1
|
Shih TT, Sauer RT, Baker TA. How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins. J Biol Chem 2024; 300:107861. [PMID: 39374782 PMCID: PMC11570520 DOI: 10.1016/j.jbc.2024.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Loops in the axial channels of ClpAP and other AAA+ proteases bind a short peptide degron connected by a linker to the N- or C-terminal residue of a native protein to initiate degradation. ATP hydrolysis then powers pore-loop movements that translocate these segments through the channel until a native domain is pulled against the narrow channel entrance, creating an unfolding force. Substrate unfolding is thought to depend on strong contacts between pore loops and a subset of amino acids in the unstructured sequence directly preceding the folded domain. Here, we identify such contact sequences that promote grip for ClpAP and use ClpA structures to place these sequences within ClpA's two AAA+ rings. The positions and chemical nature of certain residues within an unstructured segment that are positioned to interact with the D2 ring have major positive effects on substrate unfolding, whereas segments located within the D1 ring have little consequence. Within the D2-bound segment, two short elements are critical for accelerating degradation; one is at the "top" of D2 and consists of at least two properly positioned nonslippery residues. In contrast, the second D2 element, which can be as short as one residue, is positioned to contact pore loops near the "bottom" of this ring. Comparison with similar studies for ClpXP reveals that positioning a well-gripped substrate sequence within the major unfoldase motor is more important than its proximity to the folded domain and that charged, polar, and hydrophobic residues all contribute favorable contacts to substrate grip.
Collapse
Affiliation(s)
- Tsai-Ting Shih
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Li Y, Zhang HM. Calcined pyrite accelerates sulfur metabolic and electron transfer in driving targeted microbial fuel cell denitrification. BIORESOURCE TECHNOLOGY 2024; 410:131285. [PMID: 39151569 DOI: 10.1016/j.biortech.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The sulfur powder as electron donor in driving dual-chamber microbial fuel cell denitrification (S) process has the advantages in economy and pollution-free to treat nitrate-contained groundwater. However, the low efficiency of electron utilization in sulfur oxidation (ACE) is the bottleneck to this method. In this study, the addition of calcined pyrite to the S system (SCP) accelerated electron generation and intra/extracellular transfer efficiency, thereby improving ACE and denitrification performance. The highest nitrate removal rate reached to 3.55 ± 0.01 mg N/L/h in SCP system, and the ACE was 103 % higher than that in S system. More importantly, calcined pyrite enhanced the enrichment of functional bacteria (Burkholderiales, Thiomonas and Sulfurovum) and functional genes which related to sulfur metabolism and electron transfer. This study was more effective in removing nitrate from groundwater without compromising the water quality.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
3
|
Mukherjee S, Mepperi J, Sahu P, Barman DK, Kotamarthi HC. Single-Molecule Optical Tweezers As a Tool for Delineating the Mechanisms of Protein-Processing Mechanoenzymes. ACS OMEGA 2023; 8:87-97. [PMID: 36643560 PMCID: PMC9835622 DOI: 10.1021/acsomega.2c06044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Mechanoenzymes convert chemical energy from the hydrolysis of nucleotide triphosphates to mechanical energy for carrying out cellular functions ranging from DNA unwinding to protein degradation. Protein-processing mechanoenzymes either remodel the protein structures or translocate them across cellular compartments in an energy-dependent manner. Optical-tweezer-based single-molecule force spectroscopy assays have divulged information on details of chemo-mechanical coupling, directed motion, as well as mechanical forces these enzymes are capable of generating. In this review, we introduce the working principles of optical tweezers as a single-molecule force spectroscopy tool and assays developed to decipher the properties such as unfolding kinetics, translocation velocities, and step sizes by protein remodeling mechanoenzymes. We focus on molecular motors involved in protein degradation and disaggregation, i.e., ClpXP, ClpAP, and ClpB, and insights provided by single-molecule assays on kinetics and stepping dynamics during protein unfolding and translocation. Cellular activities such as protein synthesis, folding, and translocation across membranes are also energy dependent, and the recent single-molecule studies decoding the role of mechanical forces on these processes have been discussed.
Collapse
|
4
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
5
|
AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nat Struct Mol Biol 2022; 29:1068-1079. [PMID: 36329286 PMCID: PMC9663308 DOI: 10.1038/s41594-022-00850-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
ClpAP, a two-ring AAA+ protease, degrades N-end-rule proteins bound by the ClpS adaptor. Here we present high-resolution cryo-EM structures of Escherichia coli ClpAPS complexes, showing how ClpA pore loops interact with the ClpS N-terminal extension (NTE), which is normally intrinsically disordered. In two classes, the NTE is bound by a spiral of pore-1 and pore-2 loops in a manner similar to substrate-polypeptide binding by many AAA+ unfoldases. Kinetic studies reveal that pore-2 loops of the ClpA D1 ring catalyze the protein remodeling required for substrate delivery by ClpS. In a third class, D2 pore-1 loops are rotated, tucked away from the channel and do not bind the NTE, demonstrating asymmetry in engagement by the D1 and D2 rings. These studies show additional structures and functions for key AAA+ elements. Pore-loop tucking may be used broadly by AAA+ unfoldases, for example, during enzyme pausing/unloading.
Collapse
|
6
|
Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. J Biol Chem 2021; 297:101407. [PMID: 34780718 PMCID: PMC8666677 DOI: 10.1016/j.jbc.2021.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
ClpAP, an ATP-dependent protease consisting of ClpA, a double-ring hexameric unfoldase of the ATPases associated with diverse cellular activities superfamily, and the ClpP peptidase, degrades damaged and unneeded proteins to support cellular proteostasis. ClpA recognizes many protein substrates directly, but it can also be regulated by an adapter, ClpS, that modifies ClpA’s substrate profile toward N-degron substrates. Conserved tyrosines in the 12 pore-1 loops lining the central channel of the stacked D1 and D2 rings of ClpA are critical for degradation, but the roles of these residues in individual steps during direct or adapter-mediated degradation are poorly understood. Using engineered ClpA hexamers with zero, three, or six pore-1 loop mutations in each ATPases associated with diverse cellular activities superfamily ring, we found that active D1 pore loops initiate productive engagement of substrates, whereas active D2 pore loops are most important for mediating the robust unfolding of stable native substrates. In complex with ClpS, active D1 pore loops are required to form a high affinity ClpA•ClpS•substrate complex, but D2 pore loops are needed to “tug on” and remodel ClpS to transfer the N-degron substrate to ClpA. Overall, we find that the pore-1 loop tyrosines in D1 are critical for direct substrate engagement, whereas ClpS-mediated substrate delivery requires unique contributions from both the D1 and D2 pore loops. In conclusion, our study illustrates how pore loop engagement, substrate capture, and powering of the unfolding/translocation steps are distributed between the two rings of ClpA, illuminating new mechanistic features that may be common to double-ring protein unfolding machines.
Collapse
|
7
|
Ingram ZM, Scull NW, Schneider DS, Lucius AL. Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox. Biophys Chem 2021; 279:106682. [PMID: 34634538 DOI: 10.1016/j.bpc.2021.106682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Parameter optimization or "data fitting" is a computational process that identifies a set of parameter values that best describe an experimental data set. Parameter optimization is commonly carried out using a computer program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem with this class of algorithms is that in the case of models with correlated parameters the optimized output parameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several case studies with published experimental data are presented to demonstrate the capabilities of this tool. The results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it immediately accessible to researchers with a limited programming background. We anticipate that this toolbox can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-flow, and molecular tweezers data sets. STATEMENT OF SIGNIFICANCE: Non-linear least squares (NLLS) is a common form of parameter optimization in biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions for models involving few parameters. However, initial guess dependence is a well-known drawback of this optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.
Collapse
Affiliation(s)
- Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel W Scull
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David S Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Kotamarthi HC, Sauer RT, Baker TA. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation. Cell Rep 2021; 30:2644-2654.e3. [PMID: 32101742 DOI: 10.1016/j.celrep.2020.01.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 10/24/2022] Open
Abstract
ATP-powered unfoldases containing D1 and D2 AAA+ rings play important roles in protein homeostasis, but uncertainty about the function of each ring remains. Here we use single-molecule optical tweezers to assay mechanical unfolding and translocation by a variant of the ClpAP protease containing an ATPase-inactive D1 ring. This variant displays substantial mechanical defects in both unfolding and translocation of protein substrates. Notably, when D1 is hydrolytically inactive, ClpAP often stalls for times as long as minutes, and the substrate can back-slip through the enzyme when ATP concentrations are low. The inactive D1 variant also has more difficulty traveling in the N-to-C direction on a polypeptide track than it does moving in a C-to-N direction. These results indicate that D1 normally functions as an auxiliary/regulatory motor to promote uninterrupted enzyme advancement that is fueled largely by the D2 ring.
Collapse
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
10
|
Torres-Delgado A, Kotamarthi HC, Sauer RT, Baker TA. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease. J Mol Biol 2020; 432:4908-4921. [PMID: 32687854 DOI: 10.1016/j.jmb.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Adaptor proteins modulate substrate selection by AAA+ proteases. The ClpS adaptor delivers N-degron substrates to ClpAP but inhibits degradation of substrates bearing ssrA tags or other related degrons. How ClpS inhibits degradation of such substrates is poorly understood. Here, we demonstrate that ClpS impedes recognition of ssrA-tagged substrates by a non-competitive mechanism and also slows subsequent unfolding/translocation of these substrates as well as of N-degron substrates. This suppression of mechanical activity is largely a consequence of the ability of ClpS to repress ATP hydrolysis by ClpA, but several lines of evidence show that ClpS's inhibition of substrate binding and its ATPase repression are separable activities. Using ClpS mutants and ClpS-ClpA chimeras, we establish that engagement of the intrinsically disordered N-terminal extension of ClpS by ClpA is both necessary and sufficient to inhibit multiple steps of ClpAP-catalyzed degradation. These observations reveal how an adaptor can simultaneously modulate the catalytic activity of a AAA+ enzyme, efficiently promote recognition of some substrates, suppress recognition of other substrates, and thereby affect degradation of its menu of substrates in a specific manner. We propose that similar mechanisms are likely to be used by other adaptors to regulate substrate choice and the catalytic activity of molecular machines.
Collapse
Affiliation(s)
- Amaris Torres-Delgado
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Lopez KE, Rizo AN, Tse E, Lin J, Scull NW, Thwin AC, Lucius AL, Shorter J, Southworth DR. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Nat Struct Mol Biol 2020; 27:406-416. [PMID: 32313240 PMCID: PMC7529148 DOI: 10.1038/s41594-020-0409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022]
Abstract
The ClpAP complex is a conserved bacterial protease that unfolds and degrades proteins targeted for destruction. The ClpA double-ring hexamer powers substrate unfolding and translocation into the ClpP proteolytic chamber. Here, we determined high-resolution structures of wild-type Escherichia coli ClpAP undergoing active substrate unfolding and proteolysis. A spiral of pore loop-substrate contacts spans both ClpA AAA+ domains. Protomers at the spiral seam undergo nucleotide-specific rearrangements, supporting substrate translocation. IGL loops extend flexibly to bind the planar, heptameric ClpP surface with the empty, symmetry-mismatched IGL pocket maintained at the seam. Three different structures identify a binding-pocket switch by the IGL loop of the lowest positioned protomer, involving release and re-engagement with the clockwise pocket. This switch is coupled to a ClpA rotation and a network of conformational changes across the seam, suggesting that ClpA can rotate around the ClpP apical surface during processive steps of translocation and proteolysis.
Collapse
Affiliation(s)
- Kyle E Lopez
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Scull
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Anggarini S, Murata M, Kido K, Kosaka T, Sootsuwan K, Thanonkeo P, Yamada M. Improvement of Thermotolerance of Zymomonas mobilis by Genes for Reactive Oxygen Species-Scavenging Enzymes and Heat Shock Proteins. Front Microbiol 2020; 10:3073. [PMID: 32082264 PMCID: PMC7002363 DOI: 10.3389/fmicb.2019.03073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Thermotolerant genes, which are essential for survival at a high temperature, have been identified in three mesophilic microbes, including Zymomonas mobilis. Contrary to expectation, they include only a few genes for reactive oxygen species (ROS)-scavenging enzymes and heat shock proteins, which are assumed to play key roles at a critical high temperature (CHT) as an upper limit of survival. We thus examined the effects of increased expression of these genes on the cell growth of Z. mobilis strains at its CHT. When overexpressed, most of the genes increased the CHT by about one degree, and some of them enhanced tolerance against acetic acid. These findings suggest that ROS-damaged molecules or unfolded proteins that prevent cell growth are accumulated in cells at the CHT.
Collapse
Affiliation(s)
- Sakunda Anggarini
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan
| | - Masayuki Murata
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan
| | - Keisuke Kido
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyuki Kosaka
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kaewta Sootsuwan
- Faculty of Agro-Industrial Technology, Rajamangala University of Technology Isan, Kalasin, Thailand
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Mamoru Yamada
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
13
|
Deville C, Franke K, Mogk A, Bukau B, Saibil HR. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Cell Rep 2019; 27:3433-3446.e4. [PMID: 31216466 PMCID: PMC6593972 DOI: 10.1016/j.celrep.2019.05.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities. Coiled-coil M-domains repress ClpB activity by encircling the AAA1 ring. Here, we determine the mechanism of ClpB activation by comparing ATPase mechanisms and cryo-EM structures of ClpB wild-type and a constitutively active ClpB M-domain mutant. We show that ClpB activation reduces ATPase cooperativity and induces a sequential mode of ATP hydrolysis in the AAA2 ring, the main ATPase motor. AAA1 and AAA2 rings do not work synchronously but in alternating cycles. This ensures high grip, enabling substrate threading via a processive, rope-climbing mechanism.
Collapse
Affiliation(s)
- Célia Deville
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kamila Franke
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Helen R Saibil
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
14
|
Duran EC, Lucius AL. Examination of the nucleotide-linked assembly mechanism of E. coli ClpA. Protein Sci 2019; 28:1312-1323. [PMID: 31054177 DOI: 10.1002/pro.3638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
Escherichia coli ClpA is a AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP-dependent unfolding and translocation of substrate proteins targeted for degradation by a protease, ClpP. ClpA hexamers associate with one or both ends of ClpP tetradecamers to form ClpAP complexes. Each ClpA protomer contains two nucleotide-binding sites, NBD1 and NBD2, and self-assembly into hexamers is thermodynamically linked to nucleotide binding. Despite a number of studies aimed at characterizing ClpA and ClpAP-catalyzed substrate unfolding and degradation, respectively, to date the field is unable to quantify the concentration of ClpA hexamers available to interact with ClpP for any given nucleotide and total ClpA concentration. In this work, sedimentation velocity studies are used to quantitatively examine the self-assembly of a ClpA Walker B variant in the presence of ATP. In addition to the hexamerization, we observe the formation of a previously unreported ClpA dodecamer in the presence of ATP. Further, we report apparent equilibrium constants for the formation of each ClpA oligomer obtained from direct boundary modeling of the sedimentation velocity data. The energetics of nucleotide binding to NBD1 and NBD2 are revealed by examining the dependence of the apparent association equilibrium constants on free nucleotide concentration.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Chemistry Department, University of Alabama at Birmingham, Birmingham, Alabama, 35205
| | - Aaron L Lucius
- Chemistry Department, University of Alabama at Birmingham, Birmingham, Alabama, 35205
| |
Collapse
|
15
|
Duran EC, Lucius AL. ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide. Biophys Chem 2018; 242:6-14. [PMID: 30173103 DOI: 10.1016/j.bpc.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 02/03/2023]
Abstract
E. coli ClpA is an AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP-dependent unfolding and translocation of substrate proteins for the purposes of proper proteome maintenance. Biologically active ClpA hexamers contain two nucleotide binding domains (NBD) per protomer, D1 and D2. Despite extensive study, complete understanding of how the twelve NBDs within a ClpA hexamer coordinate ATP binding and hydrolysis to polypeptide translocation is currently lacking. To examine nucleotide binding and coordination at D1 and D2, ClpA Walker B variants deficient in ATP hydrolysis at one or both NBDs have been employed in various studies. In the presence of ATP, it is widely assumed that ClpA Walker B variants are entirely hexameric. However, a thermodynamically rigorous examination of the self-assembly mechanism has not been obtained. Differences in the assembly due to the mutation can be misattributed to the active NBD, leading to potential misinterpretations of kinetic studies. Here we use sedimentation velocity studies to quantitatively examine the self-assembly mechanism of ClpA Walker B variants deficient in ATP hydrolysis at D1, D2, and both NBDs. We found that the Walker B mutations had clear, if modest, effects on the assembly. Most notably, the Walker B mutation stabilizes the population of a larger oligomer in the absence of nucleotide, that is not present for analogous concentrations of wild type ClpA. Our results indicate that Walker B mutants, widely used in studies of AAA+ family proteins, require additional characterization as the mutation affects not only ATP hydrolysis, but also the ligand linked assembly of these complexes. This linkage must be considered in investigations of unfolding or other ATP dependent functions.
Collapse
Affiliation(s)
- Elizabeth C Duran
- University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States
| | - Aaron L Lucius
- University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States.
| |
Collapse
|
16
|
Miller JM, Chaudhary H, Marsee JD. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. J Struct Biol 2017; 201:52-62. [PMID: 29129755 DOI: 10.1016/j.jsb.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.
Collapse
Affiliation(s)
- Justin M Miller
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States.
| | - Hamza Chaudhary
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| | - Justin D Marsee
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| |
Collapse
|
17
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
18
|
Bodnar NO, Rapoport TA. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex. Cell 2017; 169:722-735.e9. [PMID: 28475898 DOI: 10.1016/j.cell.2017.04.020] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
Abstract
The Cdc48 ATPase and its cofactors Ufd1/Npl4 (UN) extract polyubiquitinated proteins from membranes or macromolecular complexes, but how they perform these functions is unclear. Cdc48 consists of an N-terminal domain that binds UN and two stacked hexameric ATPase rings (D1 and D2) surrounding a central pore. Here, we use purified components to elucidate how the Cdc48 complex processes substrates. After interaction of the polyubiquitin chain with UN, ATP hydrolysis by the D2 ring moves the polypeptide completely through the double ring, generating a pulling force on the substrate and causing its unfolding. ATP hydrolysis by the D1 ring is important for subsequent substrate release from the Cdc48 complex. This release requires cooperation of Cdc48 with a deubiquitinase, which trims polyubiquitin to an oligoubiquitin chain that is then also translocated through the pore. Together, these results lead to a new paradigm for the function of Cdc48 and its mammalian ortholog p97/VCP.
Collapse
Affiliation(s)
- Nicholas O Bodnar
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers 2017; 105:505-17. [PMID: 26971705 DOI: 10.1002/bip.22831] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016.
Collapse
Affiliation(s)
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
20
|
Fundamental Characteristics of AAA+ Protein Family Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9294307. [PMID: 27703410 PMCID: PMC5039278 DOI: 10.1155/2016/9294307] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.
Collapse
|
21
|
Zhao BB, Li XH, Zeng YL, Lu YJ. ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins. BMC Microbiol 2016; 16:174. [PMID: 27484084 PMCID: PMC4969725 DOI: 10.1186/s12866-016-0790-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Background The opportunistic bacterial pathogen Legionella pneumophila uses substrate effectors of Dot/Icm type IVB secretion system (T4BSS) to accomplish survival and replication in amoebae cells and mammalian alveolar macrophages. During the conversion between its highly resistant, infectious dormant form and vigorously growing, uninfectious replicative form, L. pneumophila utilizes a complicated regulatory network in which proteolysis may play a significant role. As a highly conserved core protease, ClpP is involved in various cellular processes as well as virulence in bacteria, and has been proved to be required for the expression of transmission traits and cell division of L. pneumophila. Results The clpP-deficient L. pneumophila strain failed to replicate and was digested in the first 3 h post-infection in mammalian cells J774A.1. Further investigation demonstrates that the clpP deficient mutant strain was unable to escape the endosome-lysosomal pathway in host cells. We also found that the clpP deficient mutant strain still expresses T4BSS components, induces contact-dependent cytotoxicity and translocate effector proteins RalF and LegK2, indicating that its T4BSS was overall functional. Interestingly, we further found that the translocation of several effector proteins is significantly reduced without ClpP. Conclusions The data indicate that ClpP plays an important role in regulating the virulence and effector translocation of Legionella pneumophila. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0790-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei-Bei Zhao
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China
| | - Xiang-Hui Li
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: Jiangsu Information Institute of Science and Technology, Nanjing, 210042, China
| | - Yong-Lun Zeng
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yong-Jun Lu
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.
| |
Collapse
|
22
|
Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 2015; 14:33-44. [PMID: 26639779 DOI: 10.1038/nrmicro.2015.4] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To maintain protein homeostasis, AAA+ proteolytic machines degrade damaged and unneeded proteins in bacteria, archaea and eukaryotes. This process involves the ATP-dependent unfolding of a target protein and its subsequent translocation into a self-compartmentalized proteolytic chamber. Related AAA+ enzymes also disaggregate and remodel proteins. Recent structural and biochemical studies, in combination with direct visualization of unfolding and translocation in single-molecule experiments, have illuminated the molecular mechanisms behind these processes and suggest how remodelling of macromolecular complexes by AAA+ enzymes could occur without global denaturation. In this Review, we discuss the structural and mechanistic features of AAA+ proteases and remodelling machines, focusing on the bacterial ClpXP and ClpX as paradigms. We also consider the potential of these enzymes as antibacterial targets and outline future challenges for the field.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Leodolter J, Warweg J, Weber-Ban E. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. PLoS One 2015; 10:e0125345. [PMID: 25933022 PMCID: PMC4416901 DOI: 10.1371/journal.pone.0125345] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
Clp chaperone-proteases are cylindrical complexes built from ATP-dependent chaperone rings that stack onto a proteolytic ClpP double-ring core to carry out substrate protein degradation. Interaction of the ClpP particle with the chaperone is mediated by an N-terminal loop and a hydrophobic surface patch on the ClpP ring surface. In contrast to E. coli, Mycobacterium tuberculosis harbors not only one but two ClpP protease subunits, ClpP1 and ClpP2, and a homo-heptameric ring of each assembles to form the ClpP1P2 double-ring core. Consequently, this hetero double-ring presents two different potential binding surfaces for the interaction with the chaperones ClpX and ClpC1. To investigate whether ClpX or ClpC1 might preferentially interact with one or the other double-ring face, we mutated the hydrophobic chaperone-interaction patch on either ClpP1 or ClpP2, generating ClpP1P2 particles that are defective in one of the two binding patches and thereby in their ability to interact with their chaperone partners. Using chaperone-mediated degradation of ssrA-tagged model substrates, we show that both Mycobacterium tuberculosis Clp chaperones require the intact interaction face of ClpP2 to support degradation, resulting in an asymmetric complex where chaperones only bind to the ClpP2 side of the proteolytic core. This sets the Clp proteases of Mycobacterium tuberculosis, and probably other Actinobacteria, apart from the well-studied E. coli system, where chaperones bind to both sides of the protease core, and it frees the ClpP1 interaction interface for putative new binding partners.
Collapse
Affiliation(s)
- Julia Leodolter
- Institute for Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jannis Warweg
- Institute for Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute for Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Proc Natl Acad Sci U S A 2015; 112:5377-82. [PMID: 25870262 DOI: 10.1073/pnas.1505881112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent molecular machines of the AAA+ superfamily unfold or remodel proteins in all cells. For example, AAA+ ClpX and ClpA hexamers collaborate with the self-compartmentalized ClpP peptidase to unfold and degrade specific proteins in bacteria and some eukaryotic organelles. Although degradation assays are straightforward, robust methods to assay the kinetics of enzyme-catalyzed protein unfolding in the absence of proteolysis have been lacking. Here, we describe a FRET-based assay in which enzymatic unfolding converts a mixture of donor-labeled and acceptor-labeled homodimers into heterodimers. In this assay, ClpX is a more efficient protein-unfolding machine than ClpA both kinetically and in terms of ATP consumed. However, ClpP enhances the mechanical activities of ClpA substantially, and ClpAP degrades the dimeric substrate faster than ClpXP. When ClpXP or ClpAP engage the dimeric subunit, one subunit is actively unfolded and degraded, whereas the other subunit is passively unfolded by loss of its partner and released. This assay should be broadly applicable for studying the mechanisms of AAA+ proteases and remodeling chaperones.
Collapse
|
25
|
Gardner BM, Chowdhury S, Lander GC, Martin A. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits. J Mol Biol 2015; 427:1375-1388. [PMID: 25659908 DOI: 10.1016/j.jmb.2015.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 12/13/2022]
Abstract
Pex1 and Pex6 are Type-2 AAA+ ATPases required for the de novo biogenesis of peroxisomes. Mutations in Pex1 and Pex6 account for the majority of the most severe forms of peroxisome biogenesis disorders in humans. Here, we show that the ATP-dependent complex of Pex1 and Pex6 from Saccharomyces cerevisiae is a heterohexamer with alternating subunits. Within the Pex1/Pex6 complex, only the D2 ATPase ring hydrolyzes ATP, while nucleotide binding in the D1 ring promotes complex assembly. ATP hydrolysis by Pex1 is highly coordinated with that of Pex6. Furthermore, Pex15, the membrane anchor required for Pex1/Pex6 recruitment to peroxisomes, inhibits the ATP-hydrolysis activity of Pex1/Pex6.
Collapse
Affiliation(s)
- Brooke M Gardner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| |
Collapse
|
26
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
27
|
Olivares AO, Nager AR, Iosefson O, Sauer RT, Baker TA. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat Struct Mol Biol 2014; 21:871-5. [PMID: 25195048 PMCID: PMC4190165 DOI: 10.1038/nsmb.2885] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023]
Abstract
Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ClpA enzyme from Escherichia coli mechanically degrades proteins in complex with the ClpP peptidase. We demonstrate that ClpA unfolds some protein substrates substantially faster than the single-ring ClpX enzyme, which also degrades substrates in collaboration with ClpP. We find that ClpA is a slower polypeptide translocase and moves in physical steps that are smaller and more regular than steps taken by ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew R Nager
- 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2]
| | - Ohad Iosefson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Miller JM, Lucius AL. ATPγS competes with ATP for binding at Domain 1 but not Domain 2 during ClpA catalyzed polypeptide translocation. Biophys Chem 2013; 185:58-69. [PMID: 24362308 DOI: 10.1016/j.bpc.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Abstract
ClpAP is an ATP-dependent protease that assembles through the association of hexameric rings of ClpA with the cylindrically-shaped protease ClpP. ClpA contains two nucleotide binding domains, termed Domain 1 (D1) or 2 (D2). We have proposed that D1 or D2 limits the rate of ClpA catalyzed polypeptide translocation when ClpP is either absent or present, respectively. Here we show that the rate of ClpA catalyzed polypeptide translocation depends on [ATPγS] in the absence of ClpP, but not in the presence of ClpP. We observe that ATPγS non-cooperatively binds to ClpA during polypeptide translocation with an apparent affinity of ~6 μM, but that introduction of ClpP shifts this affinity such that translocation is not affected. Interpreting these data with our proposed model for translocation catalyzed by ClpA vs. ClpAP suggests that ATPγS competes for binding at D1 but not at D2.
Collapse
Affiliation(s)
- Justin M Miller
- Department of Chemistry, The University of Alabama at Birmingham, 1530 3rd Ave S, Birmingham, AL 35294-1240, United States
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, 1530 3rd Ave S, Birmingham, AL 35294-1240, United States.
| |
Collapse
|
29
|
Li T, Lucius AL. Examination of the polypeptide substrate specificity for Escherichia coli ClpA. Biochemistry 2013; 52:4941-54. [PMID: 23773038 DOI: 10.1021/bi400178q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-catalyzed protein unfolding is essential for a large array of biological functions, including microtubule severing, membrane fusion, morphogenesis and trafficking of endosomes, protein disaggregation, and ATP-dependent proteolysis. These enzymes are all members of the ATPases associated with various cellular activity (AAA+) superfamily of proteins. Escherichia coli ClpA is a hexameric ring ATPase responsible for enzyme-catalyzed protein unfolding and translocation of a polypeptide chain into the central cavity of the tetradecameric E. coli ClpP serine protease for proteolytic degradation. Further, ClpA also uses its protein unfolding activity to catalyze protein remodeling reactions in the absence of ClpP. ClpA recognizes and binds a variety of protein tags displayed on proteins targeted for degradation. In addition, ClpA binds unstructured or poorly structured proteins containing no specific tag sequence. Despite this, a quantitative description of the relative binding affinities for these different substrates is not available. Here we show that ClpA binds to the 11-amino acid SsrA tag with an affinity of 200 ± 30 nM. However, when the SsrA sequence is incorporated at the carboxy terminus of a 30-50-amino acid substrate exhibiting little secondary structure, the affinity constant decreases to 3-5 nM. These results indicate that additional contacts beyond the SsrA sequence are required for maximal binding affinity. Moreover, ClpA binds to various lengths of the intrinsically unstructured protein, α-casein, with an affinity of ∼30 nM. Thus, ClpA does exhibit modest specificity for SsrA when incorporated into an unstructured protein. Moreover, incorporating these results with the known structural information suggests that SsrA makes direct contact with the domain 2 loop in the axial channel and additional substrate length is required for additional contacts within domain 1.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemistry, The University of Alabama at Birmingham , 1530 3rd Avenue South, Birmingham, Alabama 35294-1240, United States
| | | |
Collapse
|
30
|
Miller JM, Lin J, Li T, Lucius AL. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP. J Mol Biol 2013; 425:2795-812. [PMID: 23639359 DOI: 10.1016/j.jmb.2013.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/08/2013] [Accepted: 04/20/2013] [Indexed: 11/25/2022]
Abstract
There are five known ATP-dependent proteases in Escherichia coli (Lon, ClpAP, ClpXP, HslUV, and the membrane-associated FtsH) that catalyze the removal of both misfolded and properly folded proteins in cellular protein quality control pathways. Hexameric ClpA rings associate with one or both faces of the cylindrically shaped tetradecameric ClpP protease. ClpA catalyzes unfolding and translocation of polypeptide substrates into the proteolytic core of ClpP for degradation through repeated cycles of ATP binding and hydrolysis at two nucleotide binding domains on each ClpA monomer. We previously reported a molecular mechanism for ClpA catalyzed polypeptide translocation in the absence of ClpP, including elementary rate constants, overall rate, and the kinetic step size. However, the potential allosteric effect of ClpP on the mechanism of ClpA catalyzed translocation remains unclear. Using single-turnover fluorescence stopped-flow methods, here we report that ClpA, when associated with ClpP, translocates polypeptide with an overall rate of ~35 aa s(-1) and, on average, traverses ~5 aa between two rate-limiting steps with reduced cooperativity between ATP binding sites in the hexameric ring. This is in direct contrast to our previously reported observation that, in the absence of ClpP, ClpA translocates polypeptide substrates with a maximum translocation rate of ~20 aa s(-1) with cooperativity between ATPase sites. Our results demonstrate that ClpP allosterically impacts the polypeptide translocation activity of ClpA by reducing the cooperativity between ATP binding sites.
Collapse
Affiliation(s)
- Justin M Miller
- Department of Chemistry, The University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294-1240, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
32
|
Biter AB, Lee J, Sung N, Tsai FTF, Lee S. Functional analysis of conserved cis- and trans-elements in the Hsp104 protein disaggregating machine. J Struct Biol 2012; 179:172-80. [PMID: 22634726 DOI: 10.1016/j.jsb.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/24/2012] [Accepted: 05/16/2012] [Indexed: 11/17/2022]
Abstract
Hsp104 is a double ring-forming AAA+ ATPase, which harnesses the energy of ATP binding and hydrolysis to rescue proteins from a previously aggregated state. Like other AAA+ machines, Hsp104 features conserved cis- and trans-acting elements, which are hallmarks of AAA+ members and are essential to Hsp104 function. Despite these similarities, it was recently proposed that Hsp104 is an atypical AAA+ ATPase, which markedly differs in 3D structure from other AAA+ machines. Consequently, it was proposed that arginines found in the non-conserved M-domain, but not the predicted Arg-fingers, serve the role of the critical trans-acting element in Hsp104. While the structural discrepancy has been resolved, the role of the Arg-finger residues in Hsp104 remains controversial. Here, we exploited the ability of Hsp104 variants featuring mutations in one ring to retain ATPase and chaperone activities, to elucidate the functional role of the predicted Arg-finger residues. We found that the evolutionarily conserved Arg-fingers are absolutely essential for ATP hydrolysis but are dispensable for hexamer assembly in Hsp104. On the other hand, M-domain arginines are not strictly required for ATP hydrolysis and affect the ATPase and chaperone activities in a complex manner. Our results confirm that Hsp104 is not an atypical AAA+ ATPase, and uses conserved structural elements common to diverse AAA+ machines to drive the mechanical unfolding of aggregated proteins.
Collapse
Affiliation(s)
- Amadeo B Biter
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
34
|
Wendler P, Ciniawsky S, Kock M, Kube S. Structure and function of the AAA+ nucleotide binding pocket. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:2-14. [PMID: 21839118 DOI: 10.1016/j.bbamcr.2011.06.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
Members of the diverse superfamily of AAA+ proteins are molecular machines responsible for a wide range of essential cellular processes. In this review we summarise structural and functional data surrounding the nucleotide binding pocket of these versatile complexes. Protein Data Bank (PDB) structures of closely related AAA+ ATPase are overlaid and biologically relevant motifs are displayed. Interactions between protomers are illustrated on the basis of oligomeric structures of each AAA+ subgroup. The possible role of conserved motifs in the nucleotide binding pocket is assessed with regard to ATP binding and hydrolysis, oligomerisation and inter-subunit communication. Our comparison indicates that in particular the roles of the arginine finger and sensor 2 residues differ subtly between AAA+ subgroups, potentially providing a means for functional diversification.
Collapse
Affiliation(s)
- Petra Wendler
- Gene Center, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
35
|
Román-Hernández G, Hou JY, Grant RA, Sauer RT, Baker TA. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol Cell 2011; 43:217-28. [PMID: 21777811 PMCID: PMC3168947 DOI: 10.1016/j.molcel.2011.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/10/2011] [Accepted: 06/02/2011] [Indexed: 01/07/2023]
Abstract
The ClpS adaptor delivers N-end rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end rule substrates increase ClpS affinity for ClpA(6). Enhanced binding requires the N-end residue and a peptide bond of the substrate, as well as multiple aspects of ClpS, including a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease.
Collapse
Affiliation(s)
| | - Jennifer Y. Hou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert A. Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
36
|
Dougan DA, Micevski D, Truscott KN. The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:83-91. [PMID: 21781991 DOI: 10.1016/j.bbamcr.2011.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
Intracellular proteolysis is a tightly regulated process responsible for the targeted removal of unwanted or damaged proteins. The non-lysosomal removal of these proteins is performed by processive enzymes, which belong to the AAA+superfamily, such as the 26S proteasome and Clp proteases. One important protein degradation pathway, that is common to both prokaryotes and eukaryotes, is the N-end rule. In this pathway, proteins bearing a destabilizing amino acid residue at their N-terminus are degraded either by the ClpAP protease in bacteria, such as Escherichia coli or by the ubiquitin proteasome system in the eukaryotic cytoplasm. A suite of enzymes and other molecular components are also required for the successful generation, recognition and delivery of N-end rule substrates to their cognate proteases. In this review we examine the similarities and differences in the N-end rule pathway of bacterial and eukaryotic systems, focusing on the molecular determinants of this pathway.
Collapse
Affiliation(s)
- D A Dougan
- Department of Biochemistry, L Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| | | | | |
Collapse
|
37
|
Veronese PK, Rajendar B, Lucius AL. Activity of E. coli ClpA bound by nucleoside diphosphates and triphosphates. J Mol Biol 2011; 409:333-47. [PMID: 21376057 DOI: 10.1016/j.jmb.2011.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/21/2011] [Accepted: 02/07/2011] [Indexed: 11/28/2022]
Abstract
The Escherichia coli ClpA protein is a molecular chaperone that binds and translocates protein substrates into the proteolytic cavity of the tetradecameric serine protease ClpP. In the absence of ClpP, ClpA can remodel protein complexes. In order for ClpA to bind protein substrates targeted for removal or remodeling, ClpA requires nucleoside triphosphate binding to first assemble into a hexamer. Here we report the assembly properties of ClpA in the presence of the nucleoside diphosphates and triphosphates ADP, adenosine 5'-[γ-thio]triphosphate, adenosine 5'-(β,γ-imido)triphosphate, β,γ-methyleneadenosine 5'-triphosphate, and adenosine diphosphate beryllium fluoride. In addition to examining the assembly of ClpA in the presence of various nucleotides and nucleotide analogues, we have also correlated the assembly state of ClpA in the presence of these nucleotides with both polypeptide binding activity and enzymatic activity, specifically ClpA-catalyzed polypeptide translocation. Here we show that all of the selected nucleotides, including ADP, promote the assembly of ClpA. However, only adenosine 5'-[γ-thio]triphosphate and adenosine 5'-(β,γ-imido)triphosphate promote the formation of an oligomer of ClpA that is active in polypeptide binding and translocation. These results suggest that the presence of γ phosphate may serve to switch ClpA into a conformational state with high peptide binding activity, whereas affinity is severely attenuated when ADP is bound.
Collapse
Affiliation(s)
- P Keith Veronese
- Department of Chemistry, The University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
38
|
Chapman E, Fry AN, Kang M. The complexities of p97 function in health and disease. MOLECULAR BIOSYSTEMS 2010; 7:700-10. [PMID: 21152665 DOI: 10.1039/c0mb00176g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p97 is a homohexameric, toroidal machine that harnesses the energy of ATP binding and hydrolysis to effect structural reorganization of a diverse and primarily uncharacterized set of substrate proteins. This action has been linked to endoplasmic reticulum associated degradation (ERAD), homotypic membrane fusion, transcription factor control, cell cycle progression, DNA repair, and post-mitotic spindle disassembly. Exactly how these diverse processes use p97 is not fully understood, but it is clear that binding sites, primarily on the N- and C-domains of p97, facilitate this diversity by coordinating a growing collection of cofactors. These cofactors act at the levels of mechanism, sub-cellular localization, and substrate modification. Another unifying theme is the use of ubiquitylation. Both p97 and many of the associated cofactors have demonstrable ubiquitin-binding competence. The present review will discuss some of the current mechanistic studies and controversies and how these relate to cofactors as well as discussing potential therapeutic targeting of p97.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Molecular Biology, The Scripps Research Institute, Skaggs Molecular Biology Building, 10596 Torrey Pines Road, Rm. 203, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
39
|
Rajendar B, Lucius AL. Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase. J Mol Biol 2010; 399:665-79. [PMID: 20380838 DOI: 10.1016/j.jmb.2010.03.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/26/2022]
Abstract
The removal of damaged or unneeded proteins by ATP-dependent proteases is crucial for cell survival in all organisms. Integral components of ATP-dependent proteases are motor proteins that unfold stably folded proteins that have been targeted for removal. These protein unfoldases/polypeptide translocases use ATP to unfold the target proteins and translocate them into a proteolytic component. Despite the central role of these motor proteins in cell homeostasis, a number of important questions regarding the molecular mechanisms of enzyme catalyzed protein unfolding and translocation remain unanswered. Here, we demonstrate that Escherichia coli ClpA, in the absence of the proteolytic component ClpP, processively and directionally steps along the polypeptide backbone with a kinetic step size of approximately 14 amino acids, independent of the concentration of ATP with a rate of approximately 19 amino acids s(-1) at saturating concentrations of ATP. In contrast to earlier studies by others, we have developed single-turnover fluorescence stopped-flow methods that allow us to quantitatively examine the molecular mechanism of the motor component ClpA decoupled from the proteolytic component ClpP. For the first time, we reveal that in the absence of ClpP ClpA translocates polypeptides directionally, processively and in discrete steps similar to other motor proteins that translocate vectorially on a linear lattice, such as nucleic acid helicases and kinesin. We believe that the methods employed here will be generally applicable to the examination of other AAA+ protein translocases involved in a variety of important biological functions where the substrate is not covalently modified; for example, membrane fusion, membrane transport, protein disaggregation, and protein refolding.
Collapse
Affiliation(s)
- Burki Rajendar
- The University of Alabama at Birmingham, Department of Chemistry, 1530 3rd Avenue South, Birmingham, AL 35294-1240, USA
| | | |
Collapse
|
40
|
Dougan DA, Truscott KN, Zeth K. The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 2010; 76:545-58. [DOI: 10.1111/j.1365-2958.2010.07120.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Kress W, Maglica Z, Weber-Ban E. Clp chaperone-proteases: structure and function. Res Microbiol 2009; 160:618-28. [PMID: 19732826 DOI: 10.1016/j.resmic.2009.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 11/26/2022]
Abstract
Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.
Collapse
Affiliation(s)
- Wolfgang Kress
- ETH Zurich, Institute of Molecular Biology & Biophysics, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | | | |
Collapse
|