1
|
Lall D, Glaser MM, Higgs PI. Myxococcus xanthus fruiting body morphology is important for spore recovery after exposure to environmental stress. Appl Environ Microbiol 2024; 90:e0166024. [PMID: 39365039 PMCID: PMC11497814 DOI: 10.1128/aem.01660-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.
Collapse
Affiliation(s)
- Dave Lall
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maike M. Glaser
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Penelope I. Higgs
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Kennedy EN, Foster CA, Barr SA, Bourret RB. General strategies for using amino acid sequence data to guide biochemical investigation of protein function. Biochem Soc Trans 2022; 50:1847-1858. [PMID: 36416676 PMCID: PMC10257402 DOI: 10.1042/bst20220849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
The rapid increase of '-omics' data warrants the reconsideration of experimental strategies to investigate general protein function. Studying individual members of a protein family is likely insufficient to provide a complete mechanistic understanding of family functions, especially for diverse families with thousands of known members. Strategies that exploit large amounts of available amino acid sequence data can inspire and guide biochemical experiments, generating broadly applicable insights into a given family. Here we review several methods that utilize abundant sequence data to focus experimental efforts and identify features truly representative of a protein family or domain. First, coevolutionary relationships between residues within primary sequences can be successfully exploited to identify structurally and/or functionally important positions for experimental investigation. Second, functionally important variable residue positions typically occupy a limited sequence space, a property useful for guiding biochemical characterization of the effects of the most physiologically and evolutionarily relevant amino acids. Third, amino acid sequence variation within domains shared between different protein families can be used to sort a particular domain into multiple subtypes, inspiring further experimental designs. Although generally applicable to any kind of protein domain because they depend solely on amino acid sequences, the second and third approaches are reviewed in detail because they appear to have been used infrequently and offer immediate opportunities for new advances. Finally, we speculate that future technologies capable of analyzing and manipulating conserved and variable aspects of the three-dimensional structures of a protein family could lead to broad insights not attainable by current methods.
Collapse
Affiliation(s)
- Emily N. Kennedy
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Clay A. Foster
- Department of Pediatrics, Section Hematology/Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarah A. Barr
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Robert B. Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
3
|
Kowallis KA, Silfani EM, Kasumu AP, Rong G, So V, Childers WS. Synthetic Control of Signal Flow Within a Bacterial Multi-Kinase Network. ACS Synth Biol 2020; 9:1705-1713. [PMID: 32559383 DOI: 10.1021/acssynbio.0c00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The signal processing capabilities of bacterial signaling networks offer immense potential for advanced phospho-signaling systems for synthetic biology. Emerging models suggest that complex development may require interconnections between what were once thought to be isolated signaling arrays. For example, Caulobacter crescentus achieves the feat of asymmetric division by utilizing a novel pseudokinase DivL, which senses the output of one signaling pathway to modulate a second pathway. It has been proposed that DivL reverses signal flow by exploiting conserved kinase conformational changes and protein-protein interactions. We engineered a series of DivL-based modulators to synthetically stimulate reverse signaling of the network in vivo. Stimulation of conformational changes through the DivL signal transmission helix resulted in changes to hallmark features of the network: C. crescentus motility and DivL accumulation at the cell poles. Additionally, mutations to a conserved PAS sensor transmission motif disrupted reverse signaling flow in vivo. We propose that synthetic stimulation and sensor disruption provide strategies to define signaling circuit organization principles for the rational design and validation of synthetic pathways.
Collapse
Affiliation(s)
- Kimberly A. Kowallis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elayna M. Silfani
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Amanda P. Kasumu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Grace Rong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Victor So
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Modulation of Response Regulator CheY Reaction Kinetics by Two Variable Residues That Affect Conformation. J Bacteriol 2020; 202:JB.00089-20. [PMID: 32424010 DOI: 10.1128/jb.00089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
Microorganisms and plants utilize two-component systems to regulate adaptive responses to changing environmental conditions. Sensor kinases detect stimuli and alter their autophosphorylation activity accordingly. Signal propagation occurs via the transfer of phosphoryl groups from upstream kinases to downstream response regulator proteins. Removal of phosphoryl groups from the response regulator typically resets the system. Members of the same protein family may catalyze phosphorylation and dephosphorylation reactions with different efficiencies, exhibiting rate constants spanning many orders of magnitude to accommodate response time scales from milliseconds to days. We previously found that variable positions one or two residues to the C-terminal side of the conserved Asp phosphorylation site (D+2) or Thr/Ser (T+1/T+2) in response regulators alter reaction kinetics by direct interaction with phosphodonor or phosphoacceptor molecules. Here, we explore the kinetic effects of amino acid substitutions at the two positions immediately C-terminal to the conserved Lys (K+1/K+2) in the model Escherichia coli response regulator CheY. We measured CheY autophosphorylation and autodephosphorylation rate constants for 27 pairs of K+1/K+2 residues that represent 84% of naturally occurring response regulators. Effects on autodephosphorylation were modest, but autophosphorylation rate constants varied by 2 orders of magnitude, suggesting that the K+1/K+2 positions influence reaction kinetics by altering the conformational spectrum sampled by CheY at equilibrium. Additional evidence supporting this indirect mechanism includes the following: the effect on autophosphorylation rate constants is independent of the phosphodonor, the autophosphorylation rate constants and dissociation constants for the phosphoryl group analog BeF3 - are inversely correlated, and the K+1/K+2 positions are distant from the phosphorylation site.IMPORTANCE We have identified five variable positions in response regulators that allow the rate constants of autophosphorylation and autodephosporylation reactions each to be altered over 3 orders of magnitude in CheY. The distributions of variable residue combinations across response regulator subfamilies suggest that distinct mechanisms associated with different variable positions allow reaction rates to be tuned independently during evolution for diverse biological purposes. This knowledge could be used in synthetic-biology applications to adjust the properties (e.g., background noise and response duration) of biosensors and may allow prediction of response regulator reaction kinetics from the primary amino acid sequence.
Collapse
|
5
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
6
|
Feeley BE, Bhardwaj V, McLaughlin PT, Diggs S, Blaha GM, Higgs PI. An amino-terminal threonine/serine motif is necessary for activity of the Crp/Fnr homolog, MrpC and for Myxococcus xanthus developmental robustness. Mol Microbiol 2019; 112:1531-1551. [PMID: 31449700 DOI: 10.1111/mmi.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.
Collapse
Affiliation(s)
- Brooke E Feeley
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Vidhi Bhardwaj
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hesse, Germany
| | | | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Penelope I Higgs
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
8
|
Orphan Hybrid Histidine Protein Kinase SinK Acts as a Signal Integrator To Fine-Tune Multicellular Behavior in Myxococcus xanthus. J Bacteriol 2019; 201:JB.00561-18. [PMID: 30617244 DOI: 10.1128/jb.00561-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
His-Asp phosphorelay (also known as two-component signal transduction) proteins are the predominant mechanism used in most bacteria to control behavior in response to changing environmental conditions. In addition to systems consisting of a simple two-component system utilizing an isolated histidine kinase/response regulator pair, some bacteria are enriched in histidine kinases that serve as signal integration proteins; these kinases are usually characterized by noncanonical domain architecture, and the responses that they regulate may be difficult to identify. The environmental bacterium Myxococcus xanthus is highly enriched in these noncanonical histidine kinases. M. xanthus is renowned for a starvation-induced multicellular developmental program in which some cells are induced to aggregate into fruiting bodies and then differentiate into environmentally resistant spores. Here, we characterize the M. xanthus orphan hybrid histidine kinase SinK (Mxan_4465), which consists of a histidine kinase transmitter followed by two receiver domains (REC1 and REC2). Nonphosphorylatable sinK mutants were analyzed under two distinct developmental conditions and using a new high-resolution developmental assay. These assays revealed that SinK autophosphorylation and REC1 impact the onset of aggregation and/or the mobility of aggregates, while REC2 impacts sporulation efficiency. SinK activity is controlled by a genus-specific hypothetical protein (SinM; Mxan_4466). We propose that SinK serves to fine-tune fruiting body morphology in response to environmental conditions.IMPORTANCE Biofilms are multicellular communities of microorganisms that play important roles in host disease or environmental biofouling. Design of preventative strategies to block biofilms depends on understanding the molecular mechanisms used by microorganisms to build them. The production of biofilms in bacteria often involves two-component signal transduction systems in which one protein component (a kinase) detects an environmental signal and, through phosphotransfer, activates a second protein component (a response regulator) to change the transcription of genes necessary to produce a biofilm. We show that an atypical kinase, SinK, modulates several distinct stages of specialized biofilm produced by the environmental bacterium Myxococcus xanthus SinK likely integrates multiple signals to fine-tune biofilm formation in response to distinct environmental conditions.
Collapse
|
9
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Silversmith RE, Bourret RB. Fluorescence Measurement of Kinetics of CheY Autophosphorylation with Small Molecule Phosphodonors. Methods Mol Biol 2018; 1729:321-335. [PMID: 29429101 DOI: 10.1007/978-1-4939-7577-8_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Escherichia coli chemotaxis protein CheY is a model receiver domain containing a native tryptophan residue that serves as a fluorescent probe for CheY autophosphorylation with small molecule phosphodonors. Here we describe fluorescence measurement of apparent bimolecular rate constants for reaction of wild type and mutant CheY with phosphodonors acetyl phosphate, phosphoramidate, or monophosphoimidazole. Step-by-step protocols to synthesize phosphoramidate (K+ salt) and monophosphoimidazole (Na+ salt), which are not commercially available, are provided. Key factors to consider in developing autophosphorylation assays for other response regulators are also discussed.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Foster CA, West AH. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems. Proteins 2016; 85:155-176. [PMID: 27802580 PMCID: PMC5242315 DOI: 10.1002/prot.25207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Two‐component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus‐dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well‐characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation‐induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155–176. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
12
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
13
|
The ChrSA and HrrSA Two-Component Systems Are Required for Transcriptional Regulation of the hemA Promoter in Corynebacterium diphtheriae. J Bacteriol 2016; 198:2419-30. [PMID: 27381918 DOI: 10.1128/jb.00339-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/20/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Corynebacterium diphtheriae utilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. In C. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters for hmuO, hrtAB, and hemA ChrSA and HrrSA activate transcription at the hmuO promoter and repress transcription at hemA in an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor at hemA and that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression of hemA by ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to the hemA promoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylated in vitro by the sensor kinase ChrS, whereas no kinase activity was observed with HrrS in vitro Phosphorylated ChrA was not observed in vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observed in vivo regardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrA in vivo Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at the hemA promoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes. IMPORTANCE Understanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogen C. diphtheriae The findings here underscore the complex interactions between the ChrSA and HrrSA systems in the regulation of the hemA promoter and demonstrate how the two systems complement one another to refine and control transcription in the presence and absence of Hb.
Collapse
|
14
|
Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes. J Bacteriol 2015; 198:377-85. [PMID: 26369581 DOI: 10.1128/jb.00474-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation.
Collapse
|
15
|
Chemosensory regulation of a HEAT-repeat protein couples aggregation and sporulation in Myxococcus xanthus. J Bacteriol 2014; 196:3160-8. [PMID: 24957622 DOI: 10.1128/jb.01866-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemosensory systems are complex, highly modified two-component systems (TCS) used by bacteria to control various biological functions ranging from motility to sporulation. Chemosensory systems and TCS both modulate phosphorelays comprised of histidine kinases and response regulators, some of which are single-domain response regulators (SD-RRs) such as CheY. In this study, we have identified and characterized the Che7 chemosensory system of Myxococcus xanthus, a common soil bacterium which displays multicellular development in response to stress. Both genetic and biochemical analyses indicate that the Che7 system regulates development via a direct interaction between the SD-RR CheY7 and a HEAT repeat domain-containing protein, Cpc7. Phosphorylation of the SD-RR affects the interaction with its target, and residues within the α4-β5-α5 fold of the REC domain govern this interaction. The identification of the Cpc7 interaction with CheY7 extends the diversity of known targets for SD-RRs in biological systems.
Collapse
|
16
|
Los sistemas de dos componentes: circuitos moleculares versátiles. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Podgornaia AI, Casino P, Marina A, Laub MT. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling. Structure 2013; 21:1636-47. [PMID: 23954504 DOI: 10.1016/j.str.2013.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023]
Abstract
Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces.
Collapse
Affiliation(s)
- Anna I Podgornaia
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
18
|
Domain analysis of ArcS, the hybrid sensor kinase of the Shewanella oneidensis MR-1 Arc two-component system, reveals functional differentiation of its two receiver domains. J Bacteriol 2012; 195:482-92. [PMID: 23161031 DOI: 10.1128/jb.01715-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmic CaChe-sensing domain bracketed by two transmembrane domains and, moreover, that ArcS has two cytoplasmic PAS-sensing domains and two receiver domains, compared to a single one of each in ArcB. Here, we used a combination of in vitro phosphotransfer studies on purified proteins and phenotypic in vivo mutant analysis to determine the roles of the different domains in ArcS function. The analysis revealed that phosphotransfer occurs from and toward the response regulator ArcA and involves mainly the C-terminal RecII domain. However, RecI also can receive a phosphate from HptA. In addition, the PAS-II domain, located upstream of the histidine kinase domain, is crucial for function. The results support a model in which phosphorylation of RecI stimulates histidine kinase activity of ArcS in order to maintain an appropriate level of phosphorylated ArcA according to environmental conditions. In addition, the study reveals some fundamental mechanistic differences between ArcS/HptA and ArcB with respect to signal perception and phosphotransfer despite functional conservation of the Arc system in Shewanella and E. coli.
Collapse
|
19
|
Schramm A, Lee B, Higgs PI. Intra- and interprotein phosphorylation between two-hybrid histidine kinases controls Myxococcus xanthus developmental progression. J Biol Chem 2012; 287:25060-72. [PMID: 22661709 DOI: 10.1074/jbc.m112.387241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple "two-component" systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program.
Collapse
Affiliation(s)
- Andreas Schramm
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | | |
Collapse
|
20
|
Binnenkade L, Lassak J, Thormann KM. Analysis of the BarA/UvrY two-component system in Shewanella oneidensis MR-1. PLoS One 2011; 6:e23440. [PMID: 21931597 PMCID: PMC3171408 DOI: 10.1371/journal.pone.0023440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022] Open
Abstract
The BarA/UvrY two-component system is well conserved in species of the γ-proteobacteria and regulates numerous processes predominantly by controlling the expression of a subset of noncoding small RNAs. In this study, we identified and characterized the BarA/UvrY two-component system in the gammaproteobacterium Shewanella oneidensis MR-1. Functional interaction of sensor kinase BarA and the cognate response regulator UvrY was indicated by in vitro phosphotransfer studies. The expression of two predicted small regulatory RNAs (sRNAs), CsrB1 and CsrB2, was dependent on UvrY. Transcriptomic analysis by microarrays revealed that UvrY is a global regulator and directly or indirectly affects transcript levels of more than 200 genes in S. oneidensis. Among these are genes encoding key enzymes of central carbon metabolism such as ackA, aceAB, and pflAB. As predicted of a signal transduction pathway that controls aspects of central metabolism, mutants lacking UvrY reach a significantly higher OD than the wild type during aerobic growth on N-acetylglucosamine (NAG) while under anaerobic conditions the mutant grew more slowly. A shorter lag phase occurred with lactate as carbon source. In contrast, significant growth phenotypes were absent in complex medium. Based on these studies we hypothesize that, in S. oneidensis MR-1, the global BarA/UvrY/Csr regulatory pathway is involved in central carbon metabolism processes.
Collapse
Affiliation(s)
- Lucas Binnenkade
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Jürgen Lassak
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Kai M. Thormann
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 2011; 80:641-54. [PMID: 21401736 DOI: 10.1111/j.1365-2958.2011.07608.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A∼P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A∼P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli.
Collapse
Affiliation(s)
- Elisabeth Steiner
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3DD, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
López-Redondo ML, Moronta F, Salinas P, Espinosa J, Cantos R, Dixon R, Marina A, Contreras A. Environmental control of phosphorylation pathways in a branched two-component system. Mol Microbiol 2011; 78:475-89. [PMID: 20979345 DOI: 10.1111/j.1365-2958.2010.07348.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NblS, the most conserved histidine kinase in cyanobacteria, regulates photosynthesis and acclimatization to a variety of environmental conditions. We used in silico, in vivo and in vitro approaches to identify RpaB and SrrA as the cognate response regulators of NblS and to characterize relevant interactions between components of this signalling system. While genetic analysis showed the importance of the NblS to RpaB phosphorylation branch for culture viability in Synechococcus elongatus PCC 7942, in vitro assays indicated a strong preference for NblS to phosphorylate SrrA. This apparent discrepancy can be explained by environmental insulation of the RpaB pathway, achieved by RpaB-dependent repression of srrA under standard, low light culture conditions. After a strong but transient increase in srrA expression upon high light exposure, negative regulation of srrA and other high light inducible genes takes place, suggesting cooperation between pathways under environmental conditions in which both RpaB and SrrA are present. Complex regulatory interactions between RpaB and SrrA, two response regulators with a common evolutionary origin that are controlled by a single histidine kinase, are thus emerging. Our results provide a paradigm for regulatory interactions between response regulators in a branched two-component system.
Collapse
|
24
|
The genetic organisation of prokaryotic two-component system signalling pathways. BMC Genomics 2010; 11:720. [PMID: 21172000 PMCID: PMC3018481 DOI: 10.1186/1471-2164-11-720] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/20/2010] [Indexed: 11/16/2022] Open
Abstract
Background Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure. Results Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts. Conclusions We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, 'percentage orphaned TCS genes' (or 'Dissemination') and 'percentage of complex loci' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.
Collapse
|
25
|
Müller FD, Treuner-Lange A, Heider J, Huntley SM, Higgs PI. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 2010; 11:264. [PMID: 20420673 PMCID: PMC2875238 DOI: 10.1186/1471-2164-11-264] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate. Conclusions These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation.
Collapse
Affiliation(s)
- Frank-Dietrich Müller
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
26
|
ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol 2010; 76:3263-74. [PMID: 20348304 DOI: 10.1128/aem.00512-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.
Collapse
|
27
|
Kenney LJ. How important is the phosphatase activity of sensor kinases? Curr Opin Microbiol 2010; 13:168-76. [PMID: 20223700 DOI: 10.1016/j.mib.2010.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
In two-component signaling systems, phosphorylated response regulators (RRs) are often dephosphorylated by their partner kinases in order to control the in vivo concentration of phospho-RR (RR approximately P). This activity is easily demonstrated in vitro, but these experiments have typically used very high concentrations of the histidine kinase (HK) compared to the RR approximately P. Many two-component systems exhibit exquisite control over the ratio of HK to RR in vivo. The question thus arises as to whether the phosphatase activity of HKs is significant in vivo. This topic will be explored in the present review.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 S. Wolcott St. M/C 790, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Bourret RB. Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 2010; 13:142-9. [PMID: 20211578 DOI: 10.1016/j.mib.2010.01.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During signal transduction by two-component regulatory systems, sensor kinases detect and encode input information while response regulators (RRs) control output. Most receiver domains function as phosphorylation-mediated switches within RRs, but some transfer phosphoryl groups in multistep phosphorelays. Conserved features of receiver domain amino acid sequence correlate with structure and hence function. Receiver domains catalyze their own phosphorylation and dephosphorylation in reactions requiring a divalent cation. Molecular dynamics simulations are supplementing structural investigation of the conformational changes that underlie receiver domain switch function. As understanding of features shared by all receiver domains matures, factors conferring differences (e.g. in reaction rate or specificity) are receiving increased attention. Numerous examples of atypical receiver or pseudo-receiver domains that function without phosphorylation have recently been characterized.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
29
|
Measurement of Response Regulator Autodephosphorylation Rates Spanning Six Orders of Magnitude. Methods Enzymol 2010; 471:89-114. [DOI: 10.1016/s0076-6879(10)71006-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Lee B, Schramm A, Jagadeesan S, Higgs PI. Two-Component Systems and Regulation of Developmental Progression in Myxococcus xanthus. Methods Enzymol 2010; 471:253-78. [DOI: 10.1016/s0076-6879(10)71014-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Pazy Y, Wollish AC, Thomas SA, Miller PJ, Collins EJ, Bourret RB, Silversmith RE. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. J Mol Biol 2009; 392:1205-20. [PMID: 19646451 DOI: 10.1016/j.jmb.2009.07.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
In two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein, and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active-site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 10(6). Previous studies identified two variable active-site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold. Here, a set of five CheY mutants, which match other "model" response regulators (ArcA, CusR, DctD, FixJ, PhoB, or Spo0F) at variable active-site positions corresponding to CheY residues 14, 59, and 89, were characterized functionally and structurally in an attempt to identify mechanisms that modulate autodephosphorylation rate. As expected, the autodephosphorylation rates of the CheY mutants were reduced 6- to 40-fold relative to wild-type CheY, but all still autodephosphorylated 12- to 80-fold faster than their respective model response regulators. Comparison of X-ray crystal structures of the five CheY mutants (complexed with the phosphoryl group analogue BeF(3)(-)) to wild-type CheY or corresponding model response regulator structures gave strong evidence for steric obstruction of the phosphoryl group from the attacking water molecule as one mechanism to enhance phosphoryl group stability. Structural data also suggested that impeding the change of a response regulator from the active to the inactive conformation might retard the autodephosphorylation reaction if the two processes are coupled, and that the residue at position '58' may contribute to rate modulation. A given combination of amino acids at positions '14', '59', and '89' adopted similar conformations regardless of protein context (CheY or model response regulator), suggesting that knowledge of residue identity may be sufficient to predict autodephosphorylation rate, and hence the kinetics of the signaling response, in the response regulator family of proteins.
Collapse
Affiliation(s)
- Yael Pazy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | | | | | |
Collapse
|