1
|
Johnson MM, DeChellis A, Nemmaru B, Chundawat SPS, Lang MJ. Thermobifida fusca Cel6B moves bidirectionally while processively degrading cellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:140. [PMID: 39633461 PMCID: PMC11616356 DOI: 10.1186/s13068-024-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cellulose, an abundant biopolymer, has great potential to be utilized as a renewable fuel feedstock through its enzymatic degradation into soluble sugars followed by sugar fermentation into liquid biofuels. However, crystalline cellulose is highly resistant to hydrolysis, thus industrial-scale production of cellulosic biofuels has been cost-prohibitive to date. Mechanistic studies of enzymes that break down cellulose, called cellulases, are necessary to improve and adapt such biocatalysts for implementation in biofuel production processes. Thermobifida fusca Cel6B (TfCel6B) is a promising candidate for industrial use due to its thermostability and insensitivity to pH changes. However, mechanistic studies probing TfCel6B hydrolytic activity have been limited to ensemble-scale measurements. RESULTS We utilized optical tweezers to perform single-molecule, nanometer-scale measurements of enzyme displacement during cellulose hydrolysis by TfCel6B. Records featured forward motility on the order of 0.17 nm s-1 interrupted by backward motions and long pauses. Processive run lengths were on the order of 5 nm in both forward and backward directions. Motility records also showed rapid bidirectional displacements greater than 5 nm. Single-enzyme velocity and bulk ensemble activity were assayed on multiple crystalline cellulose allomorphs revealing that the degree of crystallinity and hydrogen bonding have disparate effects on the single-molecule level compared to the bulk scale. Additionally, we isolated and monitored the catalytic domain of TfCel6B and observed a reduction in velocity compared to the full-length enzyme that includes the carbohydrate-binding module. Applied force has little impact on enzyme velocity yet it readily facilitates dissociation from cellulose. Preliminary measurements at elevated temperatures indicated enzyme velocity strongly increases with temperature. CONCLUSIONS The unexpected motility patterns of TfCel6B are likely due to previously unknown mechanisms of processive cellulase motility implicating irregularities in cellulose substrate ultrastructure. While TfCel6B is processive, it has low motility at room temperature. Factors that most dramatically impact enzyme velocity are temperature and the presence of its native carbohydrate-binding module and linker. In contrast, substrate ultrastructure and applied force did not greatly impact velocity. These findings motivate further study of TfCel6B for its engineering and potential implementation in industrial processes.
Collapse
Affiliation(s)
- Madeline M Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Antonio DeChellis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Bhargava Nemmaru
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Igarashi K, Ezaki T, Samejima M. Mechanism-based Modelling for Fitting the Double-exponential Progress Curves of Cellulase Reaction. J Appl Glycosci (1999) 2024; 71:103-110. [PMID: 39720779 PMCID: PMC11664118 DOI: 10.5458/jag.jag.jag-2024_0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 12/26/2024] Open
Abstract
Enzymatic hydrolysis of cellulosic biomass is a complex process involving many factors, including multiple enzymes, heterogeneous substrates, and multi-step enzyme reactions. Cellulase researchers have conventionally used a double-exponential equation to fit the experimental time course of product formation, but no theoretical basis for this has been established. Here we present a mechanism-based equation that fits well the progress curves of cellulase reaction, incorporating the concepts of non-productive and productive binding on the cellulose surface and processivity. The derived equation is double exponential. Our findings indicate that the reaction mechanism of cellulase itself can account for the double-exponential nature of the progress curve independently of other factors that may contribute, such as substrate heterogeneity and involvement of other enzymes.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takahiro Ezaki
- Division of Advanced Logistics Science, Research Center for Advanced Science and Technology, The University of Tokyo
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
3
|
Xie T, Zhou L, Han L, Liu Z, Cui W, Cheng Z, Guo J, Shen Y, Zhou Z. Simultaneously improving the activity and thermostability of hyperthermophillic pullulanase by modifying the active-site tunnel and surface lysine. Int J Biol Macromol 2024; 276:133642. [PMID: 38964696 DOI: 10.1016/j.ijbiomac.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Pullulanases are important starch-debranching enzymes that mainly hydrolyze the α-1,6-glycosidic linkages in pullulan, starch, and oligosaccharides. Nevertheless, their practical applications are constrained because of their poor activity and low thermostability. Moreover, the trade-off between activity and thermostability makes it challenging to simultaneously improve them. In this study, an engineered pullulanase was developed through reshaping the active-site tunnel and engineering the surface lysine residues using the pullulanase from Pyrococcus yayanosii CH1 (PulPY2). The specific activity of the engineered pullulanase was increased 3.1-fold, and thermostability was enhanced 1.8-fold. Moreover, the engineered pullulanase exhibited 11.4-fold improvement in catalytic efficiency (kcat/Km). Molecular dynamics simulations demonstrated an anti-correlated movement around the entrance of active-site tunnel and stronger interactions between the surface residues in the engineered pullulanase, which would be beneficial to the activity and thermostability improvement, respectively. The strategies used in this study and dynamic evidence for insight into enzyme performance improvement may provide guidance for the activity and thermostability engineering of other enzymes.
Collapse
Affiliation(s)
- Ting Xie
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Junling Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yaqin Shen
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214101, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
4
|
Nong D, Haviland ZK, Zexer N, Pfaff SA, Cosgrove DJ, Tien M, Anderson CT, Hancock WO. Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose. Proc Natl Acad Sci U S A 2024; 121:e2322567121. [PMID: 38648472 PMCID: PMC11067010 DOI: 10.1073/pnas.2322567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Daguan Nong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Zachary K. Haviland
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Nerya Zexer
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Sarah A. Pfaff
- Department of Biology, Pennsylvania State University, University Park, PA16802
- Intercollege Graduate Degree Program in Plant Biology, Department of Biology, The Pennsylvania State University, University Park, PA16802
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Charles T. Anderson
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
| |
Collapse
|
5
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
6
|
Nousi A, Molina GA, Schiano-di-Cola C, Sørensen TH, Borch K, Pedersen JN, Westh P, Marie R. Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data. J Phys Chem B 2024; 128:635-647. [PMID: 38227769 PMCID: PMC10824242 DOI: 10.1021/acs.jpcb.3c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to μM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.
Collapse
Affiliation(s)
- Aimilia Nousi
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Kim Borch
- Novozymes
A/S, Krogshøjvej
36, 2880 Bagsværd, Denmark
| | - Jonas N. Pedersen
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat Commun 2023; 14:1100. [PMID: 36841862 PMCID: PMC9968341 DOI: 10.1038/s41467-023-36856-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Plant cellulose microfibrils are increasingly employed to produce functional nanofibers and nanocrystals for biomaterials, but their catalytic formation and conversion mechanisms remain elusive. Here, we characterize length-reduced cellulose nanofibers assembly in situ accounting for the high density of amorphous cellulose regions in the natural rice fragile culm 16 (Osfc16) mutant defective in cellulose biosynthesis using both classic and advanced atomic force microscopy (AFM) techniques equipped with a single-molecular recognition system. By employing individual types of cellulases, we observe efficient enzymatic catalysis modes in the mutant, due to amorphous and inner-broken cellulose chains elevated as breakpoints for initiating and completing cellulose hydrolyses into higher-yield fermentable sugars. Furthermore, effective chemical catalysis mode is examined in vitro for cellulose nanofibers conversion into nanocrystals with reduced dimensions. Our study addresses how plant cellulose substrates are digestible and convertible, revealing a strategy for precise engineering of cellulose substrates toward cost-effective biofuels and high-quality bioproducts.
Collapse
|
8
|
Takeuchi A, Heah WY, Yamamoto Y, Yamagishi H. Degradable optical resonators as in situ microprobes for microscopy-based observation of enzymatic hydrolysis. Chem Commun (Camb) 2023; 59:1477-1480. [PMID: 36651843 DOI: 10.1039/d2cc05597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Optical resonators work as precise physical and chemical sensors. Here, we assemble a whispering gallery mode resonator from a natural polymer, fibroin protein, and successfully observe its catalytic degradation reaction as a spectral shift. This methodology will contribute to the precise in situ observation of biological reactions by optical microscopy.
Collapse
Affiliation(s)
- Akihide Takeuchi
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Wey Yih Heah
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yohei Yamamoto
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Hiroshi Yamagishi
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
9
|
Chen L, Qu Z, Yu W, Zheng L, Qiao H, Wang D, Wei B, Zhao Z. Comparative genomic and transcriptome analysis of Bacillus velezensis CL-4 fermented corn germ meal. AMB Express 2023; 13:10. [PMID: 36683079 PMCID: PMC9868226 DOI: 10.1186/s13568-023-01510-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023] Open
Abstract
Bacillus, an excellent organic-degrading agent, can degrade lignocellulose. Notably, some B. velezensis strains encode lignocellulases. However, their ability to degrade lignocellulose in fermented feed is not much appreciated. This study performed a comparative genomic analysis of twenty-three B. velezensis strains to find common carbohydrate-active enzymes (CAZymes) encoding genes and evaluated their potential to degrade lignocellulose. The comparative genomic and CAZyme database-based analyses identified several potential CAZymes genes that degrade cellulose (GH1, GH4, GH5, GH13, GH16, GH32, PL1, and PL9), hemicellulose (GH11, GH26, GH43, GH51, and CE3) and lignin (AA4, AA6, AA7, and AA10). Furthermore, Illumina RNA-seq transcriptome analysis revealed the expression of more than 1794 genes in B. velezensis CL-4 fermented corn germ meal at 48 h (FCGM 48 h). Gene ontology analysis of expressed genes revealed their enrichment in hydrolase activity (breaking the glycosyl bonds during carbohydrate metabolism), indicating the upregulation of CAZymes. In total, 58 differentially upregulated CAZymes-encoding genes were identified in FCGM 48 h compared to FCGM 0 h. The upregulated CAZymes-encoding genes were related to cellulose (6-phospho-β-galactosidase and 6-phospho-α-glucosidase), starch (α-glucosidase and α-amylase), pectin (pectin lyase), and hemicellulose (arabinan endo-1,5-α-L-arabinosidase, xylan 1,4-beta-xylosidase, α-N-arabinofuranosidase, and acetyl xylan esterase). Importantly, arabinoxylan degradation mainly occurred in FCGM 48 h, followed by partial degradation of cellulose, pectin, and starch. This study can support the development of enzymatic cocktails for the solid-state fermented feed (SFF).
Collapse
Affiliation(s)
- Long Chen
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Zihui Qu
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Wei Yu
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Lin Zheng
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Haixin Qiao
- Information Application Department, Jilin Intellectual Property Protection Center, Changchun, 130000 China
| | - Dan Wang
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Bingdong Wei
- grid.464388.50000 0004 1756 0215Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100 Jilin China
| | - Zijian Zhao
- grid.464388.50000 0004 1756 0215Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1366 Cai Yu Street, Changchun, 130033 Jilin Province China
| |
Collapse
|
10
|
Tong X, He Z, Zheng L, Pande H, Ni Y. Enzymatic treatment processes for the production of cellulose nanomaterials: A review. Carbohydr Polym 2023; 299:120199. [PMID: 36876810 DOI: 10.1016/j.carbpol.2022.120199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Cellulose nanomaterials have attracted much attention in recent years because of their unique properties. Commercial or semi-commercial production of nanocellulose has been reported in recent years. Mechanical treatments for nanocellulose production are viable but highly energy-intensive. Chemical processes are well reported; however, these chemical processes are not only costly, but also cause environmental concerns and end-use related challenges. This review summarizes recent researches on enzymatic treatment of cellulose fibers for the production of cellulose nanomaterials, with focus on novel enzymatic processes with xylanase and lytic polysaccharide monooxygenases (LPMO) to enhance the efficacy of cellulase. Different enzymes are discussed, including endoglucanase, exoglucanase and xylanase, as well as LPMO, with emphasis on the accessibility and hydrolytic specificity of LPMO enzymes to cellulose fiber structures. LPMO acts in a synergistic way with cellulase to cause significant physical and chemical changes to the cellulose fiber cell-wall structures, which facilitate the nano-fibrillation of the fibers.
Collapse
Affiliation(s)
- Xin Tong
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Zhibin He
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada.
| | - Linqiang Zheng
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| | - Harshad Pande
- Domtar Corporation, 395 Blvd Maisonneuve West, Montreal, PQ H3A 1L6, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| |
Collapse
|
11
|
Haataja T, Gado JE, Nutt A, Anderson NT, Nilsson M, Momeni MH, Isaksson R, Väljamäe P, Johansson G, Payne CM, Ståhlberg J. Enzyme kinetics by GH7 cellobiohydrolases on chromogenic substrates is dictated by non-productive binding: insights from crystal structures and MD simulation. FEBS J 2023; 290:379-399. [PMID: 35997626 PMCID: PMC10087753 DOI: 10.1111/febs.16602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023]
Abstract
Cellobiohydrolases (CBHs) in the glycoside hydrolase family 7 (GH7) (EC3.2.1.176) are the major cellulose degrading enzymes both in industrial settings and in the context of carbon cycling in nature. Small carbohydrate conjugates such as p-nitrophenyl-β-d-cellobioside (pNPC), p-nitrophenyl-β-d-lactoside (pNPL) and methylumbelliferyl-β-d-cellobioside have commonly been used in colorimetric and fluorometric assays for analysing activity of these enzymes. Despite the similar nature of these compounds the kinetics of their enzymatic hydrolysis vary greatly between the different compounds as well as among different enzymes within the GH7 family. Through enzyme kinetics, crystallographic structure determination, molecular dynamics simulations, and fluorometric binding studies using the closely related compound o-nitrophenyl-β-d-cellobioside (oNPC), in this work we examine the different hydrolysis characteristics of these compounds on two model enzymes of this class, TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium. Protein crystal structures of the E212Q mutant of TrCel7A with pNPC and pNPL, and the wildtype TrCel7A with oNPC, reveal that non-productive binding at the product site is the dominating binding mode for these compounds. Enzyme kinetics results suggest the strength of non-productive binding is a key determinant for the activity characteristics on these substrates, with PcCel7D consistently showing higher turnover rates (kcat ) than TrCel7A, but higher Michaelis-Menten (KM ) constants as well. Furthermore, oNPC turned out to be useful as an active-site probe for fluorometric determination of the dissociation constant for cellobiose on TrCel7A but could not be utilized for the same purpose on PcCel7D, likely due to strong binding to an unknown site outside the active site.
Collapse
Affiliation(s)
- Topi Haataja
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Anu Nutt
- Department of Chemistry, Uppsala University, Sweden.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Nolan T Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Mikael Nilsson
- Institute of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Majid Haddad Momeni
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roland Isaksson
- Institute of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. SCIENCE ADVANCES 2022; 8:eade5155. [PMID: 36563138 PMCID: PMC9788756 DOI: 10.1126/sciadv.ade5155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Efficient depolymerization of crystalline cellulose requires cooperation between multiple cellulolytic enzymes. Through biochemical approaches, molecular dynamics (MD) simulation, and single-molecule observations using high-speed atomic force microscopy (HS-AFM), we quantify and track synergistic activity for cellobiohydrolases (CBHs) with a lytic polysaccharide monooxygenase (LPMO) from Phanerochaete chrysosporium. Increasing concentrations of LPMO (AA9D) increased the activity of a glycoside hydrolase family 6 CBH, Cel6A, whereas the activity of a family 7 CBH (Cel7D) was enhanced only at lower concentrations of AA9D. MD simulation suggests that the result of AA9D action to produce chain breaks in crystalline cellulose can oxidatively disturb the crystalline surface by disrupting hydrogen bonds. HS-AFM observations showed that AA9D increased the number of Cel7D molecules moving on the substrate surface and increased the processivity of Cel7D, thereby increasing the depolymerization performance, suggesting that AA9D not only generates chain ends but also amorphizes the crystalline surface, thereby increasing the activity of CBHs.
Collapse
Affiliation(s)
- Taku Uchiyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Physics, Structural Biology Center, and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Ishida
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Josh V. Vermaas
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8533, Japan
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- VTT Technical Research Center of Finland Ltd., Tietotie 2, P.O. Box 1000, Espoo, FI-02044 VTT, Finland
| |
Collapse
|
13
|
X-Ray Scattering Reveals Two Mechanisms of Cellulose Microfibril Degradation by Filamentous Fungi. Appl Environ Microbiol 2022; 88:e0099522. [PMID: 35997493 PMCID: PMC9469724 DOI: 10.1128/aem.00995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mushroom-forming fungi (Agaricomycetes) employ enzymatic and nonenzymatic cellulose degradation mechanisms, the latter presumably relying on Fenton-generated radicals. The effects of the two mechanisms on the cellulose microfibrils structure remain poorly understood. We examined cellulose degradation caused by litter decomposers and wood decomposers, including brown-rot and white-rot fungi and one fungus with uncertain wood decay type, by combining small- and wide-angle X-ray scattering. We also examined the effects of commercial enzymes and Fenton-generated radicals on cellulose using the same method. We detected two main degradation or modification mechanisms. The first characterized the mechanism used by most fungi and resembled enzymatic cellulose degradation, causing simultaneous microfibril thinning and decreased crystalline cellulose. The second mechanism was detected in one brown-rot fungus and one litter decomposer and was characterized by patchy amorphogenesis of crystalline cellulose without substantial thinning of the fibers. This pattern did not resemble the effect of Fenton-generated radicals, suggesting a more complex mechanism is involved in the destruction of cellulose crystallinity by fungi. Furthermore, our results showed a mismatch between decay classifications and cellulose degradation patterns and that even within litter decomposers two degradation mechanisms were found, suggesting higher functional diversity under current ecological classifications of fungi. IMPORTANCE Cellulose degradation by fungi plays a fundamental role in terrestrial carbon cycling, but the mechanisms by which fungi cope with the crystallinity of cellulose are not fully understood. We used X-ray scattering to analyze how fungi, a commercial enzyme mix, and a Fenton reaction-generated radical alter the crystalline structure of cellulose. Our data revealed two mechanisms involved in crystalline cellulose degradation by fungi: one that results in the thinning of the cellulose fibers, resembling the enzymatic degradation of cellulose, and one that involves amorphogenesis of crystalline cellulose by yet-unknown pathways, resulting in a patchy-like degradation pattern. These results pave the way to a deeper understanding of cellulose degradation and the development of novel ways to utilize crystalline cellulose.
Collapse
|
14
|
Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydr Polym 2022; 290:119526. [PMID: 35550758 DOI: 10.1016/j.carbpol.2022.119526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Within the apple pomace biorefinery cascade processing framework aiming at adding value to an agroindustrial waste, after pectin recovery, this study focused on hemicellulose. The structure of the major apple hemicellulose, xyloglucan (XyG), was assessed as a prerequisite to potential developments in industrial applications. DMSO-LiCl and 4 M KOH soluble hemicelluloses from pectin-extracted apple pomace were purified by anion exchange chromatography. XyG structure was assessed by coupling xyloglucanase and endo-β-1,4-glucanase digestions to HPAEC and MALDI-TOF MS analyses. 71.9% of pomaces hemicellulose were recovered with starch. DMSO-LiCl and 4 M KOH soluble XyG exhibited Mw of 19 and 140 kDa, respectively. Besides the XXXG, XLXG, XXLG, XXFG, XLFG and XLLG structures, novel oligosaccharides with degree of polymerization of 6-10 were observed after xyloglucanase digestion. Cellobiose and cellotriose were revealed randomly distributed in XyG backbone and were more present in DMSO-LiCl soluble XyG. Residual pomace remains a potential source of other materials.
Collapse
|
15
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
16
|
Nanoscale dynamics of cellulose digestion by the cellobiohydrolase TrCel7A. J Biol Chem 2021; 297:101029. [PMID: 34339742 PMCID: PMC8390518 DOI: 10.1016/j.jbc.2021.101029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.
Collapse
|
17
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
18
|
Anuganti M, Fu H, Ekatan S, Kumar CV, Lin Y. Kinetic Study on Enzymatic Hydrolysis of Cellulose in an Open, Inhibition-Free System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5180-5192. [PMID: 33872034 DOI: 10.1021/acs.langmuir.1c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the complexity of cellulases and the requirement of enzyme adsorption on cellulose prior to reactions, it is difficult to evaluate their reaction with a general mechanistic scheme. Nevertheless, it is of great interest to come up with an approximate analytic description of a valid model for the purpose of developing an intuitive understanding of these complex enzyme systems. Herein, we used the surface plasmonic resonance method to monitor the action of a cellobiohydrolase by itself, as well as its mixture with a synergetic endoglucanase, on the surface of a regenerated model cellulose film, under continuous flow conditions. We found a phenomenological approach by taking advantage of the long steady state of cellulose hydrolysis in the open, inhibition-free system. This provided a direct and reliable way to analyze the adsorption and reaction processes with a minimum number of fitting parameters. We investigated a generalized Langmuir-Michaelis-Menten model to describe a full set of kinetic results across a range of enzyme concentrations, compositions, and temperatures. The overall form of the equations describing the pseudo-steady-state kinetics of the flow-system shares some interesting similarities with the Michaelis-Menten equation. The use of familiar Michaelis-Menten parameters in the analysis provides a unifying framework to study cellulase kinetics. The strategy may provide a shortcut for approaching a quantitative while intuitive understanding of enzymatic degradation of cellulose from top to bottom. The open system approach and the kinetic analysis should be applicable to a variety of cellulases and reaction systems to accelerate the progress in the field.
Collapse
Affiliation(s)
- Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Stephen Ekatan
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Spiliopoulos P, Spirk S, Pääkkönen T, Viljanen M, Svedström K, Pitkänen L, Awais M, Kontturi E. Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysis. Biomacromolecules 2021; 22:1399-1405. [PMID: 33523637 PMCID: PMC8045026 DOI: 10.1021/acs.biomac.0c01625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Indexed: 12/23/2022]
Abstract
Cellulose hydrolysis is an extensively studied process due to its relevance in the fields of biofuels, chemicals production, and renewable nanomaterials. However, the direct visualization of the process accompanied with detailed scaling has not been reported because of the vast morphological alterations occurring in cellulosic fibers in typical heterogeneous (solid/liquid) hydrolytic systems. Here, we overcome this distraction by exposing hardwood cellulose nanofibers (CNFs) deposited on silica substrates to pressurized HCl gas in a solid/gas system and examine the changes in individual CNFs by atomic force microscopy (AFM). The results revealed that hydrolysis proceeds via an intermediate semi-fibrous stage before objects reminiscent of cellulose nanocrystals were formed. The length of the nanocrystal-like objects correlated well with molar mass, as analyzed by gel permeation chromatography, performed on CNF aerogels hydrolyzed under identical conditions. Meanwhile, X-ray diffraction showed a slight increase in crystallinity index as the hydrolysis proceeded. The results provide a modern visual complement to >100 years of research in cellulose degradation.
Collapse
Affiliation(s)
- Panagiotis Spiliopoulos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O Box 16300, Aalto 00076, Finland
| | - Stefan Spirk
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Graz 8010, Austria
| | - Timo Pääkkönen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O Box 16300, Aalto 00076, Finland
| | - Mira Viljanen
- Department
of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Kirsi Svedström
- Department
of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Leena Pitkänen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O Box 16300, Aalto 00076, Finland
| | - Muhammad Awais
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O Box 16300, Aalto 00076, Finland
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O Box 16300, Aalto 00076, Finland
| |
Collapse
|
20
|
Nakamura A, Kanazawa T, Furuta T, Sakurai M, Saloheimo M, Samejima M, Koivula A, Igarashi K. Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from Trichoderma reesei. J Appl Glycosci (1999) 2021; 68:19-29. [PMID: 34354542 PMCID: PMC8116176 DOI: 10.5458/jag.jag.jag-2020_0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Cellobiohydrolase I from Trichoderma reesei ( Tr Cel7A) is one of the best-studied cellulases, exhibiting high activity towards crystalline cellulose. Tryptophan residues at subsites -7 and -4 (Trp40 and Trp38 respectively) are located at the entrance and middle of the tunnel-like active site of Tr Cel7A, and are conserved among the GH family 7 cellobiohydrolases. Trp40 of Tr Cel7A is important for the recruitment of cellulose chain ends on the substrate surface, but the role of Trp38 is less clear. Comparison of the effects of W38A and W40A mutations on the binding energies of sugar units at the two subsites indicated that the contribution of Trp38 to the binding was greater than that of Trp40. In addition, the smooth gradient of binding energy was broken in W38A mutant. To clarify the importance of Trp38, the activities of Tr Cel7A WT and W38A towards crystalline cellulose and amorphous cellulose were compared. W38A was more active than WT towards amorphous cellulose, whereas its activity towards crystalline cellulose was only one-tenth of that of WT. To quantify the effect of mutation at subsite -4, we measured kinetic parameters of Tr Cel7A WT, W40A and W38A towards cello-oligosaccharides. All combinations of enzymes and substrates showed substrate inhibition, and comparison of the inhibition constants showed that the Trp38 residue increases the velocity of substrate intake ( kon for forming productive complex) from the minus side of the subsites. These results indicate a key role of Trp38 residue in processively loading the reducing-end of cellulose chain into the catalytic tunnel.
Collapse
Affiliation(s)
- Akihiko Nakamura
- 1 Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University
| | - Takashi Kanazawa
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | - Tadaomi Furuta
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | - Minoru Sakurai
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | | | - Masahiro Samejima
- 4 Faculty of Engineering, Shinshu University.,5 Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Anu Koivula
- 3 VTT Technical Research Centre of Finland Ltd
| | - Kiyohiko Igarashi
- 3 VTT Technical Research Centre of Finland Ltd.,5 Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo
| |
Collapse
|
21
|
Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts 2021. [DOI: 10.3390/catal11020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The conventional endo–exo synergism model has extensively been supported in literature, which is based on the perception that endoglucanases (EGs) expose or create accessible sites on the cellulose chain to facilitate the action of processive cellobiohydrolases (CBHs). However, there is a lack of information on why some bacterial and fungal CBHs and EGs do not exhibit synergism. Therefore, the present study evaluated and compared the synergistic relationships between cellulases from different microbial sources and provided insights into how different GH families govern synergism. The results showed that CmixA2 (a mixture of TlCel7A and CtCel5A) displayed the highest effect with BaCel5A (degree of synergy for reducing sugars and glucose of 1.47 and 1.41, respectively) in a protein mass ratio of 75–25%. No synergism was detected between CmixB1/B2 (as well as CmixC1/C2) and any of the EGs, and the combinations did not improve the overall cellulose hydrolysis. These findings further support the hypothesis that “not all endo-to exo-cellulase interactions are synergistic”, and that the extent of synergism is dependent on the composition of cellulase systems from various sources and their compatibility in the cellulase cocktail. This method of screening for maximal compatibility between exo- and endo-cellulases constitutes a critical step towards the design of improved synergistic cellulose-degrading cocktails for industrial-scale biomass degradation.
Collapse
|
22
|
A steady-state approach for inhibition of heterogeneous enzyme reactions. Biochem J 2020; 477:1971-1982. [PMID: 32391552 DOI: 10.1042/bcj20200083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.e. the opposite limit compared with the conventional Michaelis-Menten framework. This inverse condition is practical for insoluble substrates and elucidates how the inhibitor reduces enzyme activity through binding to the substrate. We claim that this type of inhibition is common for interfacial enzyme reactions because substrate accessibility is low, and we show that it can be analyzed by experiments and rate equations that are analogous to the conventional approach, except that the roles of enzyme and substrate have been swapped. To illustrate the approach, we investigated the major cellulases from Trichoderma reesei (Cel6A and Cel7A) acting on insoluble cellulose. As model inhibitors, we used catalytically inactive variants of Cel6A and Cel7A. We made so-called inverse Michaelis-Menten curves at different concentrations of inhibitors and found that a new rate equation accounted well for the data. In most cases, we found a mixed type of surface-site inhibition mechanism, and this probably reflected that the inhibitor both competed with the enzyme for the productive binding-sites (competitive inhibition) and hampered the processive movement on the surface (uncompetitive inhibition). These results give new insights into the complex interplay of Cel7A and Cel6A on cellulose and the approach may be applicable to other heterogeneous enzyme reactions.
Collapse
|
23
|
Zhang Y, Xu S, Ji F, Hu Y, Gu Z, Xu B. Plant cell wall hydrolysis process reveals structure-activity relationships. PLANT METHODS 2020; 16:147. [PMID: 33292382 PMCID: PMC7640438 DOI: 10.1186/s13007-020-00691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent interest in Populus as a source of renewable energy, combined with its numerous available pretreatment methods, has enabled further research on structural modification and hydrolysis. To improve the biodegradation efficiency of biomass, a better understanding of the relationship between its macroscopic structures and enzymatic process is important. RESULTS This study investigated mutant cell wall structures compared with wild type on a molecular level. Furthermore, a novel insight into the structural dynamics occurring on mutant biomass was assessed in situ and in real time by functional Atomic Force Microscopy (AFM) imaging. High-resolution AFM images confirmed that genetic pretreatment effectively inhibited the production of irregular lignin. The average roughness values of the wild type are 78, 60, and 30 nm which are much higher than that of the mutant cell wall, approximately 10 nm. It is shown that the action of endoglucanases would expose pure crystalline cellulose with more cracks for easier hydrolysis by cellobiohydrolase I (CBHI). Throughout the entire CBHI hydrolytic process, when the average roughness exceeded 3 nm, the hydrolysis mode consisted of a peeling action. CONCLUSION Functional AFM imaging is helpful for biomass structural characterization. In addition, the visualization of the enzymatic hydrolysis process will be useful to explore the cell wall structure-activity relationships.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210016, China.
| | - Shengnan Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210016, China
| | - Fan Ji
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210016, China
| | - Yubing Hu
- National Special Superfine Powder Engineering Research Center of China, Nanjing University of Science & Technology, Nanjing, 210014, China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210016, China
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
24
|
Digaitis R, Thybring EE, Thygesen LG. Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis: Part II. Biotechnol Prog 2020; 37:e3083. [PMID: 32935452 PMCID: PMC7988658 DOI: 10.1002/btpr.3083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Lignocellulose breakdown in biorefineries is facilitated by enzymes and physical forces. Enzymes degrade and solubilize accessible lignocellulosic polymers, primarily on fiber surfaces, and make fibers physically weaker. Meanwhile physical forces acting during mechanical agitation induce tearing and cause rupture and attrition of the fibers, leading to liquefaction, that is, a less viscous hydrolysate that can be further processed in industrial settings. This study aims at understanding how mechanical agitation during enzymatic saccharification can be used to promote fiber attrition. The effects of reaction conditions, such as substrate and enzyme concentration on fiber attrition rate and hydrolysis yield were investigated. To gain insight into the fiber attrition mechanism, enzymatic hydrolysis was compared to hydrolysis by use of hydrochloric acid. Results show that fiber attrition depends on several factors concerning reactor design and operation including drum diameter, rotational speed, mixing schedule, and concentrations of fibers and enzymes. Surprisingly, different fiber attrition patterns during enzymatic and acid hydrolysis were found for similar mixing schedules. Specifically, for tumbling mixing, slow continuous mixing appears to function better than faster, intermittent mixing even for the same total number of drum revolutions. The findings indicate that reactor design and operation as well as hydrolysis conditions are key to process optimization and that detailed insights are needed to obtain fast liquefaction without sacrificing saccharification yields.
Collapse
Affiliation(s)
- Ramūnas Digaitis
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.,Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Emil Engelund Thybring
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
25
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
26
|
Nakamura A, Ishiwata D, Visootsat A, Uchiyama T, Mizutani K, Kaneko S, Murata T, Igarashi K, Iino R. Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. J Biol Chem 2020; 295:14606-14617. [PMID: 32816991 PMCID: PMC7586223 DOI: 10.1074/jbc.ra120.014792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/15/2020] [Indexed: 01/09/2023] Open
Abstract
Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan.
| | - Daiki Ishiwata
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Akasit Visootsat
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Taku Uchiyama
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryota Iino
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
27
|
Abstract
Some cellulases exhibit “processivity”: the ability to degrade crystalline cellulose through successive hydrolytic catalytic reactions without the release of the enzyme from the substrate surface. We previously observed the movement of fungal processive cellulases by high-speed atomic force microscopy, and here, we use the same technique to directly observe the processive movement of bacterial cellobiohydrolases settling a long-standing controversy. Although fungal and bacterial processive cellulases have completely different protein folds, they have evolved to acquire processivity through the same strategy of adding subsites to extend the substrate-binding site and forming a tunnel-like active site by increasing the number of loops covering the active site. This represents an example of protein-level convergent evolution to acquire the same functions from different ancestors. Cellulose is the most abundant biomass on Earth, and many microorganisms depend on it as a source of energy. It consists mainly of crystalline and amorphous regions, and natural degradation of the crystalline part is highly dependent on the degree of processivity of the degrading enzymes (i.e., the extent of continuous hydrolysis without detachment from the substrate cellulose). Here, we report high-speed atomic force microscopic (HS-AFM) observations of the movement of four types of cellulases derived from the cellulolytic bacteria Cellulomonas fimi on various insoluble cellulose substrates. The HS-AFM images clearly demonstrated that two of them (CfCel6B and CfCel48A) slide on crystalline cellulose. The direction of processive movement of CfCel6B is from the nonreducing to the reducing end of the substrate, which is opposite that of processive cellulase Cel7A of the fungus Trichoderma reesei (TrCel7A), whose movement was first observed by this technique, while CfCel48A moves in the same direction as TrCel7A. When CfCel6B and TrCel7A were mixed on the same substrate, “traffic accidents” were observed, in which the two cellulases blocked each other’s progress. The processivity of CfCel6B was similar to those of fungal family 7 cellulases but considerably higher than those of fungal family 6 cellulases. The results indicate that bacteria utilize family 6 cellulases as high-processivity enzymes for efficient degradation of crystalline cellulose, whereas family 7 enzymes have the same function in fungi. This is consistent with the idea of convergent evolution of processive cellulases in fungi and bacteria to achieve similar functionality using different protein foldings.
Collapse
|
28
|
Ding SY, Bayer EA. Understanding Cellulosome Interaction with Cellulose by High-Resolution Imaging. ACS CENTRAL SCIENCE 2020; 6:1034-1036. [PMID: 32724836 PMCID: PMC7379103 DOI: 10.1021/acscentsci.0c00662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Shi-You Ding
- Department
of Plant Biology, Great Lakes Bioenergy Research Center, Michigan State University, East Lansing 48824-1312, Michigan, United States
| | - Edward A. Bayer
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7610001, Israel
- Faculty
of Natural Sciences, Life Sciences, Ben-Gurion
University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
29
|
Enzymatic Hydrolysis of Softwood Derived Paper Sludge by an In Vitro Recombinant Cellulase Cocktail for the Production of Fermentable Sugars. Catalysts 2020. [DOI: 10.3390/catal10070775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paper sludge is an attractive biomass feedstock for bioconversion to ethanol due to its low cost and the lack of pretreatment required for its bioprocessing. This study assessed the use of a recombinant cellulase cocktail (mono-components: S. cerevisiae-derived PcBGL1B (BGL), TeCel7A (CBHI), ClCel6A (CBHII) and TrCel5A (EGII) mono-component cellulase enzymes) for the efficient saccharification of softwood-derived paper sludge to produce fermentable sugars. The paper sludge mainly contained 74.3% moisture and 89.7% (per dry mass (DM)) glucan with a crystallinity index of 91.5%. The optimal protein ratio for paper sludge hydrolysis was observed at 9.4: 30.2: 30.2: 30.2% for BGL: CBHI: CBHII: EGII. At a protein loading of 7.5 mg/g DW paper sludge, the yield from hydrolysis was approximately 80%, based on glucan, with scanning electron microscopy micrographs indicating a significant alteration in the microfibril size (length reduced from ≥ 2 mm to 93 µm) of the paper sludge. The paper sludge hydrolysis potential of the Opt CelMix (formulated cellulase cocktail) was similar to the commercial Cellic CTec2® and Celluclast® 1.5 L cellulase preparations and better than Viscozyme® L. Low enzyme loadings (15 mg/g paper sludge) of the Opt CelMix and solid loadings ranging between 1 to 10% (w/v) rendered over 80% glucan conversion. The high glucose yields attained on the paper sludge by the low enzyme loading of the Opt CelMix demonstrated the value of enzyme cocktail optimisation on specific substrates for efficient cellulose conversion to fermentable sugars.
Collapse
|
30
|
Floudas D, Bentzer J, Ahrén D, Johansson T, Persson P, Tunlid A. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME JOURNAL 2020; 14:2046-2059. [PMID: 32382073 PMCID: PMC7368018 DOI: 10.1038/s41396-020-0667-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Abstract
Litter decomposing Agaricales play key role in terrestrial carbon cycling, but little is known about their decomposition mechanisms. We assembled datasets of 42 gene families involved in plant-cell-wall decomposition from seven newly sequenced litter decomposers and 35 other Agaricomycotina members, mostly white-rot and brown-rot species. Using sequence similarity and phylogenetics, we split the families into phylogroups and compared their gene composition across nutritional strategies. Subsequently, we used Raman spectroscopy to examine the ability of litter decomposers, white-rot fungi, and brown-rot fungi to decompose crystalline cellulose. Both litter decomposers and white-rot fungi share the enzymatic cellulose decomposition, whereas brown-rot fungi possess a distinct mechanism that disrupts cellulose crystallinity. However, litter decomposers and white-rot fungi differ with respect to hemicellulose and lignin degradation phylogroups, suggesting adaptation of the former group to the litter environment. Litter decomposers show high phylogroup diversity, which is indicative of high functional versatility within the group, whereas a set of white-rot species shows adaptation to bulk-wood decomposition. In both groups, we detected species that have unique characteristics associated with hitherto unknown adaptations to diverse wood and litter substrates. Our results suggest that the terms white-rot fungi and litter decomposers mask a much larger functional diversity.
Collapse
Affiliation(s)
- Dimitrios Floudas
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.
| | - Johan Bentzer
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
31
|
Røjel N, Kari J, Sørensen TH, Badino SF, Morth JP, Schaller K, Cavaleiro AM, Borch K, Westh P. Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. J Biol Chem 2020; 295:1454-1463. [PMID: 31848226 PMCID: PMC7008363 DOI: 10.1074/jbc.ra119.011420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system. We studied WT Cel7A and several variants in which one or two of four highly conserved Trp residues in the binding tunnel had been replaced with Ala. WT Cel7A had on/off-rate constants of 1 × 105 m-1 s-1 and 5 × 10-3 s-1, respectively, reflecting the slow dynamics of a solid, polymeric ligand. Especially the off-rate constant was many orders of magnitude lower than typical values for small, soluble ligands. Binding rate and strength both were typically lower for the Trp variants, but effects of the substitutions were moderate and sometimes negligible. Hence, we propose that lowering the activation barrier for complexation is not a major driving force for the high conservation of the Trp residues. Using so-called Φ-factor analysis, we analyzed the kinetic and thermodynamic results for the variants. The results of this analysis suggested a transition state for complexation and decomplexation in which the reducing end of the ligand is close to the tunnel entrance (near Trp-40), whereas the rest of the binding tunnel is empty. We propose that this structure defines the highest free-energy barrier of the overall catalytic cycle and hence governs the turnover rate of this industrially important enzyme.
Collapse
Affiliation(s)
- Nanna Røjel
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Silke F Badino
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kay Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, DK-2800 Kgs. Lyngby Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
32
|
Mudinoor AR, Goodwin PM, Rao RU, Karuna N, Hitomi A, Nill J, Jeoh T. Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:10. [PMID: 31988662 PMCID: PMC6969433 DOI: 10.1186/s13068-020-1649-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/02/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Molecular-scale mechanisms of the enzymatic breakdown of cellulosic biomass into fermentable sugars are still poorly understood, with a need for independent measurements of enzyme kinetic parameters. We measured binding times of cellobiohydrolase Trichoderma reesei Cel7A (Cel7A) on celluloses using wild-type Cel7A (WTintact), the catalytically deficient mutant Cel7A E212Q (E212Qintact) and their proteolytically isolated catalytic domains (CD) (WTcore and E212Qcore, respectively). The binding time distributions were obtained from time-resolved, super-resolution images of fluorescently labeled enzymes on cellulose obtained with total internal reflection fluorescence microscopy. RESULTS Binding of WTintact and E212Qintact on the recalcitrant algal cellulose (AC) showed two bound populations: ~ 85% bound with shorter residence times of < 15 s while ~ 15% were effectively immobilized. The similarity between binding times of the WT and E212Q suggests that the single point mutation in the enzyme active site does not affect the thermodynamics of binding of this enzyme. The isolated catalytic domains, WTcore and E212Qcore, exhibited three binding populations on AC: ~ 75% bound with short residence times of ~ 15 s (similar to the intact enzymes), ~ 20% bound for < 100 s and ~ 5% that were effectively immobilized. CONCLUSIONS Cel7A binding to cellulose is driven by the interactions between the catalytic domain and cellulose. The cellulose-binding module (CBM) and linker increase the affinity of Cel7A to cellulose likely by facilitating recognition and complexation at the substrate interface. The increased affinity of Cel7A to cellulose by the CBM and linker comes at the cost of increasing the population of immobilized enzyme on cellulose. The residence time (or inversely the dissociation rates) of Cel7A on cellulose is not catalysis limited.
Collapse
Affiliation(s)
- Akshata R. Mudinoor
- Biological and Agricultural Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
| | - Peter M. Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Raghavendra U. Rao
- Gracenote, Inc., 2000 Powell Street, Suite 1500, Emeryville, CA 94608 USA
| | - Nardrapee Karuna
- Biological and Agricultural Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
- Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000 Thailand
| | - Alex Hitomi
- Biological and Agricultural Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
| | - Jennifer Nill
- Chemical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Tina Jeoh
- Biological and Agricultural Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
| |
Collapse
|
33
|
Basit A, Tajwar R, Sadaf S, Zhang Y, Akhtar MW. Improvement in activity of cellulase Cel12A of Thermotoga neapolitana by error prone PCR. J Biotechnol 2019; 306:118-124. [DOI: 10.1016/j.jbiotec.2019.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/15/2022]
|
34
|
Abstract
Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.
Collapse
|
35
|
Yang Y, Liu Y, Ning L, Wang L, Mu Y, Li W. Binding Process and Free Energy Characteristics of Cellulose Chain into the Catalytic Domain of Cellobiohydrolase TrCel7A. J Phys Chem B 2019; 123:8853-8860. [PMID: 31557037 DOI: 10.1021/acs.jpcb.9b05023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It was observed in experiments that the catalytic domain (CD) of Trichoderma reesei Cel7A (TrCel7A) hydrolyzes crystalline cellulose in a processive manner, but the underlying binding mechanism is still unknown. Here, through replica-exchange molecular dynamics simulations, we find that the loading and sucking-in process of the cellulose chain into CD is entropy-driven and enthalpy-unfavorable, which firmly relate to the desolvation of the binding channel of CD. During the loading process, hydrophobic interactions play a dominant role because several aromatic residues have been identified to guide the cellulose chain processing. At the active site, a transition from enthalpy- to entropy-driven is detected for the driving force. Such a finding reveals the indispensability of the catalytic reaction of the glycosidic bond to provide the energy to drive the movements of the cellulose chain. Our study reveals the interaction pictures between the cellulose chain and TrCel7A at the atomic level, which helps better understand the catalytic mechanism of TrCel7A.
Collapse
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , China
| | | | - Lulu Ning
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | | | - Yuguang Mu
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | | |
Collapse
|
36
|
Ahamed F, Song HS, Ooi CW, Ho YK. Modelling heterogeneity in cellulose properties predicts the slowdown phenomenon during enzymatic hydrolysis. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Vu VV, Hangasky JA, Detomasi TC, Henry SJW, Ngo ST, Span EA, Marletta MA. Substrate selectivity in starch polysaccharide monooxygenases. J Biol Chem 2019; 294:12157-12166. [PMID: 31235519 DOI: 10.1074/jbc.ra119.009509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Indexed: 11/06/2022] Open
Abstract
Degradation of polysaccharides is central to numerous biological and industrial processes. Starch-active polysaccharide monooxygenases (AA13 PMOs) oxidatively degrade starch and can potentially be used with industrial amylases to convert starch into a fermentable carbohydrate. The oxidative activities of the starch-active PMOs from the fungi Neurospora crassa and Myceliophthora thermophila, NcAA13 and MtAA13, respectively, on three different starch substrates are reported here. Using high-performance anion-exchange chromatography coupled with pulsed amperometry detection, we observed that both enzymes have significantly higher oxidative activity on amylose than on amylopectin and cornstarch. Analysis of the product distribution revealed that NcAA13 and MtAA13 more frequently oxidize glycosidic linkages separated by multiples of a helical turn consisting of six glucose units on the same amylose helix. Docking studies identified important residues that are involved in amylose binding and suggest that the shallow groove that spans the active-site surface of AA13 PMOs favors the binding of helical amylose substrates over nonhelical substrates. Truncations of NcAA13 that removed its native carbohydrate-binding module resulted in diminished binding to amylose, but truncated NcAA13 still favored amylose oxidation over other starch substrates. These findings establish that AA13 PMOs preferentially bind and oxidize the helical starch substrate amylose. Moreover, the product distributions of these two enzymes suggest a unique interaction with starch substrates.
Collapse
Affiliation(s)
- Van V Vu
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
| | - John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Tyler C Detomasi
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Skylar J W Henry
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Elise A Span
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720; Department of Chemistry, University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
38
|
Szabo B, Horvath T, Schad E, Murvai N, Tantos A, Kalmar L, Chemes LB, Han KH, Tompa P. Intrinsically Disordered Linkers Impart Processivity on Enzymes by Spatial Confinement of Binding Domains. Int J Mol Sci 2019; 20:ijms20092119. [PMID: 31032817 PMCID: PMC6540235 DOI: 10.3390/ijms20092119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Processivity is common among enzymes and mechanochemical motors that synthesize, degrade, modify or move along polymeric substrates, such as DNA, RNA, polysaccharides or proteins. Processive enzymes can make multiple rounds of modification without releasing the substrate/partner, making their operation extremely effective and economical. The molecular mechanism of processivity is rather well understood in cases when the enzyme structurally confines the substrate, such as the DNA replication factor PCNA, and also when ATP energy is used to confine the succession of molecular events, such as with mechanochemical motors. Processivity may also result from the kinetic bias of binding imposed by spatial confinement of two binding elements connected by an intrinsically disordered (ID) linker. (2) Method: By statistical physical modeling, we show that this arrangement results in processive systems, in which the linker ensures an optimized effective concentration around novel binding site(s), favoring rebinding over full release of the polymeric partner. (3) Results: By analyzing 12 such proteins, such as cellulase, and RNAse-H, we illustrate that in these proteins linker length and flexibility, and the kinetic parameters of binding elements, are fine-tuned for optimizing processivity. We also report a conservation of structural disorder, special amino acid composition of linkers, and the correlation of their length with step size. (4) Conclusion: These observations suggest a unique type of entropic chain function of ID proteins, that may impart functional advantages on diverse enzymes in a variety of biological contexts.
Collapse
Affiliation(s)
- Beata Szabo
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Tamas Horvath
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Eva Schad
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Nikoletta Murvai
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Agnes Tantos
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Lajos Kalmar
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Lucía Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, Buenos Aires 1650, Argentina.
| | - Kyou-Hoon Han
- Genome Editing Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Nano and Bioinformatics, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Peter Tompa
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
- VIB Center for Structural Biology, Vrije Univresiteit Brussel, 1050, Belgium.
| |
Collapse
|
39
|
Ezaki T, Nishinari K, Samejima M, Igarashi K. Bridging the Micro-Macro Gap between Single-Molecular Behavior and Bulk Hydrolysis Properties of Cellulase. PHYSICAL REVIEW LETTERS 2019; 122:098102. [PMID: 30932525 DOI: 10.1103/physrevlett.122.098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The microscopic kinetics of enzymes at the single-molecule level often deviate considerably from those expected from bulk biochemical experiments. Here, we propose a coarse-grained-model approach to bridge this gap, focusing on the unexpectedly slow bulk hydrolysis of crystalline cellulose by cellulase, which constitutes a major obstacle to mass production of biofuels and biochemicals. Building on our previous success in tracking the movements of single molecules of cellulase on crystalline cellulose, we develop a mathematical description of the collective motion and function of enzyme molecules hydrolyzing the surface of cellulose. Model simulations robustly explained the experimental findings at both the microscopic and macroscopic levels and revealed a hitherto-unknown mechanism causing a considerable slowdown of the reaction, which we call the crowding-out effect. The size of the cellulase molecule impacted significantly on the collective dynamics, whereas the rate of molecular motion on the surface did not.
Collapse
Affiliation(s)
- Takahiro Ezaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsuhiro Nishinari
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo FI-02044, Finland
| |
Collapse
|
40
|
Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus 2019; 9:20180060. [PMID: 30842868 DOI: 10.1098/rsfs.2018.0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Essentially all living systems produce complex carbohydrates as an energy source, structural component, protective coat or adhesive for cell attachment. Many polysaccharides are displayed on the cell surface or are threaded through proteinaceous tunnels for degradation. Dictated by their chemical composition and mode of polymerization, the physical properties of complex carbohydrates differ substantially, from amphipathic water-insoluble polymers to highly hydrated hydrogel-forming macromolecules. Accordingly, diverse recognition and translocation mechanisms evolved to transport polysaccharides to their final destinations. This review will summarize and compare diverse polysaccharide transport mechanisms implicated in the biosynthesis and degradation of cell surface polymers in pro- and eukaryotes.
Collapse
Affiliation(s)
- Jochen Zimmer
- University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22903, USA
| |
Collapse
|
41
|
Coniglio RO, Fonseca MI, Díaz GV, Ontañon O, Ghio S, Campos E, Zapata PD. Optimization of cellobiohydrolase production and secretome analysis of Trametes villosa LBM 033 suitable for lignocellulosic bioconversion. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1598107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Romina O. Coniglio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - María I. Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Gabriela V. Díaz
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Ornella Ontañon
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Silvina Ghio
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Eleonora Campos
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Pedro D. Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| |
Collapse
|
42
|
Nakamura A, Iino R. Visualization of Functional Structure and Kinetic Dynamics of Cellulases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:201-217. [PMID: 30484250 DOI: 10.1007/978-981-13-2158-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Akihiko Nakamura
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
- Department of Functional Molecular Science, School of Physical Sciences, Kanagawa, Japan.
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Kanagawa, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Aichi, Japan
| |
Collapse
|
43
|
|
44
|
Midorikawa GEO, Correa CL, Noronha EF, Filho EXF, Togawa RC, Costa MMDC, Silva-Junior OB, Grynberg P, Miller RNG. Analysis of the Transcriptome in Aspergillus tamarii During Enzymatic Degradation of Sugarcane Bagasse. Front Bioeng Biotechnol 2018; 6:123. [PMID: 30280097 PMCID: PMC6153317 DOI: 10.3389/fbioe.2018.00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
The production of bioethanol from non-food agricultural residues represents an alternative energy source to fossil fuels for incorporation into the world's economy. Within the context of bioconversion of plant biomass into renewable energy using improved enzymatic cocktails, Illumina RNA-seq transcriptome profiling was conducted on a strain of Aspergillus tamarii, efficient in biomass polysaccharide degradation, in order to identify genes encoding proteins involved in plant biomass saccharification. Enzyme production and gene expression was compared following growth in liquid and semi-solid culture with steam-exploded sugarcane bagasse (SB) (1% w/v) and glucose (1% w/v) employed as contrasting sole carbon sources. Enzyme production following growth in liquid minimum medium supplemented with SB resulted in 0.626 and 0.711 UI.mL-1 xylanases after 24 and 48 h incubation, respectively. Transcriptome profiling revealed expression of over 7120 genes, with groups of genes modulated according to solid or semi-solid culture, as well as according to carbon source. Gene ontology analysis of genes expressed following SB hydrolysis revealed enrichment in xyloglucan metabolic process and xylan, pectin and glucan catabolic process, indicating up-regulation of genes involved in xylanase secretion. According to carbohydrate-active enzyme (CAZy) classification, 209 CAZyme-encoding genes were identified with significant differential expression on liquid or semi-solid SB, in comparison to equivalent growth on glucose as carbon source. Up-regulated CAZyme-encoding genes related to cellulases (CelA, CelB, CelC, CelD) and hemicellulases (XynG1, XynG2, XynF1, XylA, AxeA, arabinofuranosidase) showed up to a 10-fold log2FoldChange in expression levels. Five genes from the AA9 (GH61) family, related to lytic polysaccharide monooxygenase (LPMO), were also identified with significant expression up-regulation. The transcription factor gene XlnR, involved in induction of hemicellulases, showed up-regulation on liquid and semi-solid SB culture. Similarly, the gene ClrA, responsible for regulation of cellulases, showed increased expression on liquid SB culture. Over 150 potential transporter genes were also identified with increased expression on liquid and semi-solid SB culture. This first comprehensive analysis of the transcriptome of A. tamarii contributes to our understanding of genes and regulatory systems involved in cellulose and hemicellulose degradation in this fungus, offering potential for application in improved enzymatic cocktail development for plant biomass degradation in biorefinery applications.
Collapse
Affiliation(s)
| | - Camila Louly Correa
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, Brazil
| | | | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, Brazil
| | | |
Collapse
|
45
|
Rabinovich ML, Melnik MS, Herner ML, Voznyi YV, Vasilchenko LG. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Biotechnol J 2018; 14:e1700712. [PMID: 29781240 DOI: 10.1002/biot.201700712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes nine subsites for β-d-glucose units, seven of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent kcat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) kcat /Km for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG4 ). Interaction of substrates with the subsites -6 and -5 proximal to the nonconserved Gln101 residue in HjCel7A decreases Km,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with Kd ≈2-9 nM via CBM and CD that captures six terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Maria S Melnik
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Mikhail L Herner
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Yakov V Voznyi
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lilia G Vasilchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
46
|
Zhang KD, Li W, Wang YF, Zheng YL, Tan FC, Ma XQ, Yao LS, Bayer EA, Wang LS, Li FL. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Biomacromolecules 2018; 19:1686-1696. [DOI: 10.1021/acs.biomac.8b00340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun-Di Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Ye-Fei Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Yan-Lin Zheng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, People’s Republic of China
| | - Fang-Cheng Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, People’s Republic of China
| | - Li-Shan Yao
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lu-Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| |
Collapse
|
47
|
Effects of mutations of non-catalytic aromatic residues on substrate specificity of Bacillus licheniformis endocellulase cel12A. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Silveira RL, Skaf MS. Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase. Phys Chem Chem Phys 2018; 20:7498-7507. [PMID: 29488531 DOI: 10.1039/c8cp00101d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cellobiohydrolases (CBHs) are key enzymes for the saccharification of cellulose and play major roles in industrial settings for biofuel production. The catalytic core domain of these enzymes exhibits a long and narrow binding tunnel capable of binding glucan chains from crystalline cellulose and processively hydrolyze them. The binding cleft is topped by a set of loops, which are believed to play key roles in substrate binding and cleavage processivity. Here, we present an analysis of the loop motions of the Trichoderma reesei Cel7A catalytic core domain (TrCel7A) using conventional and accelerated molecular dynamics simulations. We observe that the loops exhibit highly coupled fluctuations and cannot move independently of each other. In the absence of a substrate, the characteristic large amplitude dynamics of TrCel7A consists of breathing motions, where the loops undergo open-and-close fluctuations. Upon substrate binding, the open-close fluctuations of the loops are quenched and one of the loops moves parallel to the binding site, possibly to allow processive motion along the glucan chain. Using microsecond accelerated molecular dynamics, we observe large-scale fluctuations of the loops (up to 37 Å) and the entire exposure of the TrCel7A binding site in the absence of the substrate, resembling an endoglucanase. These results suggest that the initial CBH-substrate contact and substrate recognition by the enzyme are similar to that of endoglucanases and, once bound to the substrate, the loops remain closed for proper enzymatic activity.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- Institute of Chemistry, University of Campinas, Cx. P. 6154, Campinas, 13084-862, SP, Brazil.
| | | |
Collapse
|
49
|
Abstract
Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure–activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements. Cellobiohydrolases (CBHs) are critical for natural and industrial biomass degradation but their structure–activity relationships are not fully understood. Here, the authors present the biochemical and structural characterization of two CBHs, identifying protein regions that confer enhanced CBH activity.
Collapse
|
50
|
Uchihashi T, Scheuring S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 2018; 1862:229-240. [DOI: 10.1016/j.bbagen.2017.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
|