1
|
Rytkönen E, Rouvinen J, Jänis J. Unlocking lignin valorisation: Oxyfunctionalization of lignin dimer model compounds by unspecific peroxygenases. Enzyme Microb Technol 2025; 189:110661. [PMID: 40393080 DOI: 10.1016/j.enzmictec.2025.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Lignin is an abundantly available biopolymer composed of three structural units, linked by a complex network of bonds, including a high proportion of β-O-4 ether linkages. As a renewable carbon source, it can be depolymerised into a variety of small aromatic compounds such as monophenols. Enzymatic bioprocessing offers a promising alternative to traditional chemical lignin degradation strategies, potentially producing value-added compounds, such as monoaromatics. Unspecific peroxygenases (UPOs) are promising enzymes for lignin bioprocessing due to their ability to catalyse aromatic oxidation and demethylation reactions, which are critical for lignin valorisation. In this study, thirteen different UPOs were evaluated for their oxidation potential with two lignin dimer model compounds, guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether. Both compounds were successfully processed, yielding a wide range of products, e.g., via Cα-oxidation, demethylation, and bond cleavage reactions. Notably, the cleavages frequently occurred at the Cβ-O ether bond, a major linkage between the lignin monomers, being beneficial for lignin degradation and subsequent valorisation. Some of the identified products, such as vanillin, are of interest either as valuable end-products or as precursors for further conversion into specialty chemicals.
Collapse
Affiliation(s)
- Essi Rytkönen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland
| | - Juha Rouvinen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland
| | - Janne Jänis
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland.
| |
Collapse
|
2
|
Wang C, Xiao J. Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes. Acc Chem Res 2025; 58:714-731. [PMID: 39982136 PMCID: PMC11883747 DOI: 10.1021/acs.accounts.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O2. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.
Collapse
Affiliation(s)
- Chao Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface
and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
3
|
Rani MHS, Nandana RK, Khatun A, Brindha V, Midhun D, Gowtham P, Mani SSD, Kumar SR, Aswini A, Muthukumar S. Three strategy rules of filamentous fungi in hydrocarbon remediation: an overview. Biodegradation 2024; 35:833-861. [PMID: 38733427 DOI: 10.1007/s10532-024-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.
Collapse
Affiliation(s)
| | - Ramesh Kumar Nandana
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Alisha Khatun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Velumani Brindha
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Durairaj Midhun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Ponnusamy Gowtham
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | | | | | - Anguraj Aswini
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Sugumar Muthukumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| |
Collapse
|
4
|
Shen Q, Yan J, Han Y, Zhang Z, Li H, Kong D, Shi J, Cui C, Zhang W. Peroxygenase-Enabled Reductive Kinetic Resolution for the Enantioenrichment of Organoperoxides. Angew Chem Int Ed Engl 2024; 63:e202401590. [PMID: 38477082 DOI: 10.1002/anie.202401590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Enantiomerically pure organoperoxides serve as valuable precursors in organic transformations. Herein, we present the first examples of unspecific peroxygenase catalyzed kinetic resolution of racemic organoperoxides through asymmetric reduction. Through meticulous investigation of the reaction conditions, it is shown that the unspecific peroxygenase from Agrocybe aegerita (AaeUPO) exhibits robust catalytic activity in the kinetic resolution reactions of the model substrate with turnover numbers up to 60000 and turnover frequency of 5.6 s-1. Various aralkyl organoperoxides were successfully resolved by AaeUPO, achieving excellent enantioselectivities (e.g., up to 99 % ee for the (S)-organoperoxide products). Additionally, we screened commercial peroxygenase variants to obtain the organoperoxides with complementary chirality, with one mutant yielding the (R)-products. While unspecific peroxygenases have been extensively demonstrated as a powerful oxidative catalysts, this study highlights their usefulness in catalyzing the reduction of organoperoxides and providing versatile chiral synthons.
Collapse
Affiliation(s)
- Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juzhang Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Yuchen Han
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zaoxiao Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Dulin Kong
- School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chengsen Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| |
Collapse
|
5
|
Han X, Chen F, Li H, Ge R, Shen Q, Duan P, Sheng X, Zhang W. Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase. Nat Commun 2024; 15:1235. [PMID: 38336996 PMCID: PMC10858125 DOI: 10.1038/s41467-024-45545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Han
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Qianqian Shen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
6
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|
7
|
Duran K, Magnin J, America AH, Peng M, Hilgers R, de Vries RP, Baars JJ, van Berkel WJ, Kuyper TW, Kabel MA. The secretome of Agaricus bisporus: Temporal dynamics of plant polysaccharides and lignin degradation. iScience 2023; 26:107087. [PMID: 37426348 PMCID: PMC10329178 DOI: 10.1016/j.isci.2023.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Despite substantial lignocellulose conversion during mycelial growth, previous transcriptome and proteome studies have not yet revealed how secretomes from the edible mushroom Agaricus bisporus develop and whether they modify lignin models in vitro. To clarify these aspects, A. bisporus secretomes collected throughout a 15-day industrial substrate production and from axenic lab-cultures were subjected to proteomics, and tested on polysaccharides and lignin models. Secretomes (day 6-15) comprised A. bisporus endo-acting and substituent-removing glycoside hydrolases, whereas β-xylosidase and glucosidase activities gradually decreased. Laccases appeared from day 6 onwards. From day 10 onwards, many oxidoreductases were found, with numerous multicopper oxidases (MCO), aryl alcohol oxidases (AAO), glyoxal oxidases (GLOX), a manganese peroxidase (MnP), and unspecific peroxygenases (UPO). Secretomes modified dimeric lignin models, thereby catalyzing syringylglycerol-β-guaiacyl ether (SBG) cleavage, guaiacylglycerol-β-guaiacyl ether (GBG) polymerization, and non-phenolic veratrylglycerol-β-guaiacyl ether (VBG) oxidation. We explored A. bisporus secretomes and insights obtained can help to better understand biomass valorization.
Collapse
Affiliation(s)
- Katharina Duran
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Joris Magnin
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Antoine H.P. America
- Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roelant Hilgers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Johan J.P. Baars
- CNC Grondstoffen, Driekronenstraat 6, 6596 MA Milsbeek, the Netherlands
| | - Willem J.H. van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
8
|
Grimm C, Pompei S, Egger K, Fuchs M, Kroutil W. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Adv 2023; 13:5770-5777. [PMID: 36816070 PMCID: PMC9930637 DOI: 10.1039/d2ra08005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lignin-derived aryl methyl ethers (e.g. coniferyl alcohol, ferulic acid) are expected to be a future carbon source for chemistry. The well-known P450 dependent biocatalytic O-demethylation of these aryl methyl ethers is prone to side product formation especially for the oxidation sensitive catechol products which get easily oxidized in the presence of O2. Alternatively, biocatalytic demethylation using cobalamin dependent enzymes may be used under anaerobic conditions, whereby two proteins, namely a methyltransferase and a carrier protein are required. To make this approach applicable for preparative transformations, fusion proteins were designed connecting the cobalamin-dependent methyltransferase (MT) with the corrinoid-binding protein (CP) from Desulfitobacterium hafniense by variable glycine linkers. From the proteins created, the fusion enzyme MT-L5-CP with the shortest linker performed best of all fusion enzymes investigated showing comparable and, in some aspects, even better performance than the separated proteins. The fusion enzymes provided several advantages like that the cobalamin cofactor loading step required originally for the CP could be skipped enabling a significantly simpler protocol. Consequently, the biocatalytic demethylation was performed using Schlenk conditions allowing the O-demethylation e.g. of the monolignol coniferyl alcohol on a 25 mL scale leading to 75% conversion. The fusion enzyme represents a promising starting point to be evolved for alternative demethylation reactions to diversify natural products and to valorize lignin.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Kristina Egger
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
9
|
Lu G, Yepremyen A, Tamim K, Chen Y, Brook MA. Ascorbic Acid-Modified Silicones: Crosslinking and Antioxidant Delivery. Polymers (Basel) 2022; 14:polym14225040. [PMID: 36433164 PMCID: PMC9693009 DOI: 10.3390/polym14225040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C is widely used as an antioxidant in biological systems. The very high density of functional groups makes it challenging to selectively tether this molecule to other moieties. We report that, following protection of the enediol as benzyl ethers, the introduction of an acrylate ester at C1 is straightforward. Ascorbic acid-modified silicones were synthesized via aza-Michael reactions of aminoalkylsilicones with ascorbic acrylate. Viscous oils formed when the amine/acrylate ratios were <1. However, at higher amine/acrylate ratios with pendent silicones, a double reaction occurred to give robust elastomers whose modulus is readily tuned simply by controlling the ascorbic acid amine ratio that leads to crosslinks. Reduction with H2/Pd removed the benzyl ethers and led to increased crosslinking, and either liberated the antioxidant small molecule or produced antioxidant elastomers. These pro-antioxidant elastomers show the power of exploiting natural materials as co-constituents of silicone polymers.
Collapse
|
10
|
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:163. [PMID: 35052667 PMCID: PMC8772875 DOI: 10.3390/antiox11010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Robert Herzog
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Alexander Karich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Jan Kiebist
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Katrin Scheibner
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| |
Collapse
|
11
|
Synthesis of Indigo-Dyes from Indole Derivatives by Unspecific Peroxygenases and Their Application for In-Situ Dyeing. Catalysts 2021. [DOI: 10.3390/catal11121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tyrian purple (also known as royal or imperial purple) is the oldest known commercial pigment and still one of the most expensive dyes, often associated with the wardrobes of clergy and royalty. It is a brominated derivative of indigo, a natural dye that has been used since 4000 BC. Moreover, just recently, the therapeutic value of indigoids for the treatment of several disorders was discovered. The manufacturing of indigo derivatives by the existing chemical routes has become increasingly uninteresting due to the use of aggressive reagents, expensive starting materials and high-energy costs. Thus, both dyestuff manufacturers and the pharmaceutical industry are interested in the development of gentle preparation methods of indigoids from simple precursors. Here, we describe a simple enzymatic method for the one-step synthesis of Tyrian purple and other indigo derivatives with fungal peroxygenases (UPO, EC 1.11.2.1). The reaction does not require complex co-substrates and works well in phosphate buffers with H2O2 (<0.1 wt%) and less than 5% (v/v) acetonitrile as co-solvent. We demonstrate the scaling up of the reaction to 10 Liters and established thereupon an environmentally friendly combined synthesis and in-situ dyeing process, further simplifying the manufacturing of vat-dyed fabrics. Eventually, we screened a number of halogen-substituted indoles in the search for novel indigo derivatives, which may be of interest for pharmaceutical and/or dyeing purposes.
Collapse
|
12
|
Ether Oxidation by an Evolved Fungal Heme-Peroxygenase: Insights into Substrate Recognition and Reactivity. J Fungi (Basel) 2021; 7:jof7080608. [PMID: 34436147 PMCID: PMC8396878 DOI: 10.3390/jof7080608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ethers can be found in the environment as structural, active or even pollutant molecules, although their degradation is not efficient under environmental conditions. Fungal unspecific heme-peroxygenases (UPO were reported to degrade low-molecular-weight ethers through an H2O2-dependent oxidative cleavage mechanism. Here, we report the oxidation of a series of structurally related aromatic ethers, catalyzed by a laboratory-evolved UPO (PaDa-I) aimed at elucidating the factors influencing this unusual biochemical reaction. Although some of the studied ethers were substrates of the enzyme, they were not efficiently transformed and, as a consequence, secondary reactions (such as the dismutation of H2O2 through catalase-like activity and suicide enzyme inactivation) became significant, affecting the oxidation efficiency. The set of reactions that compete during UPO-catalyzed ether oxidation were identified and quantified, in order to find favorable conditions that promote ether oxidation over the secondary reactions.
Collapse
|
13
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. Angew Chem Int Ed Engl 2021; 60:16906-16910. [PMID: 34057803 PMCID: PMC8361964 DOI: 10.1002/anie.202104278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
14
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:17043-17047. [PMID: 38505659 PMCID: PMC10946705 DOI: 10.1002/ange.202104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
15
|
Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, Linde D, Babiker R, Drula E, Ayuso-Fernández I, Pacheco R, Padilla G, Ferreira P, Barriuso J, Kellner H, Castanera R, Alfaro M, Ramírez L, Pisabarro AG, Riley R, Kuo A, Andreopoulos W, LaButti K, Pangilinan J, Tritt A, Lipzen A, He G, Yan M, Ng V, Grigoriev IV, Cullen D, Martin F, Rosso MN, Henrissat B, Hibbett D, Martínez AT. Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Mol Biol Evol 2021; 38:1428-1446. [PMID: 33211093 PMCID: PMC8480192 DOI: 10.1093/molbev/msaa301] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates—namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose–methanol–choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases—we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
Collapse
Affiliation(s)
| | - José M Barrasa
- Life Sciences Department, Alcalá University, Alcalá de Henares, Spain
| | | | - Susana Camarero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | | | - Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Rashid Babiker
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France
| | | | - Remedios Pacheco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Guillermo Padilla
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Patricia Ferreira
- Biochemistry and Molecular and Cellular Biology Department and BIFI, Zaragoza University, Zaragoza, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Harald Kellner
- International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Raúl Castanera
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Robert Riley
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Alan Kuo
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - William Andreopoulos
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Jasmyn Pangilinan
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Andrew Tritt
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Vivian Ng
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Cullen
- Forest Products Laboratory, US Department of Agriculture, Madison, WI, USA
| | - Francis Martin
- INRAE, Laboratory of Excellence ARBRE, Champenoux, France
| | - Marie-Noëlle Rosso
- INRAE, Biodiversité et Biotechnologie Fongiques, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, USA
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
16
|
Kinner A, Rosenthal K, Lütz S. Identification and Expression of New Unspecific Peroxygenases - Recent Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:705630. [PMID: 34307325 PMCID: PMC8293615 DOI: 10.3389/fbioe.2021.705630] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In 2004, the fungal heme-thiolate enzyme subfamily of unspecific peroxygenases (UPOs) was first described in the basidiomycete Agrocybe aegerita. As UPOs naturally catalyze a broad range of oxidative transformations by using hydrogen peroxide as electron acceptor and thus possess a great application potential, they have been extensively studied in recent years. However, despite their versatility to catalyze challenging selective oxyfunctionalizations, the availability of UPOs for potential biotechnological applications is restricted. Particularly limiting are the identification of novel natural biocatalysts, their production, and the description of their properties. It is hence of great interest to further characterize the enzyme subfamily as well as to identify promising new candidates. Therefore, this review provides an overview of the state of the art in identification, expression, and screening approaches of fungal UPOs, challenges associated with current protein production and screening strategies, as well as potential solutions and opportunities.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
17
|
Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts 2021. [DOI: 10.3390/catal11050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This paper outlines the immobilization of the recombinant dimeric unspecific peroxygenase from Agrocybe aegerita (rAaeUPO). The enzyme was quite stable (remaining unaltered its activity after 35 h at 47 °C and pH 7.0). Phosphate destabilized the enzyme, while glycerol stabilized it. The enzyme was not immobilized on glyoxyl-agarose supports, while it was immobilized albeit in inactive form on vinyl-sulfone-activated supports. rAaeUPO immobilization on glutaraldehyde pre-activated supports gave almost quantitative immobilization yield and retained some activity, but the biocatalyst was very unstable. Its immobilization via anion exchange on PEI supports also produced good immobilization yields, but the rAaeUPO stability dropped. However, using aminated agarose, the enzyme retained stability and activity. The stability of the immobilized enzyme strongly depended on the immobilization pH, being much less stable when rAaeUPO was adsorbed at pH 9.0 than when it was immobilized at pH 7.0 or pH 5.0 (residual activity was almost 0 for the former and 80% for the other preparations), presenting stability very similar to that of the free enzyme. This is a very clear example of how the immobilization pH greatly affects the final biocatalyst performance.
Collapse
|
18
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
19
|
Wang Z, Jian Y, Han Y, Fu Z, Lu D, Wu J, Liu Z. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Grimm C, Lazzarotto M, Pompei S, Schichler J, Richter N, Farnberger JE, Fuchs M, Kroutil W. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol- O-demethylase. ACS Catal 2020; 10:10375-10380. [PMID: 32974079 PMCID: PMC7506938 DOI: 10.1021/acscatal.0c02790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Indexed: 11/28/2022]
Abstract
![]()
The cleavage of aryl
methyl ethers is a common reaction in chemistry requiring rather harsh
conditions; consequently, it is prone to undesired reactions and lacks
regioselectivity. Nevertheless, O-demethylation of
aryl methyl ethers is a tool to valorize natural and pharmaceutical
compounds by deprotecting reactive hydroxyl moieties. Various oxidative
enzymes are known to catalyze this reaction at the expense of molecular
oxygen, which may lead in the case of phenols/catechols to undesired
side reactions (e.g., oxidation, polymerization). Here an oxygen-independent
demethylation via methyl transfer is presented employing a cobalamin-dependent
veratrol-O-demethylase (vdmB). The biocatalytic demethylation
transforms a variety of aryl methyl ethers with two functional methoxy
moieties either in 1,2-position or in 1,3-position. Biocatalytic reactions
enabled, for instance, the regioselective monodemethylation of substituted
3,4-dimethoxy phenol as well as the monodemethylation of 1,3,5-trimethoxybenzene.
The methyltransferase vdmB was also successfully applied for the regioselective
demethylation of natural compounds such as papaverine and rac-yatein. The approach presented here represents an alternative
to chemical and enzymatic demethylation concepts and allows performing
regioselective demethylation in the absence of oxygen under mild conditions,
representing a valuable extension of the synthetic repertoire to modify
pharmaceuticals and diversify natural products.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Mattia Lazzarotto
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Johanna Schichler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Nina Richter
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Judith E. Farnberger
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
21
|
Bormann S, Hertweck D, Schneider S, Bloh JZ, Ulber R, Spiess AC, Holtmann D. Modeling and simulation-based design of electroenzymatic batch processes catalyzed by unspecific peroxygenase from A. aegerita. Biotechnol Bioeng 2020; 118:7-16. [PMID: 32844401 DOI: 10.1002/bit.27545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/31/2023]
Abstract
Unspecific peroxygenases have attracted interest due to their ability to catalyze the oxygenation of various types of C-H bonds using only hydrogen peroxide as a cosubstrate. Due to the instability of these enzymes at even low hydrogen peroxide concentrations, careful fed-batch addition of the cosubstrate or ideally in situ production is required. While various approaches for hydrogen peroxide addition have been qualitatively assessed, only limited kinetic data concerning enzyme inactivation and peroxide accumulation has been reported so far. To obtain quantitative insights into the kinetics of such a process, a detailed data set for a peroxygenase-catalyzed benzylic hydroxylation coupled with electrochemical hydrogen peroxide production is presented. Based on this data set, we set out to model such an electroenzymatic process. For this, initial velocity data for the benzylic hydroxylation is collected and an extended Ping-Pong-Bi-Bi type rate equation is established, which sufficiently describes the enzyme kinetic. Moreover, we propose an empirical inactivation term based on the collected data set. Finally, we show that the full model does not only describe the process with sufficient accuracy, but can also be used predictively to control hydrogen peroxide feeding rates To limit the concentration of this critical cosubstrate in the system.
Collapse
Affiliation(s)
- Sebastian Bormann
- Industrial Biotechnology, DECHEMA Research Institute, Frankfurt, Germany
| | - Dominik Hertweck
- Institute of Biochemical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Sabrina Schneider
- Industrial Biotechnology, DECHEMA Research Institute, Frankfurt, Germany
| | - Jonathan Z Bloh
- Chemical Technology, DECHEMA Research Institute, Frankfurt, Germany
| | - Roland Ulber
- Bioprocess Engineering, University of Kaiserslautern, Kaiserslautern, Germany
| | - Antje C Spiess
- Institute of Biochemical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Dirk Holtmann
- Industrial Biotechnology, DECHEMA Research Institute, Frankfurt, Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstraße, Gießen, Germany
| |
Collapse
|
22
|
Exploring the Role of Phenylalanine Residues in Modulating the Flexibility and Topography of the Active Site in the Peroxygenase Variant PaDa-I. Int J Mol Sci 2020; 21:ijms21165734. [PMID: 32785123 PMCID: PMC7460833 DOI: 10.3390/ijms21165734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are fungal heme-thiolate enzymes able to catalyze a wide range of oxidation reactions, such as peroxidase-like, catalase-like, haloperoxidase-like, and, most interestingly, cytochrome P450-like. One of the most outstanding properties of these enzymes is the ability to catalyze the oxidation a wide range of organic substrates (both aromatic and aliphatic) through cytochrome P450-like reactions (the so-called peroxygenase activity), which involves the insertion of an oxygen atom from hydrogen peroxide. To catalyze this reaction, the substrate must access a channel connecting the bulk solution to the heme group. The composition, shape, and flexibility of this channel surely modulate the catalytic ability of the enzymes in this family. In order to gain an understanding of the role of the residues comprising the channel, mutants derived from PaDa-I, a laboratory-evolved UPO variant from Agrocybe aegerita, were obtained. The two phenylalanine residues at the surface of the channel, which regulate the traffic towards the heme active site, were mutated by less bulky residues (alanine and leucine). The mutants were experimentally characterized, and computational studies (i.e., molecular dynamics (MD)) were performed. The results suggest that these residues are necessary to reduce the flexibility of the region and maintain the topography of the channel.
Collapse
|
23
|
|
24
|
Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-29541-7_14] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. CHEMOSPHERE 2019; 231:173-183. [PMID: 31129398 DOI: 10.1016/j.chemosphere.2019.05.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Our understanding of the tetrahydrofuran (THF) degradation in complex environment is limited. The majority of THF degrading genes reported are group V soluble diiron monooxygenases and share greater than 95% homology with one another. In this study, we used sole-carbon-source incubation combined with high-throughput metagenomic sequencing to investigate this contaminant's degradation in environmental samples. We identified as-yet-uncultivated microbe from the genera Pseudonocardia and fungi Scedosporium sp. (Scedosporium sp. was successfully isolated) as THF degraders as containing THF degradation genes, while microbes from the genera Bordetella, Pandoraea and Rhodanobacter functioned as main cooperators by utilizing acidic intermediates and providing anti-acid mechanisms. Furthermore, a 9387-bp THF degradation cluster designated thmX from the as-yet-uncultivated Pseudonocardia (with 6 main ORFs and with 79-93% amino acid sequence identity with previously reported clusters) was discovered. We also found a THF-degrading related cytochrome P450 monooxygenase from the genus Scedosporium and predicted its cognate reductase for the first time. All the genes and clusters mentioned above were successfully amplified from samples and cloned into the suitable expression vectors. This study will provide novel insights for understanding of THF degradation mechanisms under acid stress conditions and mining new THF degradation genes.
Collapse
Affiliation(s)
- Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hanbo Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China. http://
| |
Collapse
|
26
|
Reina R, Kellner H, Hess J, Jehmlich N, García-Romera I, Aranda E, Hofrichter M, Liers C. Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One 2019; 14:e0212769. [PMID: 30822315 PMCID: PMC6396904 DOI: 10.1371/journal.pone.0212769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and plant pathogen commercially used for combatting forest "weed" trees in vegetation management. However, little is known about its lignocellulose-degrading capabilities and the enzymatic machinery that is responsible for the degradative potential, and it is not yet clear to which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach during growth in submerged and solid-state cultures based on soybean meal suspension or containing beech wood supplemented with phenol-rich olive mill residues, respectively. The fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreductases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45 laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. protease and cytochrome P450s). The fungus responds to the presence of complex growth substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulolytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6, GH7). Based on the genetic and enzymatic constitution, we consider the 'marasmioid' fungus C. purpureum as a 'phytopathogenic' white-rot fungus (WRF) that possesses a complex extracellular enzyme machinery to accomplish efficient lignocellulose degradation during both saprotrophic and phytopathogenic life phases.
Collapse
Affiliation(s)
- Rocio Reina
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Harald Kellner
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Immaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Martin Hofrichter
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Christiane Liers
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| |
Collapse
|
27
|
Carro J, Fernández-Fueyo E, Fernández-Alonso C, Cañada J, Ullrich R, Hofrichter M, Alcalde M, Ferreira P, Martínez AT. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:86. [PMID: 29619082 PMCID: PMC5880071 DOI: 10.1186/s13068-018-1091-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. RESULTS In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H2O2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O2, to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. CONCLUSIONS The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.
Collapse
Affiliation(s)
- Juan Carro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Javier Cañada
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - René Ullrich
- Department of Bio- and Environmental Sciences, International Institute Zittau - Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau - Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Marie Curie 2, E-28049 Madrid, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and BIFI, University of Zaragoza, E-50009 Saragossa, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
28
|
Karich A, Ullrich R, Scheibner K, Hofrichter M. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants. Front Microbiol 2017; 8:1463. [PMID: 28848501 PMCID: PMC5552789 DOI: 10.3389/fmicb.2017.01463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments.
Collapse
Affiliation(s)
- Alexander Karich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - René Ullrich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - Katrin Scheibner
- Enzyme Technology Unit, Brandenburg University of TechnologyCottbus, Germany
| | - Martin Hofrichter
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| |
Collapse
|
29
|
Hong CY, Ryu SH, Jeong H, Lee SS, Kim M, Choi IG. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid. ACS Chem Biol 2017; 12:1749-1759. [PMID: 28463479 DOI: 10.1021/acschembio.7b00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole cells of the basidiomycete fungus Phanerochaete chrysosporium (ATCC 20696) were applied to induce the biomodification of lignin in an in vivo system. Our results indicated that P. chrysosporium has a catabolic system that induces characteristic biomodifications of synthetic lignin through a series of redox reactions, leading not only to the degradation of lignin but also to its polymerization. The reducing agents ascorbic acid and α-tocopherol were used to stabilize the free radicals generated from the ligninolytic process. The application of P. chrysosporium in combination with reducing agents produced aromatic compounds and succinic acid as well as degraded lignin polymers. P. chrysosporium selectively catalyzed the conversion of lignin to succinic acid, which has an economic value. A transcriptomic analysis of P. chrysosporium suggested that the bond cleavage of synthetic lignin was caused by numerous enzymes, including extracellular enzymes such as lignin peroxidase and manganese peroxidase, and that the aromatic compounds released were metabolized in both the short-cut and classical tricarboxylic acid cycles of P. chrysosporium. In conclusion, P. chrysosporium is suitable as a biocatalyst for lignin degradation to produce a value-added product.
Collapse
Affiliation(s)
- Chang-Young Hong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sun-Hwa Ryu
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sung-Suk Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Myungkil Kim
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - In-Gyu Choi
- Department
of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes
of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
30
|
Wang Y, Lan D, Durrani R, Hollmann F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr Opin Chem Biol 2017; 37:1-9. [DOI: 10.1016/j.cbpa.2016.10.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
|
31
|
Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent. J Microbiol 2016; 54:675-85. [DOI: 10.1007/s12275-016-6158-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/22/2023]
|
33
|
Hong CY, Park SY, Kim SH, Lee SY, Ryu SH, Choi IG. Biomodification of Ethanol Organolsolv Lignin by Abortiporus biennis and Its Structural Change by Addition of Reducing Agent. ACTA ACUST UNITED AC 2016. [DOI: 10.5658/wood.2016.44.1.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
|
35
|
Richter N, Zepeck F, Kroutil W. Cobalamin-dependent enzymatic O-, N-, and S-demethylation. Trends Biotechnol 2015; 33:371-3. [DOI: 10.1016/j.tibtech.2015.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
|
36
|
Hand S, Wang B, Chu KH. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:154-159. [PMID: 25813968 DOI: 10.1016/j.scitotenv.2015.03.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/28/2015] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
1,4-Dioxane is a groundwater contaminant and probable human carcinogen. In this study, two well-studied degradative bacteria Mycobacterium vaccae JOB5 and Rhodococcus jostii RHA1 were examined for their 1,4-dioxane degradation ability in the presence and absence of its co-contaminant, trichloroethylene (TCE), under different oxygenase-expression conditions. These two strains were precultured with R2A broth (complex nutrient medium) before supplementation with propane or 1-butanol to induce the expression of different oxygenases. Both propane- and 1-butanol-induced JOB5 and RHA1 were able to degrade 1,4-dioxane, TCE, and mixtures of 1,4-dioxane/TCE. Complete degradation of 1,4-dioxane/TCE mixture was observed only in propane-induced strain JOB5. Inhibition was observed between 1,4-dioxane and TCE for all cells. Furthermore, product toxicity caused incomplete degradation of 1,4-dioxane by 1-butanol-induced JOB5. In general, the more TCE degraded, the greater extent of product toxicity cells experienced; however, susceptibility to product toxicity was found to be both strain- and inducer-dependent. The findings of this study provide fundamental basis for developing an effective in-situ remediation method for 1,4-dioxane-contaminated ground water and the first known study of 1,4-dioxane degradation by wild-type strain RHA1.
Collapse
Affiliation(s)
- Steven Hand
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Baixin Wang
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
37
|
Kiebist J, Holla W, Heidrich J, Poraj-Kobielska M, Sandvoss M, Simonis R, Gröbe G, Atzrodt J, Hofrichter M, Scheibner K. One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases. Bioorg Med Chem 2015; 23:4324-4332. [PMID: 26142319 DOI: 10.1016/j.bmc.2015.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Unspecific peroxygenases (UPOs, EC 1.11.2.1) have proved to be stable oxygen-transferring biocatalysts for H2O2-dependent transformation of pharmaceuticals. We have applied UPOs in a drug development program and consider the enzymatic approach in parallel to a conventional chemical synthesis of the human metabolites of the bile acid reabsorption inhibitor SAR548304. Chemical preparation of N,N-di-desmethyl metabolite was realized by a seven-step synthesis starting from a late precursor of SAR548304 and included among others palladium catalysis and laborious chromatographic purification with an overall yield of 27%. The enzymatic approach revealed that the UPO of Marasmius rotula is particularly suitable for selective N-dealkylation of the drug and enabled us to prepare both human metabolites via one-pot conversion with an overall yield of 66% N,N-di-desmethyl metabolite and 49% of N-mono-desmethylated compound in two separated kinetic-controlled reactions.
Collapse
Affiliation(s)
- Jan Kiebist
- Enzymtechnology, Faculty of Science, BTU Cottbus-Senftenberg, Großenhainer Str. 57, 01968 Senftenberg, Germany
| | - Wolfgang Holla
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis, Industriepark Höchst G876, 65926 Frankfurt am Main, Germany.
| | - Johannes Heidrich
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis, Industriepark Höchst G876, 65926 Frankfurt am Main, Germany
| | - Marzena Poraj-Kobielska
- Department of Bio- and Environmental Sciences, TU Dresden-IHI Zittau, Markt 23, 02763 Zittau, Germany
| | - Martin Sandvoss
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis, Industriepark Höchst G876, 65926 Frankfurt am Main, Germany
| | - Reiner Simonis
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis, Industriepark Höchst G876, 65926 Frankfurt am Main, Germany
| | - Glenn Gröbe
- Enzymtechnology, Faculty of Science, BTU Cottbus-Senftenberg, Großenhainer Str. 57, 01968 Senftenberg, Germany
| | - Jens Atzrodt
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis, Industriepark Höchst G876, 65926 Frankfurt am Main, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden-IHI Zittau, Markt 23, 02763 Zittau, Germany
| | - Katrin Scheibner
- Enzymtechnology, Faculty of Science, BTU Cottbus-Senftenberg, Großenhainer Str. 57, 01968 Senftenberg, Germany
| |
Collapse
|
38
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
39
|
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R. Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:341-68. [DOI: 10.1007/978-3-319-16009-2_13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
|
41
|
Sekar R, DiChristina TJ. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12858-12867. [PMID: 25313646 DOI: 10.1021/es503454a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The carcinogenic cyclic ether compound 1,4-dioxane is employed as a stabilizer of chlorinated industrial solvents and is a widespread environmental contaminant in surface water and groundwater. In the present study, a microbially driven Fenton reaction was designed to autocatalytically generate hydroxyl (HO•) radicals that degrade 1,4-dioxane. In comparison to conventional (purely abiotic) Fenton reactions, the microbially driven Fenton reaction operated at circumneutral pH and did not the require addition of exogenous H2O2 or UV irradiation to regenerate Fe(II) as Fenton reagents. The 1,4-dioxane degradation process was driven by pure cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis manipulated under controlled laboratory conditions. S. oneidensis batch cultures were provided with lactate, Fe(III), and 1,4-dioxane and were exposed to alternating aerobic and anaerobic conditions. The microbially driven Fenton reaction completely degraded 1,4-dioxane (10 mM initial concentration) in 53 h with an optimal aerobic-anaerobic cycling period of 3 h. Acetate and oxalate were detected as transient intermediates during the microbially driven Fenton degradation of 1,4-dioxane, an indication that conventional and microbially driven Fenton degradation processes follow similar reaction pathways. The microbially driven Fenton reaction provides the foundation for development of alternative in situ remediation technologies to degrade environmental contaminants susceptible to attack by HO• radicals generated by the Fenton reaction.
Collapse
Affiliation(s)
- Ramanan Sekar
- School of Biology, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | |
Collapse
|
42
|
Peter S, Karich A, Ullrich R, Gröbe G, Scheibner K, Hofrichter M. Enzymatic one-pot conversion of cyclohexane into cyclohexanone: Comparison of four fungal peroxygenases. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Hofrichter M, Ullrich R. Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 2014; 19:116-25. [PMID: 24607599 DOI: 10.1016/j.cbpa.2014.01.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
The enzymatic oxyfunctionalization of organic molecules under physiological conditions has attracted keen interest from the chemical community. Unspecific peroxygenases (EC 1.11.2.1) secreted by fungi represent an intriguing enzyme type that selectively transfers peroxide-borne oxygen with high efficiency to diverse substrates including unactivated hydrocarbons. They are glycosylated heme-thiolate enzymes that form a separate superfamily of heme proteins. Among the catalyzed reactions are hydroxylations, epoxidations, dealkylations, oxidations of organic hetero atoms and inorganic halides as well as one-electron oxidations. The substrate spectrum of fungal peroxygenases and the product patterns show similarities both to cytochrome P450 monooxygenases and classic heme peroxidases. Given that selective oxyfunctionalizations are among the most difficult to realize chemical reactions and that respectively transformed molecules are of general importance in organic and pharmaceutical syntheses, it will be worth developing peroxygenase biocatalysts for industrial applications.
Collapse
Affiliation(s)
- Martin Hofrichter
- TU Dresden - International Institute Zittau, Department of Bio- and Environmental Sciences, Markt 23, 02763 Zittau, Germany.
| | - René Ullrich
- TU Dresden - International Institute Zittau, Department of Bio- and Environmental Sciences, Markt 23, 02763 Zittau, Germany
| |
Collapse
|
44
|
Srour H, Le Maux P, Chevance S, Simonneaux G. Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Piontek K, Strittmatter E, Ullrich R, Gröbe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner DA. Structural basis of substrate conversion in a new aromatic peroxygenase: cytochrome P450 functionality with benefits. J Biol Chem 2013; 288:34767-76. [PMID: 24126915 DOI: 10.1074/jbc.m113.514521] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic peroxygenases (APOs) represent a unique oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity and were thus recently assigned a distinct EC classification (EC 1.11.2.1). They catalyze, inter alia, oxyfunctionalization reactions of aromatic and aliphatic hydrocarbons with remarkable regio- and stereoselectivities. When compared with cytochrome P450, APOs appear to be the choice enzymes for oxyfunctionalizations in organic synthesis due to their independence from a cellular environment and their greater chemical versatility. Here, the first two crystal structures of a heavily glycosylated fungal aromatic peroxygenase (AaeAPO) are described. They reveal different pH-dependent ligand binding modes. We model the fitting of various substrates in AaeAPO, illustrating the way the enzyme oxygenates polycyclic aromatic hydrocarbons. Spatial restrictions by a phenylalanine pentad in the active-site environment govern substrate specificity in AaeAPO.
Collapse
Affiliation(s)
- Klaus Piontek
- From the Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poraj-Kobielska M, Atzrodt J, Holla W, Sandvoss M, Gröbe G, Scheibner K, Hofrichter M. Preparation of labeled human drug metabolites and drug-drug interaction-probes with fungal peroxygenases. J Labelled Comp Radiopharm 2013; 56:513-9. [PMID: 24285530 DOI: 10.1002/jlcr.3103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 01/15/2023]
Abstract
Enzymatic conversion of a drug can be an efficient alternative for the preparation of a complex metabolite compared with a multi-step chemical synthesis approach. Limitations exist for chemical methods for direct oxygen incorporation into organic molecules often suffering from low yields and unspecific oxidation and also for alternative whole-cell biotransformation processes, which require specific fermentation know-how. Stable oxygen-transferring biocatalysts such as unspecific peroxygenases (UPOs) could be an alternative for the synthesis of human drug metabolites and related stable isotope-labeled analogues. This work shows that UPOs can be used in combination with hydrogen/deuterium exchange for an efficient one-step process for the preparation of 4'-OH-diclofenac-d6. The scope of the reaction was investigated by screening of different peroxygenase subtypes for the transformation of selected deuterium-labeled substrates such as phenacetin-d3 or lidocaine-d3. Experiments with diclofenac-d7 revealed that the deuterium-labeling does not affect the kinetic parameters. By using the latter substrate and H2 (18) O2 as cosubstrate, it was possible to prepare a doubly isotope-labeled metabolite (4'-(18) OH-diclofenac-d6). UPOs offer certain practical advantages compared with P450 enzyme systems in terms of stability and ease of handling. Given these advantages, future work will expand the existing 'monooxygenation toolbox' of different fungal peroxygenases that mimic P450 in vitro reactions.
Collapse
Affiliation(s)
- Marzena Poraj-Kobielska
- Department of Biological and Environmental Sciences, TU Dresden - International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Atzrodt J, Derdau V. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds. J Labelled Comp Radiopharm 2013; 56:408-16. [PMID: 24285513 DOI: 10.1002/jlcr.3096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/02/2023]
Abstract
This micro-review describes hot topics and new trends in isotope science discussed at the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds from a personal perspective.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry & Metabolite Synthesis, DSAR-DD, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, 65926, Frankfurt am Main, Germany
| | | |
Collapse
|
48
|
Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM. RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 2013; 25:137-51. [DOI: 10.1007/s10532-013-9646-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
49
|
Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzyme Microb Technol 2013; 52:370-6. [DOI: 10.1016/j.enzmictec.2013.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
50
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|