hydrolysis of glucosylceramide to glucose and ceramide within lysosomes. Homozygous or compound heterozygous mutations in the GCase-encoding GBA1 gene cause the lysosomal storage disorder Gaucher disease, while heterozygous and homozygous mutations are the most frequent genetic risk factor for Parkinson's disease. These mutations commonly affect GCase stability, trafficking or activity. Here, we report the development and characterization of nanobodies (Nbs) targeting and acting as molecular chaperones for GCase. We identify several Nb families that bind with nanomolar affinity to GCase. Based on biochemical characterization, we group the Nbs in two classes: Nbs that improve the activity of the enzyme and Nbs that increase GCase stability in vitro. A selection of the most promising Nbs is shown to improve GCase function in cell models and positively impact the activity of the N370S mutant GCase. These results lay the foundation for the development of new therapeutic routes.
Collapse
Affiliation(s)
- Thomas Dal Maso
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gianluca Zilio
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Franzin
- Department of Biology, University of Padova, Padova, Italy
| | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Fregno I, Pérez-Carmona N, Rudinskiy M, Soldà T, Bergmann TJ, Ruano A, Delgado A, Cubero E, Bellotto M, García-Collazo AM, Molinari M. Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders. Int J Mol Sci 2025; 26:4392. [PMID: 40362629 PMCID: PMC12072338 DOI: 10.3390/ijms26094392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson's disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase maturation in the endoplasmic reticulum, blocking lysosomal transport and causing glucosylceramide accumulation, which disrupts lysosomal function. This study explores therapeutic strategies to address these dysfunctions. Using Site-directed Enzyme Enhancement Therapy (SEE-Tx®), two structurally targeted allosteric regulators (STARs), GT-02287 and GT-02329, were developed and tested in GD patient-derived fibroblasts with relevant GCase variants. Treatment with GT-02287 and GT-02329 improved the folding of mutant GCase, protected the GCaseLeu444Pro variant from degradation, and facilitated the delivery of active GCase to lysosomes. This enhanced lysosomal function and reduced cellular stress. These findings validate the STARs' mechanism of action and highlight their therapeutic potential for GCase-related disorders, including GD, PD, and Dementia with Lewy Bodies.
Collapse
Affiliation(s)
- Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Natalia Pérez-Carmona
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Mikhail Rudinskiy
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- Department of Biology, Swiss Federal Institute of Technology; CH-8093 Zurich, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Timothy J. Bergmann
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Ana Ruano
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Aida Delgado
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Elena Cubero
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | | | - Ana María García-Collazo
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Vera SP, Lian E, Elia MWJ, Saar A, Sharon HB, Moshe P, Mia H. The modifying effect of mutant LRRK2 on mutant GBA1-associated Parkinson disease. Hum Mol Genet 2025:ddaf062. [PMID: 40315377 DOI: 10.1093/hmg/ddaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease. While most cases are sporadic, in ~ 5%-10% of PD patients the disease is caused by mutations in several genes, among them GBA1 (glucocerebrosidase beta 1) and LRRK2 (leucine-rich repeat kinase 2), both prevalent among the Ashkenazi Jewish population. LRRK2-associated PD tends to be milder than GBA1-associated PD. Several recent clinical studies have suggested that carriers of both GBA1 and LRRK2 mutations develop milder PD compared to that observed among GBA1 carriers. These findings strongly suggested an interplay between the two genes in the development and progression of PD. In the present study Drosophila was employed as a model to investigate the impact of mutations in the LRRK2 gene on mutant GBA1-associated PD. Our results strongly indicated that flies expressing both mutant genes exhibited milder parkinsonian signs compared to the disease developed in flies expressing only a GBA1 mutation. This was corroborated by a decrease in the ER stress response, increase in the number of dopaminergic cells, elevated levels of tyrosine hydroxylase, reduced neuroinflammation, improved locomotion and extended survival. Furthermore, a significant decrease in the steady-state levels of mutant GBA1-encoded GCase was observed in the presence of mutant LRRK2, strongly implying a role for mutant LRRK2 in degradation of mutant GCase.
Collapse
Affiliation(s)
- Serebryany-Piavsky Vera
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Egulsky Lian
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Manoim-Wolkovitz Julia Elia
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Anis Saar
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Hassin-Baer Sharon
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Parnas Moshe
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Horowitz Mia
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Maayan Eshed G, Alcalay RN. Precision Medicine in Parkinson's Disease. Neurol Clin 2025; 43:365-381. [PMID: 40185526 DOI: 10.1016/j.ncl.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The continually accumulating knowledge of Parkinson's disease (PD) genetics presents potential disease modification opportunities through targeting specific genes and associated metabolic pathways. Glucosylceramidase beta 1-associated PD and leucine-rich repeat kinase 2-associated PD are attractive drug targets, since their respective mutations significantly increase PD risk and, at the same time, are relatively prevalent in the PD population. Here, we review clinical trials and preclinical efforts whose mechanisms target genetic forms of PD, focusing on these 2 genes and their metabolic pathways. Such therapies could also potentially modify sporadic (ie, without a clear genetic risk factor) PD.
Collapse
Affiliation(s)
- Gadi Maayan Eshed
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Tel Aviv Faculty of Medicine, Tel Aviv University; Department of Neurology, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
6
|
Lenders M, Rudolph E, Brand E. Impact of ER stress and the unfolded protein response on Fabry disease. EBioMedicine 2025; 115:105733. [PMID: 40300326 DOI: 10.1016/j.ebiom.2025.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder caused by pathogenic missense and nonsense variants in the α-galactosidase A (GLA) gene, leading to absent or reduced enzyme activity. The resulting lysosomal accumulation of the substrate globotriaosylceramide leads to progressive renal failure, cardiomyopathy with (malignant) cardiac arrhythmias and progressive heart failure as well as recurrent strokes, which significantly limits the life expectancy of patients affected with FD. There is increasing evidence that pathogenic GLA missense variants as well as formally benign GLA variants can cause retention in the endoplasmic reticulum (ER), resulting in ER stress, which in turn triggers an unfolded protein response (UPR) leading to cellular dysregulation including inflammation, irreversible cell damage, and apoptosis. This review aims to provide an update on the pathogenetic significance of ER stress and UPR in FD, current treatment options, including pharmaceutical and chemical chaperones, and an outlook on current research and future treatment options in FD.
Collapse
Affiliation(s)
- Malte Lenders
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany.
| | - Elisa Rudolph
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany
| |
Collapse
|
7
|
Istaiti M, Yahalom G, Cohen M, Skrahina V, Skrahin A, Lukas J, Rolfs A, Zimran A. Sidransky Syndrome- GBA1-Related Parkinson's Disease and Its Targeted Therapies. Int J Mol Sci 2025; 26:3435. [PMID: 40244386 PMCID: PMC11989370 DOI: 10.3390/ijms26073435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Sidransky syndrome represents a distinct variant of Parkinson's disease (PD) that is linked to pathogenic variants in the glucocerebrosidase (GBA1) gene. This disorder exhibits an earlier onset, a more severe course, and a higher dementia prevalence compared to idiopathic PD. While the pathogenesis remains debated between loss-of-function and gain-of-function mechanisms, targeted therapies are emerging. Pharmacological chaperones (PCs), like high-dose Ambroxol, aim to mitigate enzyme misfolding-a primary driver of this disorder-rather than addressing metabolic deficiencies seen in Gaucher disease. Despite failed trials of substrate reduction therapies, current clinical trials with Ambroxol and other PCs highlight promising avenues for disease modification. This commentary advocates for increased awareness of Sidransky syndrome to advance diagnostic strategies, promote genetic testing, and refine targeted treatments, with the potential to transform care for GBA1-related PD and prodromal stages of the disease.
Collapse
Affiliation(s)
- Majdolen Istaiti
- Agyany Pharma Ltd., Jerusalem 9695614, Israel; (M.I.); (V.S.); (A.S.); (A.R.)
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (G.Y.); (M.C.)
| | - Mikhal Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (G.Y.); (M.C.)
| | - Volha Skrahina
- Agyany Pharma Ltd., Jerusalem 9695614, Israel; (M.I.); (V.S.); (A.S.); (A.R.)
| | - Aliaksandr Skrahin
- Agyany Pharma Ltd., Jerusalem 9695614, Israel; (M.I.); (V.S.); (A.S.); (A.R.)
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Arndt Rolfs
- Agyany Pharma Ltd., Jerusalem 9695614, Israel; (M.I.); (V.S.); (A.S.); (A.R.)
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Ari Zimran
- Agyany Pharma Ltd., Jerusalem 9695614, Israel; (M.I.); (V.S.); (A.S.); (A.R.)
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| |
Collapse
|
8
|
Katzy RE, van Neer RHP, Ferraz MJ, Nicolai K, Passioura T, Suga H, Jongkees SAK, Artola M. Development of selective nanomolar cyclic peptide ligands as GBA1 enzyme stabilisers. RSC Chem Biol 2025; 6:563-570. [PMID: 39936129 PMCID: PMC11808397 DOI: 10.1039/d4cb00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The stabilisation of recombinant glycosidases by exogenous ligands, known as pharmacological chaperones or enzyme stabilisers, has recently garnered great clinical interest. This strategy can prevent enzyme degradation in the blood, reducing required dosages of recombinant enzyme and extending IV injection intervals, thereby reducing side effects, improving patient lifestyles and treatment costs. While this therapeutic approach has been successfully implemented for treating Pompe and Fabry diseases, clinical studies for Gaucher disease using chaperones alone or in combination with enzyme replacement therapy (ERT) have been limited, and no small molecule chaperones have yet been approved for this condition. Developing such therapies requires selective and effective reversible GBA1 ligands. Here, we describe the development of a new class of selective macrocyclic peptide GBA1 ligands using random nonstandard peptides integrated discovery (RaPID) technology, and demonstrate their ability to bind and stabilise rhGBA1 in plasma at nanomolar concentrations. These cyclic peptides do not inhibit endogenous GBA1 in cells due to poor cell permeability but can stabilise extracellular rhGBA1 in plasma, presenting significant potential as a combinatorial ERT-pharmacological chaperone therapy for Gaucher disease.
Collapse
Affiliation(s)
- Rebecca E Katzy
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Renier H P van Neer
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo Japan
| | - Maria J Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Kim Nicolai
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo Japan
| | - Seino A K Jongkees
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht 3584 CG The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
9
|
Tagliaferro G, Davighi MG, Clemente F, Turchi F, Schiavina M, Matassini C, Goti A, Morrone A, Pierattelli R, Cardona F, Felli IC. Evidence of α-Synuclein/Glucocerebrosidase Dual Targeting by Iminosugar Derivatives. ACS Chem Neurosci 2025; 16:1251-1257. [PMID: 40079830 PMCID: PMC11969434 DOI: 10.1021/acschemneuro.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible molecules often linked to the onset of incurable diseases. Despite their great therapeutic potential, IDPs are often considered as undruggable because they lack defined binding pockets, which constitute the basis of drug discovery approaches. However, small molecules that interact with the intrinsically disordered state of α-synuclein, the protein linked to Parkinson's disease (PD), were recently identified and shown to act as chemical chaperones. Glucocerebrosidase (GCase) is an enzyme crucially involved in PD, since mutations that code for GCase are among the most frequent genetic risk factors for PD. Following the "dual-target" approach, stating that one carefully designed molecule can, in principle, interfere with more than one target, we identified a pharmacological chaperone for GCase that interacts with the intrinsically disordered monomeric form of α-synuclein. This result opens novel avenues to be explored in the search for molecules that act on dual targets, in particular, with challenging targets such as IDPs.
Collapse
Affiliation(s)
- Giuseppe Tagliaferro
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Giulia Davighi
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Clemente
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Filippo Turchi
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Schiavina
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Camilla Matassini
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Amelia Morrone
- Laboratory
of Molecular Genetics of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital, IRCCS, Viale Pieraccini 24, 50139 Firenze, Italy
- Department
of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Roberta Pierattelli
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Cardona
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Isabella C. Felli
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
10
|
Jeong SH, Lee PH. Drug Repositioning and Repurposing for Disease-Modifying Effects in Parkinson's Disease. J Mov Disord 2025; 18:113-126. [PMID: 39914809 PMCID: PMC12061612 DOI: 10.14802/jmd.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 05/09/2025] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and is characterized by progressive dopaminergic and nondopaminergic neuronal loss and the presence of Lewy bodies, which are primarily composed of aggregated α-synuclein. Despite advancements in symptomatic therapies, such as dopamine replacement and deep brain stimulation, no disease-modifying therapies (DMTs) have been identified to slow or arrest neurodegeneration in patients with PD. Challenges in DMT development include disease heterogeneity, the absence of reliable biomarkers, and the multifaceted pathophysiology of PD, encompassing neuroinflammation, mitochondrial dysfunction, lysosomal impairment, and oxidative stress. Drug repositioning and repurposing strategies using existing drugs for new therapeutic applications offer promising approaches to accelerate the development of DMTs for PD. These strategies minimize time, cost, and risk by using compounds with established safety profiles. Prominent candidates include glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, ambroxol, calcium channel blockers, statins, iron-chelating agents, c-Abl inhibitors, and memantine. Although preclinical and early clinical studies have demonstrated encouraging results, numerous phase III trials have yielded unfavorable outcomes, elucidating the complexity of PD pathophysiology and the need for innovative trial designs. This review evaluates the potential of prioritized repurposed drugs for PD, focusing on their mechanisms, preclinical evidence, and clinical trial outcomes, and highlights the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Le HL, Bouwhuis N, Hollak CEM, Wilhelm AJ, Gerards ALE, Bijleveld YA, Swart EL. Product Development of High-Dose Ambroxol HCl Capsules for an n-of-1 Clinical Trial Involving Dutch Patients with Gaucher Disease Type 3. Pharmaceutics 2025; 17:417. [PMID: 40284413 PMCID: PMC12030056 DOI: 10.3390/pharmaceutics17040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Ambroxol hydrochloride (AMB) is a promising chaperone for treating neurological manifestations in Gaucher disease type 3 (GD3). The Amsterdam University Medical Center planned to conduct an n-of-1 clinical trial using high-dose AMB (25 mg/kg/day). As an adequate commercial AMB formulation is unavailable for this high target dosage, we aimed to develop high-dose AMB capsules and assess the formulated capsule's quality. Methods: AMB API was sourced and tested according to the requirements of the European Pharmacopoeia. Capsule formulations of 75 mg and 200 mg AMB were developed. Drug product specifications were set following international guidelines (ICH Q6A) and the European Pharmacopoeia. Analytical methods were developed and validated, and three validation batches of each capsule strength were produced and analyzed. Results: The contents and the Acceptance Values (AVs) of the initial AMB batches (both strengths) varied between 89.1% to 92.7% (specification: 90% to 110%) and 12.4 to 17.6 (specification ≤ 15.0), respectively, indicating non-uniform AMB distribution. Consequently, the production of 200 mg capsules was discontinued, and modifications were made to the 75 mg capsule formulation, followed by the production of three optimized 75 mg validation batches. These batches met the specified criteria, with an AMB content and AV values ranging from 93.9% to 96.5% and 12.4 to 14.9, respectively. Furthermore, rapid dissolution profiles were observed (>80% dissolution within 15 min). No degradation products or microbiological impurities were detected after production. Conclusions: The optimized formulation of 75 mg AMB capsules formulated within the hospital pharmacy setting resulted in qualitative and uniform capsules which can be used in clinical trials.
Collapse
Affiliation(s)
- Hoang Lan Le
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Natalja Bouwhuis
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Carla E. M. Hollak
- Medicine for Society, Platform at Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Abraham J. Wilhelm
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne-Loes E. Gerards
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yuma A. Bijleveld
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eleonora L. Swart
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bashir B, Vishwas S, Gupta G, Paudel KR, Dureja H, Kumar P, Cho H, Sugandhi VV, Kumbhar PS, Disouza J, Dhanasekaran M, Goh BH, Gulati M, Dua K, Singh SK. Does drug repurposing bridge the gaps in management of Parkinson's disease? Unravelling the facts and fallacies. Ageing Res Rev 2025; 105:102693. [PMID: 39961372 DOI: 10.1016/j.arr.2025.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Repurposing the existing drugs for the management of both common and rare diseases is increasingly appealing due to challenges such as high attrition rates, the economy, and the slow pace of discovering new drugs. Drug repurposing involves the utilization of existing medications to treat diseases for which they were not originally intended. Despite encountering scientific and economic challenges, the pharmaceutical industry is intrigued by the potential to uncover new indications for medications. Medication repurposing is applicable across different stages of drug development, with the greatest potential observed when the drug has undergone prior safety testing. In this review, strategies for repurposing drugs for Parkinson's disease (PD) are outlined, a neurodegenerative disorder predominantly impacting dopaminergic neurons in the substantia nigra pars compacta region. PD is a debilitating neurodegenerative condition marked by an amalgam of motor and non-motor symptoms. Despite the availability of certain symptomatic treatments, particularly targeting motor symptoms, there remains a lack of established drugs capable of modifying the clinical course of PD, leading to its unchecked progression. Although standard drug discovery initiatives focusing on treatments that relieve diseases have yielded valuable understanding into the underlying mechanisms of PD, none of the numerous promising candidates identified in preclinical studies have successfully transitioned into clinically effective medications. Due to the substantial expenses associated with drug discovery endeavors, it is understandable that there has been a notable shift towards drug reprofiling strategies. Assessing the efficacy of an existing medication offers the additional advantage of circumventing the requirement for preclinical safety assessments and formulation enhancements, consequently streamlining the process and reducing both the duration of time and financial investments involved in bringing a treatment to clinical fruition. Furthermore, repurposed drugs may benefit from lower rates of failure, presenting an additional potential advantage. Various strategies for repurposing drugs are available to researchers in the field of PD. Some of these strategies have demonstrated effectiveness in identifying appropriate drugs for clinical trials, thereby providing validation for such strategies. This review provides an overview of the diverse strategies employed for drug reprofiling from approaches that place emphasis on single-gene transcriptional investigations to comprehensive epidemiological correlation analysis. Additionally, instances of previous or current research endeavors employing each strategy have been discussed. For the strategies that have not been yet implemented in PD research, their strategic efficacy is demonstrated using examples involving other disorders. In this review, we assess the safety and efficacy potential of prominent candidates repurposed as potential treatments for modifying the course of PD undergoing advanced clinical trials.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra, 416113, India.
| | - John Disouza
- Bombay Institute of Pharmacy and Research, Dombivli, Mumbai, Maharashtra, 421 203, India..
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
13
|
Abelleyra Lastoria DA, Keynes S, Hughes D. Current and Emerging Therapies for Lysosomal Storage Disorders. Drugs 2025; 85:171-192. [PMID: 39826077 DOI: 10.1007/s40265-025-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders characterized by defects in the function of specific enzymes responsible for breaking down substrates within cellular organelles (lysosomes) essential for the processing of macromolecules. Undigested substrate accumulates within lysosomes, leading to cellular dysfunction, tissue damage, and clinical manifestations. Clinical features vary depending on the degree and type of enzyme deficiency, the type and extent of substrate accumulated, and the tissues affected. The heterogeneous nature of LSDs results in a variety of treatment approaches, which must be tailored to patient presentation and characteristics. The treatment landscape for LSDs is rapidly evolving. An up-to-date discussion of current evidence is required to provide clinicians with an appropriate overview of treatment options. Therefore, we aimed to review current and ongoing trials pertaining to the treatment of common LSDs.
Collapse
Affiliation(s)
| | - Sophie Keynes
- Institute for Medical and Biomedical Education, St George's, University of London, London, SW17 0RE, UK
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK.
| |
Collapse
|
14
|
Gurra P, Babu R, Pancholi B, Mohanta BC, Garabadu D. Current opinion on pluripotent stem cell technology in Gaucher's disease: challenges and future prospects. Cytotechnology 2025; 77:26. [PMID: 39735330 PMCID: PMC11680541 DOI: 10.1007/s10616-024-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the GBA1 gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD. The currently available therapies, including enzyme replacement therapy and substrate reduction therapy, only provide symptomatic relief. However, they grapple with limitations in efficacy, accessibility, and potential side effects. These observations laid the foundation to search for new approaches in the management of GD. Induced pluripotent stem cells (iPSCs) technology emerges as a beacon of hope, offering novel avenues for future GD therapies. The true magic of iPSCs lies in their ability to differentiate into various cell types. By reprogramming patient-derived cells into iPSCs, researchers can generate personalized models that recapitulate the genetic and phenotypic characteristics of the GD. These models are valuable tools for dissecting intricate disease pathways, developing novel therapeutic targets, and enhancing the drug development process for GD. This review emphasizes the significance of iPSCs technology in GD management. Further, it addresses several challenges that are being encountered in the application of iPSC technology in the management of GD. In addition, it provides several insights into the future aspects of iPSC technology in the management of GD.
Collapse
Affiliation(s)
- Pankaj Gurra
- Department of Pharmacy, Central University of South Bihar, Gaya, 824236 India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
15
|
Suzuki Y. Chaperone therapy: Stabilization and enhancement of endogenous and exogenous lysosomal enzymes. Brain Dev 2025; 47:104298. [PMID: 39549634 DOI: 10.1016/j.braindev.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
Chaperone therapy is a new concept of molecular therapeutic approach to protein misfolding diseases, particularly to lysosomal diseases. Initially we started molecular analysis of culture cells, model animals and patients with Fabry disease and GM1-gangliosidosis. Some mutant enzyme proteins did not express the catalytic activity because of unstable molecular structure in somatic cells. The small molecule compound (chaperone) corrected misfolding of the unstable mutant protein, resulting in restoration of the enzyme activity (chaperone therapy). This pathological molecular event was studied first in endogenous mutant enzymes. Then a similar molecular interaction was found between the chaperone and the exogenous protein supplied for enzyme replacement therapy (ERT) in Pompe disease. This new chaperone-ERT combination therapy will become another useful technology in order to expand the application of chaperone therapy to a wide range of lysosomal diseases. Thus, chaperone therapy is expected in future for stabilization and enhancement of exogenously supplied ERT enzymes as well as endogenous mutant enzymes.
Collapse
|
16
|
Scafuri B, Piscosquito S, Giliberti G, Facchiano A, Miner J, Balakrishnan B, Lai K, Marabotti A. Improvement of Mutant Galactose-1-Phosphate Uridylyltransferase (GALT) Activity by FDA-Approved Pharmacochaperones: A Preliminary Study. Int J Mol Sci 2025; 26:888. [PMID: 39940658 PMCID: PMC11816840 DOI: 10.3390/ijms26030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Classic galactosemia is a rare disease with long-term consequences that seriously affect the quality of life of patients. To date, various therapeutic approaches are being developed, but treatments that target the molecular defects in the mutant galactose-1-phosphate uridylyltransferase (GALT) gene are lacking. We conducted a computational search for putative pharmacochaperones by applying a drug repurposing strategy, and we found that one compound, already active as a pharmacochaperone in another pathology, doubled the enzymatic activity of the purified mutant enzyme in an in vitro test. Furthermore, an extensive computational search in a database of known active molecules found another compound able in its turn to improve in vitro enzymatic activity. Both compounds are predicted to interact with a cavity at the enzyme interface previously supposed to be an allosteric site for the GALT enzyme. In vitro tests confirmed also the reduced accumulation of galactose-1-phosphate (G1P) in fibroblasts of patients. Although these results must be considered preliminary, our findings pave the way for future research lines focused on the search for promising pharmacochaperones that can directly rescue the activity of the enzyme.
Collapse
Affiliation(s)
- Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Stefania Piscosquito
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Giulia Giliberti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Angelo Facchiano
- Institute of Food Science, National Research Council, 83100 Avellino, Italy;
| | - Jaden Miner
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| |
Collapse
|
17
|
Buco F, Clemente F, Morrone A, Vanni C, Moya SE, Cardona F, Goti A, Marradi M, Matassini C. Multivalent GCase Enhancers: Synthesis and Evaluation of Glyco-Gold Nanoparticles Decorated with Trihydroxypiperidine Iminosugars. Bioconjug Chem 2025; 36:92-103. [PMID: 39700399 DOI: 10.1021/acs.bioconjchem.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An N-nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar. The concentration of the bioactive iminosugar on the gold surface was modulated with different amounts of a glucoside bearing a short thiol-ending spacer as the inner ligand. The new mixed-ligand coated glyco-AuNPs were fully characterized, and those with the highest colloidal stability in aqueous medium were subjected to biological evaluation. Glyco-AuNPs with trimeric iminosugar bioactive units showed the ability to stabilize recombinant GCase in a thermal denaturation assay, while Glyco-AuNPs with monomeric iminosugar bioactive units were able to enhance the activity of mutant GCase in Gaucher patient's fibroblasts by 1.9-fold at 2.2 μM.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, Firenze 50139, Italy
| | - Costanza Vanni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Donostia-San Sebastián, Guipúzcoa 20014, Spain
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
18
|
Menozzi E, Schapira AHV. Prospects for Disease Slowing in Parkinson Disease. Annu Rev Pharmacol Toxicol 2025; 65:237-258. [PMID: 39088860 DOI: 10.1146/annurev-pharmtox-022124-033653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials. Nonetheless, up until now, none of these treatments have satisfactorily shown disease-modifying effects in PD. In this review, we present the most up-to-date disease-modifying pharmacological interventions in the clinical trial pipeline for PD. We focus on agents that have reached more advanced stages of clinical trials testing, highlighting both positive and negative results, and critically reflect on strengths, weaknesses, and challenges of current disease-modifying therapeutic avenues in PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| |
Collapse
|
19
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
20
|
Perni M, Mannini B. Targeting Protein Aggregation in ALS. Biomolecules 2024; 14:1324. [PMID: 39456257 PMCID: PMC11506292 DOI: 10.3390/biom14101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Proteinopathies involve the abnormal accumulation of specific proteins. Maintaining the balance of the proteome is a finely regulated process managed by a complex network of cellular machinery responsible for protein synthesis, folding, and degradation. However, stress and ageing can disrupt this balance, leading to widespread protein aggregation. Currently, several therapies targeting protein aggregation are in clinical trials for ALS. These approaches mainly focus on two strategies: addressing proteins that are prone to aggregation due to mutations and targeting the cellular mechanisms that maintain protein homeostasis to prevent aggregation. This review will cover these emerging drugs. Advances in ALS research not only offer hope for better outcomes for ALS patients but also provide valuable insights and methodologies that can benefit the broader field of neurodegenerative disease drug discovery.
Collapse
Affiliation(s)
- Michele Perni
- Baz-Therapeutics Inc., 810 Rittenhouse Square, Suite 412, Philadelphia, PA 19103, USA
- Clinical Research Building, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Benedetta Mannini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
21
|
Williams D, Glasstetter LM, Jong TT, Chen T, Kapoor A, Zhu S, Zhu Y, Calvo R, Gehrlein A, Wong K, Hogan AN, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. High-throughput screening for small-molecule stabilizers of misfolded glucocerebrosidase in Gaucher disease and Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2406009121. [PMID: 39388267 PMCID: PMC11494340 DOI: 10.1073/pnas.2406009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Raul Calvo
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Kimberly Wong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Andrew N. Hogan
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
22
|
Kuppuramalingam A, Cabasso O, Horowitz M. Functional Analysis of Human GBA1 Missense Mutations in Drosophila: Insights into Gaucher Disease Pathogenesis and Phenotypic Consequences. Cells 2024; 13:1619. [PMID: 39404383 PMCID: PMC11475061 DOI: 10.3390/cells13191619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The human GBA1 gene encodes lysosomal acid β-glucocerebrosidase, whose activity is deficient in Gaucher disease (GD). In Drosophila, there are two GBA1 orthologs, Gba1a and Gba1b, and Gba1b is the bona fide GCase encoding gene. Several fly lines with different deletions in the Gba1b were studied in the past. However, since most GD-associated GBA1 mutations are point mutations, we created missense mutations homologous to the two most common GD mutations: the mild N370S mutation (D415S in Drosophila) and the severe L444P mutation (L494P in Drosophila), using the CRISPR-Cas9 technology. Flies homozygous for the D415S mutation (dubbed D370S hereafter) presented low GCase activity and substrate accumulation, which led to lysosomal defects, activation of the Unfolded Protein Response (UPR), inflammation/neuroinflammation, and neurodegeneration along with earlier death compared to control flies. Surprisingly, the L494P (called L444P hereafter) flies presented higher GCase activity with fewer lysosomal defects and milder disease in comparison to that presented by the D370S homozygous flies. Treatment with ambroxol had a limited effect on all homozygous fly lines tested. Overall, our results underscore the differences between the fly and human GCase enzymes, as evidenced by the distinct phenotypic outcomes of mutations in flies compared to those observed in human GD patients.
Collapse
Affiliation(s)
- Aparna Kuppuramalingam
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (A.K.); (O.C.)
| | - Or Cabasso
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (A.K.); (O.C.)
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (A.K.); (O.C.)
- Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Goker-Alpan O, Ivanova MM. Neuronopathic Gaucher disease: Rare in the West, common in the East. J Inherit Metab Dis 2024; 47:917-934. [PMID: 38768609 DOI: 10.1002/jimd.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Gaucher disease (GD) stands as one of the most prevalent lysosomal disorders, yet neuronopathic GD (nGD) is an uncommon subset characterized by a wide array of clinical manifestations that complicate diagnosis, particularly when neurological symptoms are understated. nGD may manifest as the acute neuronopathic type, or GD type 2 (GD2), either prenatally or within the first weeks to months of life, whereas GD type 3 (GD3) symptoms may emerge at any point during childhood or occasionally in adolescence. The clinical presentation encompasses severe systemic involvement to mild visceral disease, often coupled with a spectrum of progressive neurological signs and symptoms such as cognitive impairment, ataxia, seizures, myoclonus, varying degrees of brainstem dysfunction presenting with stridor, apneic episodes, and/or impaired swallowing. This manuscript aims to provide a comprehensive review of the incidence, distinctive presentations, and diverse clinical phenotypes of nGD across various countries and regions. It will explore the natural history of the neurodegenerative process in GD, shedding light on its various manifestations during infancy and childhood, and offer insights into the diagnostic journey, the challenges faced in the clinical management, and current and investigative therapeutic approaches for GD's neurological variants.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| | - Margarita M Ivanova
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| |
Collapse
|
24
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Cyske Z, Gaffke L, Rintz E, Wiśniewska K, Węgrzyn G, Pierzynowska K. Molecular mechanisms of the ambroxol action in Gaucher disease and GBA1 mutation-associated Parkinson disease. Neurochem Int 2024; 178:105774. [PMID: 38797393 DOI: 10.1016/j.neuint.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Glucocerebrosidase (GCase), encoded by the GBA1 gene, is one of the lysosomal enzymes responsible for hydrolyzing the glycosphingolipids. Deficiency in GCase activity (in patients with two defective alleles of GBA1) leads to glucosylceramide storage in lysosomes which in turn results in the development of the Gaucher diseases, a lysosomal storage disorder, while a heterozygous state may be correlated with the GBA1 mutation-associated Parkinson disease. One of the proposed forms of therapy for these two conditions is the use of pharmacological chaperones which work by facilitating the achievement of the correct conformation of abnormally folded enzymes. Several compounds with chaperone activities against GCase have already been tested, one of which turned out to be ambroxol. Studies conducted on the action of this compound have indeed indicated its effectiveness in increasing GCase levels and activity. However, some data have begun to question its activity as a chaperone against certain GCase variants. Then, a number of articles appeared pointing to other mechanisms of action of ambroxol, which may also contribute to the improvement of patients' condition. This paper summarizes the biological mechanisms of action of ambroxol in Gaucher disease and GBA1 mutation-associated Parkinson disease, focused on its activity as a chaperone, modulator of ERAD pathways, inducer of autophagy, and pain reliever in cellular and animal models as well as in patients. The effects of these activities on the reduction of disease markers and symptoms in patients are also discussed. Consideration of all the properties of ambroxol can help in the appropriate choice of therapy and the determination of the effective drug dose.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
26
|
den Hollander B, Le HL, Swart EL, Bikker H, Hollak CEM, Brands MM. Clinical and preclinical insights into high-dose ambroxol therapy for Gaucher disease type 2 and 3: A comprehensive systematic review. Mol Genet Metab 2024; 143:108556. [PMID: 39116528 DOI: 10.1016/j.ymgme.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
RATIONALE Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity. Our review explores high-dose ambroxol's therapeutic potential, both preclinical and clinical, in GD2 and GD3. METHODS PubMed was searched for studies published before March 2023, including clinical, animal, and in vitro studies focusing on the effect of high-dose ambroxol in GD2 and GD3. A narrative synthesis was performed. RESULTS Nine in vitro, three animal, and eight clinical studies were included, demonstrating varied responses to ambroxol across diverse outcome measures. In vitro and animal studies demonstrated reduced endoplasmatic reticulum stress due to the relocation of GCase from the ER to the lysosomes. In vitro cell lines exhibited varying degrees of increased GCase activity. Clinical trials observed reduced lyso-GL1 levels in plasma (41-89%) and cerebrospinal fluid (CSF) (26-97%), alongside increased GCase activity in GD3 patients. Ambroxol exhibited varying effects on neurological outcomes and development. No severe adverse events were reported. CONCLUSION High-dose ambroxol shows promise in managing neurological manifestations in GD3, albeit with uncertainties resulting from genetic heterogeneity and variable response. Further clinical trials, are essential for elucidating dosage-response relationships and refining treatment outcomes and strategies for neuronopathic GD.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Hoang Lan Le
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Pharmacology and Pharmacy, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eleonora L Swart
- Amsterdam UMC location University of Amsterdam, Department of Clinical Pharmacology and Pharmacy, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hennie Bikker
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Carla E M Hollak
- Amsterdam UMC location University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marion M Brands
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
28
|
Davighi MG, Clemente F, Andreasen ES, Nielsen MB, Matassini C, Goti A, Morrone A, Paoli P, Cardona F, Cacciarini M. Iminosugar-Dihydroazulenes as Mutant L444P Glucocerebrosidase Enhancers. Chem Biodivers 2024; 21:e202401104. [PMID: 38847390 DOI: 10.1002/cbdv.202401104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
A remarkable enhancer of human glucocerebrosidase enzyme (GCase) was identified among a set of dihydroazulene-tagged iminosugars. An unprecedented 3.9-fold increase in GCase activity was detected on fibroblasts bearing the homozygous L444P mutation, which is frequently associated with neuronopathic Gaucher forms, and which commonly results refractory to chaperone-induced refolding.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Emilie Sperling Andreasen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Palmer N, Agnew C, Benn C, Buffham WJ, Castro JN, Chessari G, Clark M, Cons BD, Coyle JE, Dawson LA, Hamlett CCF, Hodson C, Holding F, Johnson CN, Liebeschuetz JW, Mahajan P, McCarthy JM, Murray CW, O'Reilly M, Peakman T, Price A, Rapti M, Reeks J, Schöpf P, St-Denis JD, Valenzano C, Wallis NG, Walser R, Weir H, Wilsher NE, Woodhead A, Bento CF, Tisi D. Fragment-Based Discovery of a Series of Allosteric-Binding Site Modulators of β-Glucocerebrosidase. J Med Chem 2024; 67:11168-11181. [PMID: 38932616 DOI: 10.1021/acs.jmedchem.4c00702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.
Collapse
Affiliation(s)
- Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher Agnew
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Caroline Benn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - William J Buffham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan N Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Mellissa Clark
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joseph E Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | | | - Charlotte Hodson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Finn Holding
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Pravin Mahajan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher W Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Magdalini Rapti
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Judith Reeks
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Patrick Schöpf
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St-Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Chiara Valenzano
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Reto Walser
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Heather Weir
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Carla F Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
30
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
31
|
Milosavljević MN, Gutić M, Janjić V, Veselinović S, Djordjić M, Ivanović R, Milosavljević J, Janković SM. Cost-effectiveness of ambroxol in the treatment of Gaucher disease type 2. Open Med (Wars) 2024; 19:20240970. [PMID: 38799251 PMCID: PMC11117451 DOI: 10.1515/med-2024-0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Our aim was to compare the costs and efficacy of ambroxol in combination with imiglucerase with the costs and efficacy of imiglucerase only in the treatment of Gaucher disease type 2 (GD2) in the socio-economic settings of the Republic of Serbia, an upper-middle-income European economy. Methods The perspective of the Serbian Republic Health Insurance Fund was chosen for this study, and the time horizon was 6 years. The main outcomes of the study were quality-adjusted life years gained with ambroxol + imiglucerase and comparator, and direct costs of treatment. The study was conducted through the generation and simulation of the Markov chain model. The model results were obtained after Monte Carlo microsimulation of a sample with 1,000 virtual patients. Results Treatment with ambroxol in combination with imiglucerase was cost-effective when compared with imiglucerase only and was associated with positive values of net monetary benefit regardless of the onset of the disease. Such beneficial result for ambroxol and imiglucerase combination is primarily driven by the low cost of ambroxol and its considerable clinical effectiveness in slowing the progression of neural complications of GD2. Conclusion If ambroxol and imiglucerase are used in combination for the treatment of GD2, it is more cost-effective than using imiglucerase alone.
Collapse
Affiliation(s)
- Miloš N. Milosavljević
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Medo Gutić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Vladimir Janjić
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Slađana Veselinović
- Department of Communication Skills, Ethics and Psychology, Faculty of Medical Sciences, University of Kragujevac, 3400, Kragujevac, Serbia
| | - Milan Djordjić
- Department of Communication Skills, Ethics and Psychology, Faculty of Medical Sciences, University of Kragujevac, 3400, Kragujevac, Serbia
| | - Radenko Ivanović
- University Hospital Foča, 73300, Foča, Republic of Srpska, Bosnia and Herzegovina
- Faculty of Medicine in Foča, University of East Sarajevo, 73300, Foča, Republic of Srpska, Bosnia and Herzegovina
| | - Jovana Milosavljević
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Slobodan M. Janković
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| |
Collapse
|
32
|
Higashi K, Sonoda Y, Kaku N, Fujii F, Yamashita F, Lee S, Tocan V, Ebihara G, Matsuoka W, Tetsuhara K, Sonoda M, Chong PF, Mushimoto Y, Kojima‐Ishii K, Ishimura M, Koga Y, Fukuta A, Tsuchihashi NA, Kikuchi Y, Karashima T, Sawada T, Hotta T, Yoshimitsu M, Terazono H, Tajiri T, Nakagawa T, Sakai Y, Nakamura K, Ohga S. Rapid and long-lasting efficacy of high-dose ambroxol therapy for neuronopathic Gaucher disease: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2427. [PMID: 38553911 PMCID: PMC10980885 DOI: 10.1002/mgg3.2427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by a deficiency in the GBA1-encoded enzyme, β-glucocerebrosidase. Enzyme replacement therapy is ineffective for neuronopathic Gaucher disease (nGD). High-dose ambroxol has been administered as an alternative treatment for a group of patients with nGD. However, little is known about the clinical indication and the long-term outcome of patients after ambroxol therapy. We herein report a case of a female patient who presented with a progressive disease of GD type 2 from 11 months of age and had the pathogenic variants of p.L483P (formerly defined as p.L444P) and p.R502H (p.R463H) in GBA1. A combined treatment of imiglucerase with ambroxol started improving the patient's motor activity in 1 week, while it kept the long-lasting effect of preventing the deteriorating phenotype for 30 months. A literature review identified 40 patients with nGD, who had received high-dose ambroxol therapy. More than 65% of these patients favorably responded to the molecular chaperone therapy, irrespective of p.L483P homozygous, heterozygous or the other genotypes. These results highlight the long-lasting effect of ambroxol-based chaperone therapy for patients with an expanding spectrum of mutations in GBA1.
Collapse
Affiliation(s)
- Kanako Higashi
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Emergency and Critical Care CenterKyushu University HospitalFukuokaJapan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noriyuki Kaku
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Emergency and Critical Care CenterKyushu University HospitalFukuokaJapan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Fumiya Yamashita
- Department of PediatricsNational Hospital Organization Fukuoka Higashi Medical CenterKogaJapan
| | - Sooyoung Lee
- Department of PediatricsNational Hospital Organization Fukuoka Higashi Medical CenterKogaJapan
| | - Vlad Tocan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Go Ebihara
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Wakato Matsuoka
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Emergency and Critical Care CenterKyushu University HospitalFukuokaJapan
| | - Kenichi Tetsuhara
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Emergency and Critical Care CenterKyushu University HospitalFukuokaJapan
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kanako Kojima‐Ishii
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Atsuhisa Fukuta
- Department of Pediatric Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Nana Akagi Tsuchihashi
- Department of Otorhinolaryngology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshikazu Kikuchi
- Department of Otorhinolaryngology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takahito Karashima
- Department of Clinical Chemistry and Laboratory of MedicineKyushu University HospitalFukuokaJapan
| | - Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taeko Hotta
- Department of Clinical Chemistry and Laboratory of MedicineKyushu University HospitalFukuokaJapan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hideyuki Terazono
- Department of Clinical Pharmacy and PharmacologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
33
|
Kispotta S, Das D, Prusty SK. A recent update on drugs and alternative approaches for parkinsonism. Neuropeptides 2024; 104:102415. [PMID: 38402775 DOI: 10.1016/j.npep.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Parkinson's disease, often known as PD, is a more common age-related neurological disorder that affects a huge number of older adults worldwide. Parkinson's disease is predominantly a movement-related pathosis and is distinguished by the deposition of intra-neuronal aggregates, as the alpha-synuclein gene is expressed as Lewy bodies (LB) causing dopaminergic neurons to die. Stress in early life may contribute to the development of depression, and depression in patients may result in the development of Parkinson's disease as they mature. Depression is a non-motor condition that leads to motor symptoms, such as Parkinson's disease. PD Patients are currently utilizing a variety of other therapies like utilizing nutritional supplements, herbal remedies, vitamins, and massage. When a patient's functional ability is impaired, drug treatment is usually initiated according to the individual's condition and the severity of signs and symptoms. The current marketed anti-Parkinson drugs, has low brain distribution and failing to repair dopaminergic neurons or delaying the progression of the disease these negative effects were unavoidable. To overcome these disadvantages, this review considers the inclusion of drugs used in Parkinson's disease, focusing on strategies to reuse existing compounds to speed up drug development, their capacity to traverse the BBB, and drug dispersion in the brain. We look at cellular therapies and repurposed drugs. We also investigate the mechanisms, effectiveness, as well as safety of several new medications that are being repositioned for Parkinson's disease pharmacotherapy. In this study, we focus on global trends in Parkinson's disease research. We hope to raise awareness about the present state of major factors for disability worldwide, including yearly prevalence's from international and national statistics. The pathophysiology of Parkinsonism and also analyze existing therapies for Parkinson's disease, moreover new and innovative drug therapies, and to assess the prospects for disease modification.
Collapse
Affiliation(s)
- Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Debajyoti Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
34
|
Williams D, Glasstetter LM, Jong TT, Kapoor A, Zhu S, Zhu Y, Gehrlein A, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. Development of quantitative high-throughput screening assays to identify, validate, and optimize small-molecule stabilizers of misfolded β-glucocerebrosidase with therapeutic potential for Gaucher disease and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586364. [PMID: 38712038 PMCID: PMC11071283 DOI: 10.1101/2024.03.22.586364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sha Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - David J. Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
35
|
Mohamed FE, Al-Jasmi F. Exploring the efficacy and safety of Ambroxol in Gaucher disease: an overview of clinical studies. Front Pharmacol 2024; 15:1335058. [PMID: 38414738 PMCID: PMC10896849 DOI: 10.3389/fphar.2024.1335058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
36
|
Kim MJ, Kim S, Reinheckel T, Krainc D. Inhibition of cysteine protease cathepsin L increases the level and activity of lysosomal glucocerebrosidase. JCI Insight 2024; 9:e169594. [PMID: 38329128 PMCID: PMC10967467 DOI: 10.1172/jci.insight.169594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.
Collapse
Affiliation(s)
- Myung Jong Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
Abelleyra Lastoria DA, Grewal S, Hughes D. The use of Ambroxol for the treatment of Gaucher disease: A systematic review. EJHAEM 2024; 5:206-221. [PMID: 38406552 PMCID: PMC10887350 DOI: 10.1002/jha2.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Gaucher disease (GD) is a heterogeneous condition requiring tailored treatment approaches. The aim of this systematic review was to synthesise and evaluate current evidence pertaining to the use of Ambroxol for the treatment of GD. Published and unpublished literature databases, conference proceedings and the reference lists of included studies were searched until 23 November 2023. A narrative synthesis was performed. Database search and risk of bias assessment were performed independently by two reviewers. Twenty-one studies (182 patients) were included. The evidence was low in quality. Variable responses to Ambroxol were observed. Response rates were 36% and 55% in two studies reporting on type 1 GD. One study found a 22% response rate in type 2 GD, whereas another study found 29% of patients with type 3 GD reported neurological improvements. No severe adverse events were reported in the literature, with mild and reversible side effects reported. Varying response rates are to be expected (29%-100%) when treating neurological manifestations. Varying degrees of symptomatic improvement for the treatment of GD were noted in the literature. Multidisciplinary team input and clinical judgement are advised to provide personalized treatment of this complex and multi-faceted condition.
Collapse
Affiliation(s)
| | - Simranjeet Grewal
- Institute for Medical and Biomedical EducationSt. George's, University of LondonLondonUK
| | - Derralynn Hughes
- Lysosomal Storage Disorders UnitRoyal Free London NHS Foundation TrustUniversity College LondonLondonUK
| |
Collapse
|
38
|
Wyse RK, Isaacs T, Barker RA, Cookson MR, Dawson TM, Devos D, Dexter DT, Duffen J, Federoff H, Fiske B, Foltynie T, Fox S, Greenamyre JT, Kieburtz K, Kordower JH, Krainc D, Matthews H, Moore DJ, Mursaleen L, Schwarzschild MA, Stott SR, Sulzer D, Svenningsson P, Tanner CM, Carroll C, Simon DK, Brundin P. Twelve Years of Drug Prioritization to Help Accelerate Disease Modification Trials in Parkinson's Disease: The International Linked Clinical Trials Initiative. JOURNAL OF PARKINSON'S DISEASE 2024; 14:657-666. [PMID: 38578902 PMCID: PMC11191436 DOI: 10.3233/jpd-230363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
In 2011, the UK medical research charity Cure Parkinson's set up the international Linked Clinical Trials (iLCT) committee to help expedite the clinical testing of potentially disease modifying therapies for Parkinson's disease (PD). The first committee meeting was held at the Van Andel Institute in Grand Rapids, Michigan in 2012. This group of PD experts has subsequently met annually to assess and prioritize agents that may slow the progression of this neurodegenerative condition, using a systematic approach based on preclinical, epidemiological and, where possible, clinical data. Over the last 12 years, 171 unique agents have been evaluated by the iLCT committee, and there have been 21 completed clinical studies and 20 ongoing trials associated with the initiative. In this review, we briefly outline the iLCT process as well as the clinical development and outcomes of some of the top prioritized agents. We also discuss a few of the lessons that have been learnt, and we conclude with a perspective on what the next decade may bring, including the introduction of multi-arm, multi-stage clinical trial platforms and the possibility of combination therapies for PD.
Collapse
Affiliation(s)
| | | | - Roger A. Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Devos
- Department of Medical Pharmacology and Neurology, University of Lille, CHU Lille, Lille Neurosciences and Cognition Inserm UMR-S-U1172, Lille, France
| | | | | | - Howard Federoff
- Henry and Susan Samueli College of Health Sciences, University of California, Irvine CA, USA
| | - Brian Fiske
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Susan Fox
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - J. Timothy Greenamyre
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Kieburtz
- Department of Neurology Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Jeffrey H. Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | - David Sulzer
- Department of Neurology, Columbia University, New York, NY, USA
| | | | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Camille Carroll
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - David K. Simon
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Patrik Brundin
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
39
|
Colucci F, Avenali M, De Micco R, Fusar Poli M, Cerri S, Stanziano M, Bacila A, Cuconato G, Franco V, Franciotta D, Ghezzi C, Gastaldi M, Elia AE, Romito L, Devigili G, Leta V, Garavaglia B, Golfrè Andreasi N, Cazzaniga F, Reale C, Galandra C, Germani G, Mitrotti P, Ongari G, Palmieri I, Picascia M, Pichiecchio A, Verri M, Esposito F, Cirillo M, Di Nardo F, Aloisio S, Siciliano M, Prioni S, Amami P, Piacentini S, Bruzzone MG, Grisoli M, Moda F, Eleopra R, Tessitore A, Valente EM, Cilia R. Ambroxol as a disease-modifying treatment to reduce the risk of cognitive impairment in GBA-associated Parkinson's disease: a multicentre, randomised, double-blind, placebo-controlled, phase II trial. The AMBITIOUS study protocol. BMJ Neurol Open 2023; 5:e000535. [PMID: 38027469 PMCID: PMC10679992 DOI: 10.1136/bmjno-2023-000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme β-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers NCT05287503, EudraCT 2021-004565-13.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Rosita De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fusar Poli
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | | | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Franco
- IRCCS Mondino Foundation, Pavia, Italy
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | - Antonio Emanuele Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Grazia Devigili
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valentina Leta
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Parkinson's Centre of Excellence, King's College London, London, UK
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nico Golfrè Andreasi
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Federico Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Chiara Reale
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | | | | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mattia Verri
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Aloisio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Sara Prioni
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Amami
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sylvie Piacentini
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
40
|
Cabasso O, Kuppuramalingam A, Lelieveld L, Van der Lienden M, Boot R, Aerts JM, Horowitz M. Animal Models for the Study of Gaucher Disease. Int J Mol Sci 2023; 24:16035. [PMID: 38003227 PMCID: PMC10671165 DOI: 10.3390/ijms242216035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid β-glucocerebrosidase (GCase), encoded by the GBA1 gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation. The amount of mutant GCase in lysosomes depends on the amount of mutant ER enzyme that shuttles to them. In the case of many mutant GCase forms, the enzyme is largely misfolded in the ER. Only a fraction correctly folds and is subsequently trafficked to the lysosomes, while the rest of the misfolded mutant GCase protein undergoes ER-associated degradation (ERAD). The retention of misfolded mutant GCase in the ER induces ER stress, which evokes a stress response known as the unfolded protein response (UPR). GD is remarkably heterogeneous in clinical manifestation, including the variant without CNS involvement (type 1), and acute and subacute neuronopathic variants (types 2 and 3). The present review discusses animal models developed to study the molecular and cellular mechanisms underlying GD.
Collapse
Affiliation(s)
- Or Cabasso
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| | - Aparna Kuppuramalingam
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| | - Lindsey Lelieveld
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Martijn Van der Lienden
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Johannes M. Aerts
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| |
Collapse
|
41
|
Naito Y, Sakamoto S, Kojima T, Homma M, Tanaka M, Matsui H. Novel beta-glucocerebrosidase chaperone compounds identified from cell-based screening reduce pathologically accumulated glucosylsphingosine in iPS-derived neuronal cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:344-349. [PMID: 37369311 DOI: 10.1016/j.slasd.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
The beta-glucocerebrosidase (GBA1) gene encodes the lysosomal beta-glucocerebrosidase (GCase) that metabolizes the lipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Biallelic loss-of-function mutations in GBA1 such as L444P cause Gaucher disease (GD), which is the most prevalent lysosomal storage disease and is histopathologically characterized by abnormal accumulation of the GCase substrates GlcCer and GlcSph. GD with neurological symptoms is associated with severe mutations in the GBA1 gene, most of which cause impairment in the process of GCase trafficking to lysosomes. Given that recombinant GCase protein cannot cross the blood-brain barrier due to its high molecular weight, it is invaluable to develop a brain-penetrant small-molecule pharmacological chaperone as a viable therapeutic strategy to boost GCase activity in the central nervous system. Despite considerable efforts to screen potent GCase activators/chaperones, cell-free assays using recombinant GCase protein have yielded compounds with only marginal efficacy and micromolar EC50 that would not have sufficient clinical efficacy or an acceptable safety margin. Therefore, we utilized a fluorescence-labeled GCase suicide inhibitor, MDW933, to directly monitor lysosomal GCase activity and performed a cell-based screening in fibroblasts from a GD patient with homozygotic L444P mutations. Here, we identified novel compounds that increase the fluorescence signal from labeled GCase with L444P mutations in a dose-dependent manner. Secondary assays using an artificial cell-permeable lysosomal GCase substrate also demonstrated that the identified compounds augment lysosomal GCase L444P in the fibroblast. Moreover, those compounds increased the total GCase L444P protein levels, suggesting the pharmacological chaperone-like mechanism of action. To further elucidate the effect of the compounds on the endogenous GCase substrate GlcSph, we generated iPSC-derived dopaminergic neurons with a GBA1 L444P mutation that exhibit GlcSph accumulation in vitro. Importantly, the identified compounds reduce GlcSph in iPSC-derived dopaminergic neurons with a GBA1 L444P mutation, indicating that the increase in lysosomal GCase resulting from application of the compounds leads to the clearance of pathologically-accumulated GlcSph. Together, our findings pave the way for developing potent and efficacious GCase chaperone compounds as a potential therapeutic approach for neurological GD.
Collapse
Affiliation(s)
- Yusuke Naito
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Sou Sakamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Takuto Kojima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Misaki Homma
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Maiko Tanaka
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Hideki Matsui
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan.
| |
Collapse
|
42
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Keyzor I, Shohet S, Castelli J, Sitaraman S, Veleva-Rotse B, Weimer JM, Fox B, Willer T, Tuske S, Crathorne L, Belzar KJ. Therapeutic Role of Pharmacological Chaperones in Lysosomal Storage Disorders: A Review of the Evidence and Informed Approach to Reclassification. Biomolecules 2023; 13:1227. [PMID: 37627292 PMCID: PMC10452329 DOI: 10.3390/biom13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The treatment landscape for lysosomal storage disorders (LSDs) is rapidly evolving. An increase in the number of preclinical and clinical studies in the last decade has demonstrated that pharmacological chaperones are a feasible alternative to enzyme replacement therapy (ERT) for individuals with LSDs. A systematic search was performed to retrieve and critically assess the evidence from preclinical and clinical applications of pharmacological chaperones in the treatment of LSDs and to elucidate the mechanisms by which they could be effective in clinical practice. Publications were screened according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) reporting guidelines. Fifty-two articles evaluating 12 small molecules for the treatment of seven LSDs are included in this review. Overall, a substantial amount of preclinical and clinical data support the potential of pharmacological chaperones as treatments for Fabry disease, Gaucher disease, and Pompe disease. Most of the available clinical evidence evaluated migalastat for the treatment of Fabry disease. There was a lack of consistency in the terminology used to describe pharmacological chaperones in the literature. Therefore, the new small molecule chaperone (SMC) classification system is proposed to inform a standardized approach for new, emerging small molecule therapies in LSDs.
Collapse
Affiliation(s)
- Ian Keyzor
- Amicus Therapeutics Ltd., Marlow SL7 1HZ, UK
| | | | | | | | | | | | - Brian Fox
- Amicus Therapeutics Inc., Princeton, NJ 08542, USA
| | - Tobias Willer
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Steve Tuske
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Louise Crathorne
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| | - Klara J. Belzar
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| |
Collapse
|
44
|
Kopytova AE, Rychkov GN, Cheblokov AA, Grigor'eva EV, Nikolaev MA, Yarkova ES, Sorogina DA, Ibatullin FM, Baydakova GV, Izyumchenko AD, Bogdanova DA, Boitsov VM, Rybakov AV, Miliukhina IV, Bezrukikh VA, Salogub GN, Zakharova EY, Pchelina SN, Emelyanov AK. Potential Binding Sites of Pharmacological Chaperone NCGC00241607 on Mutant β-Glucocerebrosidase and Its Efficacy on Patient-Derived Cell Cultures in Gaucher and Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24109105. [PMID: 37240451 DOI: 10.3390/ijms24109105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.
Collapse
Affiliation(s)
- Alena E Kopytova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - George N Rychkov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251, Russia
| | - Alexander A Cheblokov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | - Elena V Grigor'eva
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Mikhail A Nikolaev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena S Yarkova
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Diana A Sorogina
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Farid M Ibatullin
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | | | - Artem D Izyumchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Daria A Bogdanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | - Vitali M Boitsov
- Laboratory of Nanobiotechnology, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint-Petersburg 194021, Russia
| | - Akim V Rybakov
- N.P. Bechtereva Institute of the Human Brain RAS, Saint-Petersburg 197376, Russia
| | - Irina V Miliukhina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- N.P. Bechtereva Institute of the Human Brain RAS, Saint-Petersburg 197376, Russia
| | - Vadim A Bezrukikh
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
| | - Galina N Salogub
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
| | | | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Anton K Emelyanov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| |
Collapse
|
45
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
46
|
Istaiti M, Frydman D, Dinur T, Szer J, Revel-Vilk S, Zimran A. High-Dose Ambroxol Therapy in Type 1 Gaucher Disease Focusing on Patients with Poor Response to Enzyme Replacement Therapy or Substrate Reduction Therapy. Int J Mol Sci 2023; 24:ijms24076732. [PMID: 37047707 PMCID: PMC10095311 DOI: 10.3390/ijms24076732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Ambroxol hydrochloride (ABX), an oral mucolytic drug available over the counter for many years, acts as a pharmacological chaperone for mutant glucocerebrosidase, albeit at higher doses. Proof-of-concept reports have been published over the past decade on all three types of Gaucher disease (GD). Here, we assess the safety and efficacy of 12 months of 600 mg ambroxol per day in three groups of Type 1 GD patients with a suboptimal response to enzyme replacement therapy (ERT) or substrate reduction therapy (SRT), defined as platelet count < 100 × 103/L, lumbar spine bone density T-score < -2.0, and/or LysoGb1 > 200 ng/mL, and for a group of naïve patients who had abnormal values in two of these three parameters. We enrolled 40 patients: 28 ERT- or SRT-treated, and 12 naïve. There were no severe adverse effects (AEs). There were 24 dropouts, mostly due to AEs (n = 12), all transient, and COVID-19 (n = 7). Among the 16 completers, 5 (31.2%) had a >20% increase in platelet count, 6 (37.5%) had a >0.2 increase in T-score, and 3 (18.7%) had a >20% decrease in Lyso-Gb1. This study expands the number of patients exposed to high-dose ABX, showing good safety and satisfactory efficacy, and provides an additional rationale for adding off-label ABX to the arsenal of therapies that could be offered to patients with GD1 and a suboptimal response or those unable to receive ERT or SRT.
Collapse
Affiliation(s)
- Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Dafna Frydman
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Tama Dinur
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Jeff Szer
- Peter MacCallum Center, Royal Melbourne Hospital, Department of Medicine, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
47
|
Grasso D, Galderisi S, Santucci A, Bernini A. Pharmacological Chaperones and Protein Conformational Diseases: Approaches of Computational Structural Biology. Int J Mol Sci 2023; 24:ijms24065819. [PMID: 36982893 PMCID: PMC10054308 DOI: 10.3390/ijms24065819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Whenever a protein fails to fold into its native structure, a profound detrimental effect is likely to occur, and a disease is often developed. Protein conformational disorders arise when proteins adopt abnormal conformations due to a pathological gene variant that turns into gain/loss of function or improper localization/degradation. Pharmacological chaperones are small molecules restoring the correct folding of a protein suitable for treating conformational diseases. Small molecules like these bind poorly folded proteins similarly to physiological chaperones, bridging non-covalent interactions (hydrogen bonds, electrostatic interactions, and van der Waals contacts) loosened or lost due to mutations. Pharmacological chaperone development involves, among other things, structural biology investigation of the target protein and its misfolding and refolding. Such research can take advantage of computational methods at many stages. Here, we present an up-to-date review of the computational structural biology tools and approaches regarding protein stability evaluation, binding pocket discovery and druggability, drug repurposing, and virtual ligand screening. The tools are presented as organized in an ideal workflow oriented at pharmacological chaperones' rational design, also with the treatment of rare diseases in mind.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
48
|
Chaperone therapy for lysosomal and non-lysosomal protein misfolding diseases. Brain Dev 2023; 45:251-259. [PMID: 36870919 DOI: 10.1016/j.braindev.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Chaperone therapy was introduced first as a new molecular therapeutic approach to lysosomal diseases. In a recent article, I reviewed the development of chaperone therapy mainly for lysosomal diseases. Then, more data have been collected particularly on non-lysosomal protein misfolding diseases. In this short review, I propose the concept of chaperone therapy to be classified into two different therapeutic approaches, for pH-dependent lysosomal, and pH-independent non-lysosomal protein misfolding diseases. The concept of lysosomal chaperone therapy is well established, but the non-lysosomal chaperone therapy is heterogeneous and to be investigated further for various individual diseases. As a whole, these two-types of new molecular therapeutic approaches will make an impact on the treatment of a wide range of pathological conditions caused by protein misfolding, not necessarily lysosomal but also many non-lysosomal diseases caused by gene mutations, metabolic diseases, malignancy, infectious diseases, and aging. The concept will open a completely new aspect of protein therapy in future.
Collapse
|
49
|
Grigor’eva EV, Kopytova AE, Yarkova ES, Pavlova SV, Sorogina DA, Malakhova AA, Malankhanova TB, Baydakova GV, Zakharova EY, Medvedev SP, Pchelina SN, Zakian SM. Biochemical Characteristics of iPSC-Derived Dopaminergic Neurons from N370S GBA Variant Carriers with and without Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054437. [PMID: 36901867 PMCID: PMC10002967 DOI: 10.3390/ijms24054437] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
GBA variants increase the risk of Parkinson's disease (PD) by 10 times. The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase). The p.N370S substitution causes a violation of the enzyme conformation, which affects its stability in the cell. We studied the biochemical characteristics of dopaminergic (DA) neurons generated from induced pluripotent stem cells (iPSCs) from a PD patient with the GBA p.N370S mutation (GBA-PD), an asymptomatic GBA p.N370S carrier (GBA-carrier), and two healthy donors (control). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we measured the activity of six lysosomal enzymes (GCase, galactocerebrosidase (GALC), alpha-glucosidase (GAA), alpha-galactosidase (GLA), sphingomyelinase (ASM), and alpha-iduronidase (IDUA)) in iPSC-derived DA neurons from the GBA-PD and GBA-carrier. DA neurons from the GBA mutation carrier demonstrated decreased GCase activity compared to the control. The decrease was not associated with any changes in GBA expression levels in DA neurons. GCase activity was more markedly decreased in the DA neurons of GBA-PD patient compared to the GBA-carrier. The amount of GCase protein was decreased only in GBA-PD neurons. Additionally, alterations in the activity of the other lysosomal enzymes (GLA and IDUA) were found in GBA-PD neurons compared to GBA-carrier and control neurons. Further study of the molecular differences between the GBA-PD and the GBA-carrier is essential to investigate whether genetic factors or external conditions are the causes of the penetrance of the p.N370S GBA variant.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alena E. Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena S. Yarkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Diana A. Sorogina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tuyana B. Malankhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sofia N. Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
50
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|