1
|
Aderanti T, Marshall JM, Thekkiniath J. Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. J Eukaryot Microbiol 2025; 72:e13064. [PMID: 39556081 PMCID: PMC11780687 DOI: 10.1111/jeu.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024]
Abstract
Human babesiosis is a malaria-like, tick-borne infectious disease with a global distribution. Babesiosis is caused by intraerythrocytic, apicomplexan parasites of the genus Babesia. In the United States, human babesiosis is caused by Babesia microti and Babesia duncani. Current treatment for babesiosis includes either the combination of atovaquone and azithromycin or the combination of clindamycin and quinine. However, the side effects of these agents and the resistance posed by these parasites call for alternative approaches for treating human babesiosis. Proteases play several roles in the context of parasitic lifestyle and regulate basic biological processes including cell death, cell progression, and cell migration. Using the SYBR Green-1 assay, we screened a protease inhibitor library that consisted of 160 compounds against B. duncani in vitro and identified 13 preliminary hits. Dose response assays of hit compounds against B. duncani and B. microti under in vitro conditions identified five effective inhibitors against parasite growth. Of these compounds, we chose ixazomib, a proteasome inhibitor as a potential drug for animal studies based on its lower IC50 and a higher therapeutic index in comparison with other compounds. Our results suggest that Babesia proteasome may be an important drug target and that developing this class of drugs may be important to combat human babesiosis.
Collapse
Affiliation(s)
- Temitope Aderanti
- Department of Biological SciencesPurdue University Fort WayneFort WayneIndianaUSA
| | - Jordan M. Marshall
- Department of Biological SciencesPurdue University Fort WayneFort WayneIndianaUSA
| | - Jose Thekkiniath
- Department of Biological SciencesPurdue University Fort WayneFort WayneIndianaUSA
| |
Collapse
|
2
|
Murata M, Kuwajima H, Tanaka J, Hasegawa N, Yuki R, Saito Y, Nakayama Y. TNK2 Inhibitor (R)-9bMS Causes Polyploidization Through Mitotic Failure by Targeting Aurora B. Cell Biochem Funct 2024; 42:e70022. [PMID: 39639371 DOI: 10.1002/cbf.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
TNK2 is a ubiquitously expressed nonreceptor-type tyrosine kinase. TNK2 participates in tumorigenesis, and TNK2 activation has been found in various cancers; therefore, TNK2 is a promising target for cancer chemotherapy. While the TNK2 inhibitor XMD16-5 is highly selective, it inhibits cytokinesis at higher concentrations by targeting Aurora B kinase, a key enzyme for cell division. Cytokinesis failure frequently generates polyploid cells, and the surviving polyploid cells risk leading to cancer development and malignant progression via chromosome instability. In this study, to investigate the possibility that (R)-9bMS, a TNK2 inhibitor structurally related to XMD16-5, drives malignant progression by inducing abnormal cell division, we examined its effects on cell division, Aurora B autophosphorylation, and colony formation. Cell count results showed a reduction in the number of A431, HeLa S3, HCT116, and MCF7 cells upon TNK2 inhibitor treatment. Microscopic observation indicated the formation of multinucleated and nucleus-enlarged cells. An increase in DNA content was confirmed with flow cytometry, which was underpinned by an increased number of centrosomes. Time-lapse imaging revealed mitotic failure, such as mitotic slippage and cytokinesis failure, as a cause of polyploidization. Of note, TNK2 knockdown significantly increased multinucleated cells, but the effect was quite weak, suggesting that TNK2 inhibition may only partially contribute to mitotic failure and polyploidization. Expectedly, Aurora B phosphorylation was reduced by (R)-9bMS like XMD16-5, but not by TNK2 knockdown. Collectively, TNK2 inhibitors (R)-9bMS and XMD16-5 induce polyploidization via mitotic failure caused by the inhibition of Aurora B kinase rather than TNK2. Notably, (R)-9bMS treatment promoted anchorage-independent colony formation, a hallmark of cancer. Our findings suggest that (R)-9bMS at a high concentration risks promoting cancer development or malignant progression. Therefore, caution should be used when using TNK2 inhibitors for cancers where TNK2 activation is not the transforming mutation and higher concentrations of TNK2 inhibitors are required to slow proliferation.
Collapse
Affiliation(s)
- Mayu Murata
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroki Kuwajima
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Junna Tanaka
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nanami Hasegawa
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
3
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Fregel Lorenzo RI, Dyall SD, Isenberg D, D'Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. eLife 2024; 13:RP96085. [PMID: 39570652 PMCID: PMC11581429 DOI: 10.7554/elife.96085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris CitéParisFrance
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Barbara Craddock
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | | | | | - Sabrina D Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of MauritiusReduitMauritius
| | - David Isenberg
- Bioinformatics Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - David D'Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Nico Lachmann
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne BuildingLondonUnited Kingdom
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Agnes Viale
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | - Nicholas D Socci
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - W Todd Miller
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Physiology and Biophysics, Stony Brook University School of MedicineStony BrookUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick ChildrenParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| |
Collapse
|
4
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
6
|
Balasooriya ER, Madhusanka D, López-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS, Egbert CM, Bulathsinghalage C, Liu L, Piccolo SR, Andersen JL. Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation. Mol Cancer Res 2024; 22:137-151. [PMID: 37847650 PMCID: PMC10831333 DOI: 10.1158/1541-7786.mcr-23-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Dept. of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Deshan Madhusanka
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tania P. López-Palacios
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Riley J. Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Dasun Jayatunge
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jake J. Owen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Jack S. Gashler
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M. Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Lu Liu
- Department of Computer Science, North Dakota State University, Fargo, North Dakota
| | | | - Joshua L. Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Hayashi SY, Craddock BP, Miller WT. Phosphorylation of Ack1 by the Receptor Tyrosine Kinase Mer. KINASES AND PHOSPHATASES 2023; 1:167-180. [PMID: 37662484 PMCID: PMC10473914 DOI: 10.3390/kinasesphosphatases1030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ack1 is a nonreceptor tyrosine kinase that is associated with cellular proliferation and survival. The receptor tyrosine kinase Mer, a member of the TAM family of receptors, has previously been reported to be an upstream activator of Ack1 kinase. The mechanism linking the two kinases, however, has not been investigated. We confirmed that Ack1 and Mer interact by co-immunoprecipitation experiments and found that Mer expression led to increased Ack1 activity. The effect on Ack1 was dependent on the kinase activity of Mer, whereas mutation of the Mer C-terminal tyrosines Y867 and Y924 did not significantly decrease the ability of Mer to activate Ack1. Ack1 possesses a Mig6 Homology Region (MHR) that contains adjacent regulatory tyrosines (Y859 and Y860). Using synthetic peptides, we showed that Mer preferentially binds and phosphorylates the MHR sequence containing phosphorylated pY860, as compared to the pY859 sequence. This suggested the possibility of sequential phosphorylation within the MHR of Ack1, as has been observed previously for other kinases. In cells co-expressing Mer and Ack1 MHR mutants, the Y859F mutant had higher activity than the Y860F mutant, consistent with this model. The interaction between Mer and Ack1 could play a role in immune cell signaling in normal physiology and could also contribute to the hyperactivation of Ack1 in prostate cancer and other tumors.
Collapse
Affiliation(s)
- Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
9
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
10
|
Kan Y, Paung Y, Kim Y, Seeliger MA, Miller WT. Biochemical Studies of Systemic Lupus Erythematosus-Associated Mutations in Nonreceptor Tyrosine Kinases Ack1 and Brk. Biochemistry 2023; 62:1124-1137. [PMID: 36854171 PMCID: PMC10052838 DOI: 10.1021/acs.biochem.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Tyrosine kinases (TKs) play essential roles in signaling processes that regulate cell survival, migration, and proliferation. Dysregulation of tyrosine kinases underlies many disorders, including cancer, cardiovascular and developmental diseases, as well as pathologies of the immune system. Ack1 and Brk are nonreceptor tyrosine kinases (NRTKs) best known for their roles in cancer. Here, we have biochemically characterized novel Ack1 and Brk mutations identified in patients with systemic lupus erythematosus (SLE). These mutations are the first SLE-linked polymorphisms found among NRTKs. We show that two of the mutants are catalytically inactive, while the other three have reduced activity. To understand the structural changes associated with the loss-of-function phenotype, we solved the crystal structure of one of the Ack1 kinase mutants, K161Q. Furthermore, two of the mutated residues (Ack1 A156 and K161) critical for catalytic activity are highly conserved among other TKs, and their substitution in other members of the kinase family could have implications in cancer. In contrast to canonical gain-of-function mutations in TKs observed in many cancers, we report loss-of-function mutations in Ack1 and Brk, highlighting the complexity of TK involvement in human diseases.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, United States
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, United States
| | - Yunyoung Kim
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, United States
| | - Markus A Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, United States
- Department of Veterans Affairs Medical Center, Northport, New York 11768, United States
| |
Collapse
|
11
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
12
|
Peng HH, Yang HC, Rupa D, Yen CH, Chiu YW, Yang WJ, Luo FJ, Yuan TC. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation. J Cell Commun Signal 2022; 16:567-578. [PMID: 35247157 PMCID: PMC9733751 DOI: 10.1007/s12079-022-00670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a worldwide distribution. Although intensive studies have been made, the underlying oncogenic mechanism of HNSCC requires further investigation. In this study, we examined the oncogenic role of activated Cdc42-associated kinase 1 (ACK1), an oncogenic tyrosine kinase, in regulating the proliferation of HNSCC cells and its underlying molecular mechanism. Results from immunohistochemical studies revealed that ACK1 was highly expressed in HNSCC tumors, with 77% (77/100) of tumors showing a high ACK1 immunoreactivity compared to 40% (8/20) of normal mucosa. Knockdown of ACK1 expression in HNSCC cells resulted in elevated p27 expression, reduced cell proliferation, and G1-phase cell cycle arrest. Rescue of ACK1 expression in the ACK1-knockdown cells suppressed p27 expression and restored cell proliferation. Compared to ACK1-knockdown cells, ACK1-rescued cells exhibited a restored p27 expression after MG132 treatment and showed an elevated level of ubiquitinated p27. Our data further showed that knockdown of ubiquitin ligase Skp2 resulted in elevated p27 expression. Importantly, the expression of p27(WT), p27(Y74F), or p27(Y89F) in ACK1-overexpressed 293T cells or ACK1-rescued SAS cells showed higher levels of tyrosyl-phosphorylated p27 and interaction with ACK1 or Skp2. However, the expression of p27(Y88F) mutant exhibited a relatively low phosphorylation level and barely bound with ACK1 or Skp2, showing a basal interaction as the control cells. These results suggested that ACK1 is highly expressed in HNSCC tumors and functions to promote cell proliferation by the phosphorylation and degradation of p27 in the Skp2-mediated mechanism.
Collapse
Affiliation(s)
- Hsuan-Hsiang Peng
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Hao-Chin Yang
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Darius Rupa
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Chun-Han Yen
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Ya-Wen Chiu
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Wei-Jia Yang
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Fuh-Jinn Luo
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Ta-Chun Yuan
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| |
Collapse
|
13
|
The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem 2022; 298:102664. [PMID: 36334623 DOI: 10.1016/j.jbc.2022.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.
Collapse
|
14
|
Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, Reimers M, Kim EH, Thakur MK, Saeed MA, Pachynski RK, Seeliger MA, Miller WT, Feng FY, Mahajan NP. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun 2022; 13:6929. [PMID: 36376335 PMCID: PMC9663509 DOI: 10.1038/s41467-022-34724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
- Anatomic and Clinical Pathology, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Shambhavi Bhagwat
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Melissa Reimers
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Eric H Kim
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Muhammad A Saeed
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Russell K Pachynski
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Kan Y, Miller WT. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett 2022; 596:2808-2820. [PMID: 36178070 PMCID: PMC9879303 DOI: 10.1002/1873-3468.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.
Collapse
Affiliation(s)
- Yağmur Kan
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| |
Collapse
|
16
|
Clayton NS, Fox M, Vicenté-Garcia JJ, Schroeder CM, Littlewood TD, Wilde JI, Krishnan K, Brown MJB, Crafter C, Mott HR, Owen D. Assembly of nuclear dimers of PI3K regulatory subunits is regulated by the Cdc42-activated tyrosine kinase ACK. J Biol Chem 2022; 298:101916. [PMID: 35429500 PMCID: PMC9127371 DOI: 10.1016/j.jbc.2022.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85β, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85β promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Natasha S Clayton
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Millie Fox
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jonathon I Wilde
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Kadalmani Krishnan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Murray J B Brown
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Claire Crafter
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Srivastava R. Chemical Reactivity and Optical and Pharmacokinetics Studies of 14 Multikinase Inhibitors and Their Docking Interactions Toward ACK1 for Precision Oncology. Front Chem 2022; 10:843642. [PMID: 35494626 PMCID: PMC9050413 DOI: 10.3389/fchem.2022.843642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Activated Cdc42-associated kinase 1 (ACK1/TNK2) has a significant role in cell endocytosis, survival, proliferation, and migration. Mutations in ACK1 are closely associated with the occurrence and development of cancers. In this work, a conceptual density functional theory (CDFT)-based computational peptidology (CDFT-CP) method is used to study the chemical reactivity of 14 multikinase inhibitors. Optical properties of these inhibitors are studied by time-dependent density functional theory (TDDFT). Various biological and pharmacokinetic parameters are studied by Osiris, Molinspiration, and BOILED-Egg in SwissADME software tools. Physicochemical and biopharmaceutical (PCB), Salmonella typhimurium reverse mutation assay (AMES) mutagenicity, toxicity, and risk prediction are estimated by Simulations plus ADMET Predictor 10.2 software. MD simulations for an active model of ACK1 is carried out by the CABS-flex 2.0 web server, and potential binding pockets for ACK1 are searched using the PrankWeb server. SwissTargetPrediction is used to predict the potential targets for the multikinase inhibitors. Docking studies are carried out for ACK1–multikinase inhibitors using Autodock 4.2 software. Noncovalent interactions for ACK1–multikinase inhibitor complexes are studied using the Protein–Ligand Interaction Profiler (PLIP) server. Results indicated higher binding affinities and strong noncovalent interactions in ACK1–multikinase inhibitor complexes.
Collapse
|
18
|
Wang A, Pei J, Shuai W, Lin C, Feng L, Wang Y, Lin F, Ouyang L, Wang G. Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. J Med Chem 2021; 64:16328-16348. [PMID: 34735773 DOI: 10.1021/acs.jmedchem.1c01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.
Collapse
Affiliation(s)
- Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
20
|
Ji Z, Njauw CN, Guhan S, Kumar R, Reddy B, Rajadurai A, Flaherty K, Tsao H. Loss of ACK1 Upregulates EGFR and Mediates Resistance to BRAF Inhibition. J Invest Dermatol 2020; 141:1317-1324.e1. [PMID: 33159968 DOI: 10.1016/j.jid.2020.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Targeted BRAF(V600E) suppression by selective BRAF inhibitors (BRAFis; e.g., vemurafenib and dabrafenib) has led to a sea change in the treatment of metastatic melanoma. Despite frequent upfront responses, acquired resistance has compromised long-term applicability. Among the various mechanisms of resistance, activation of multiple receptor tyrosine kinases is a known critical factor that contributes to vemurafenib resistance. EGFR activation has been recurrently identified in a set of vemurafenib-resistant melanomas, but little is known about how EGFR, or possibly other receptor tyrosine kinases, becomes activated. Here, we report that ACK1, a protein kinase that modulates EGFR turnover, is downregulated in vemurafenib-resistant melanoma cells. We also found that ACK1 depletion with short hairpin RNA decreased EGFR degradation when activated by epidermal growth factor, increased EGFR protein expression, and conferred resistance to BRAFis both in vitro and in vivo. Vemurafenib resistance mediated by ACK1 inhibition can be reversed by the EGFR inhibitor gefitinib. Our data indicate that ACK1 loss may be a post-transcriptional mechanism that increases EGFR signaling and contributes to drug resistance.
Collapse
Affiliation(s)
- Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Guhan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bobby Reddy
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anpuchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Feng X, Ma D, Zhao J, Song Y, Zhu Y, Zhou Q, Ma F, Liu X, Zhong M, Liu Y, Xiong Y, Qiu X, Zhang Z, Zhang H, Zhao Y, Zhang K, Hong X, Zhang Z. UHMK1 promotes gastric cancer progression through reprogramming nucleotide metabolism. EMBO J 2020; 39:e102541. [PMID: 31975428 PMCID: PMC7049804 DOI: 10.15252/embj.2019102541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
UHMK1 is a nuclear serine/threonine kinase recently implicated in carcinogenesis. However, the functions and action mechanisms of UHMK1 in the pathogenesis of human gastric cancer (GC) are unclear. Here, we observed that UHMK1 was markedly upregulated in GC. UHMK1 silencing strongly inhibited GC aggressiveness. Interestingly, UHMK1-induced GC progression was mediated primarily via enhancing de novo purine synthesis because inhibiting purine synthesis reversed the effects of UHMK1 overexpression. Mechanistically, UHMK1 activated ATF4, an important transcription factor in nucleotide synthesis, by phosphorylating NCOA3 at Ser (S) 1062 and Thr (T) 1067. This event significantly enhanced the binding of NCOA3 to ATF4 and the expression of purine metabolism-associated target genes. Conversely, deficient phosphorylation of NCOA3 at S1062/T1067 significantly abrogated the function of UHMK1 in GC development. Clinically, Helicobacter pylori and GC-associated UHMK1 mutation induced NCOA3-S1062/T1067 phosphorylation and enhanced the activity of ATF4 and UHMK1. Importantly, the level of UHMK1 was significantly correlated with the level of phospho-NCOA3 (S1062/T1067) in human GC specimens. Collectively, these results show that the UHMK1-activated de novo purine synthesis pathway significantly promotes GC development.
Collapse
Affiliation(s)
- Xing Feng
- The Affiliated Hospital of Guilin Medical UniversityGuangxi Key Laboratory of Brain and Cognitive NeuroscienceGuangxi Neurological Diseases Clinical Research CenterGuilinGuangxiChina
- Department of ImmuobiologyYale University School of MedicineNew HavenCTUSA
| | - Dong Ma
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jiabao Zhao
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yuekun Zhu
- Medical CenterDuke UniversityDurhamNCUSA
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qingxin Zhou
- Department of OncologyThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Fei Ma
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xing Liu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mengya Zhong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yu Liu
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yubo Xiong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Xingfeng Qiu
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Zhen Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Heng Zhang
- Department of Histology and EmbryologyXiang Ya School of MedicineCentral South UniversityChangshaChina
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical UniversityNanningChina
| | - Kaiguang Zhang
- Department of Digestive DiseaseThe First Affiliated Hospital of USTCAnhui Provincial HospitalUniversity of Science and Technology of ChinaAnhuiChina
| | - Xuehui Hong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Zhiyong Zhang
- The Affiliated Hospital of Guilin Medical UniversityGuangxi Key Laboratory of Brain and Cognitive NeuroscienceGuangxi Neurological Diseases Clinical Research CenterGuilinGuangxiChina
- Department of SurgeryRobert‐Wood‐Johnson Medical School University HospitalRutgers UniversityThe State University of New JerseyNew BrunswickNJUSA
| |
Collapse
|
22
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
23
|
Research Progress of the Functional Role of ACK1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1018034. [PMID: 31772931 PMCID: PMC6854235 DOI: 10.1155/2019/1018034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
ACK1 is a nonreceptor tyrosine kinase with a unique structure, which is tightly related to the biological behavior of tumors. Previous studies have demonstrated that ACK1 was involved with multiple signaling pathways of tumor progression. Its crucial role in tumor cell proliferation, apoptosis, invasion, and metastasis was tightly related to the prognosis and clinicopathology of cancer. ACK1 has a unique way of regulating cellular pathways, different from other nonreceptor tyrosine kinases. As an oncogenic kinase, recent studies have shown that ACK1 plays a critical regulatory role in the initiation and progression of tumors. In this review, we will be summarizing the structural characteristics, activation, and regulation of ACK1 in breast cancer, aiming to deeply understand the functional and mechanistic role of ACK1 and provide novel therapeutic strategies for breast cancer treatment.
Collapse
|
24
|
Qi L, Ding Y. TNK2 as a key drug target for the treatment of metastatic colorectal cancer. Int J Biol Macromol 2018; 119:48-52. [PMID: 30036625 DOI: 10.1016/j.ijbiomac.2018.07.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Currently, few small molecular compounds are being used as therapeutic targets in the treatment of metastatic colorectal cancer (CRC); therefore, there is an urgent need to identify novel drug targets, which could be used in the treatment of CRC. The Connectivity Map (cmap) web server was used to correlate the differentially expressed genes of CRC with the small molecular compounds related to the disease. Thus, we identified six small molecular compounds to be potentially relevant to the development of CRC. Target protein analysis revealed that TNK2 is a common target of the three small molecular compounds, which were included in the set of six small molecular compounds mentioned earlier. In addition, the continuous activation of TNK2 was observed in the development of CRC. This indicates that TNK2 may have the potential of being a key drug target in the treatment of metastatic CRC. The Molinspiration tool was used to analyze small molecular compounds, which are bound to TNK2 in the Protein Data Bank (PDB). We found that a small molecular compound in protein with the PDB identification code 4EWH had higher scores in terms of kinase inhibition but lower scores in terms of other biological activity indices. This indicates that the compound had good kinase specificity, which is a key characteristic of other existing clinically approved anti-tumor small molecular compounds. By performing target protein prediction analysis, we identified 122 target proteins of the small molecular compound in 4EWH. Out of the 122 target proteins, 21 proteins showed kinase activity, including TNK2. Enrichment analysis was performed on the diseases in which these 122 target proteins were involved, and the results revealed that CRC had the highest correlation. Moreover, 47 target proteins were individually correlated with the progression of CRC. This further suggests that the small molecular compound can inhibit CRC. Thus, TNK2 was considered as a potential drug target in the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Liu Y, Shan N, Yuan Y, Tan B, He C, Tong C, Qi H. Knockdown of activated Cdc42-associated kinase inhibits human extravillous trophoblast migration and invasion and decreases protein expression of pho-Akt and matrix metalloproteinase. J Matern Fetal Neonatal Med 2018; 33:1125-1133. [PMID: 30282494 DOI: 10.1080/14767058.2018.1515196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: The sufficient invasion and migration of human extravillous trophoblast (EVTs) cells are crucial for placentation. Inadequate invasion of trophoblasts may correlate with the development of preeclampsia. Many studies have suggested that activated Cdc42-associated kinase (ACK1) is associated with tumor metastasis and invasion. This study investigated the ACK1 expression and its function in trophoblasts during placental development.Methods: ACK1 expression in human placentas was determined through immunofluorescence. We investigated the migration/invasion of the immortalized human first-trimester EVT cell line HTR8/SVneo. Hypoxia-reoxygenation (H/R) conditions were applied to mimic preeclampsia model in vitro. Lentiviral vector-based short-hairpin RNA directed against the sequence of ACK1 (ACK1 shRNA) was used to knock down ACK1 expression in HTR8/SVneo cells. Cell apoptosis and proliferation were determined through flow cytometry and cell counting Kit-8 (CCK-8) assays, respectively. The expression of matrix metalloproteinase (MMP) 2/9 and tissue inhibitors of metalloproteinase (TIMP) 1/2 was measured by western blotting.Results: ACK1 localized within trophoblasts of human placental villi, decidual cells in the maternal decidua. ACK1 levels in preeclampsia (PE) placentas were significantly lower than those in controls. ACK1 shRNA significantly inhibited HTR8/SVneo cells migration and invasion but did not affect their apoptosis and proliferation. ACK1 knockdown decreased MMP2/9 and increased TIMP1/2 expression, as well as downregulated the phosphorylation of AKt (p-Akt). In addition, ACK1 and MMP2/9 were downregulated following treatment with LY294002, whereas ACK1 shRNA had no effect on phosphorylation of PI3K(p-PI3K). After exposed in H/R condition, ACK1 expression, MMP2/9 protein, and p-Akt were also significantly decreased.Discussion and conclusions: ACK1 expression is lowered in preeclamptic placentas and promotes trophoblast cell invasion, migration. H/R conditions decrease ACK1 expression and appear to decouple the positive relationship between ACK1 expression and Akt activation.
Collapse
Affiliation(s)
- Yangming Liu
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Shan
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yuan
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengjin He
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Jenkins C, Luty SB, Maxson JE, Eide CA, Abel ML, Togiai C, Nemecek ER, Bottomly D, McWeeney SK, Wilmot B, Loriaux M, Chang BH, Tyner JW. Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci Signal 2018; 11:eaao5617. [PMID: 30018082 PMCID: PMC6168748 DOI: 10.1126/scisignal.aao5617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein tyrosine phosphatase PTPN11 is implicated in the pathogenesis of juvenile myelomonocytic leukemia (JMML), acute myeloid leukemia (AML), and other malignancies. Activating mutations in PTPN11 increase downstream proliferative signaling and cell survival. We investigated the signaling upstream of PTPN11 in JMML and AML cells and found that PTPN11 was activated by the nonreceptor tyrosine/serine/threonine kinase TNK2 and that PTPN11-mutant JMML and AML cells were sensitive to TNK2 inhibition. In cultured human cell-based assays, PTPN11 and TNK2 interacted directly, enabling TNK2 to phosphorylate PTPN11, which subsequently dephosphorylated TNK2 in a negative feedback loop. Mutations in PTPN11 did not affect this physical interaction but increased the basal activity of PTPN11 such that TNK2-mediated activation was additive. Consequently, coexpression of TNK2 and mutant PTPN11 synergistically increased mitogen-activated protein kinase (MAPK) signaling and enhanced colony formation in bone marrow cells from mice. Chemical inhibition of TNK2 blocked MAPK signaling and colony formation in vitro and decreased disease burden in a patient with PTPN11-mutant JMML who was treated with the multikinase (including TNK2) inhibitor dasatinib. Together, these data suggest that TNK2 is a promising therapeutic target for PTPN11-mutant leukemias.
Collapse
MESH Headings
- Animals
- Child
- Dasatinib/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Juvenile/drug therapy
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- Male
- Mice
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Signal Transduction
- Survival Rate
- Synthetic Lethal Mutations
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Chelsea Jenkins
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel B Luty
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Abel
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Corinne Togiai
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eneida R Nemecek
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel Bottomly
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
27
|
Regulating Cdc42 and Its Signaling Pathways in Cancer: Small Molecules and MicroRNA as New Treatment Candidates. Molecules 2018; 23:molecules23040787. [PMID: 29596304 PMCID: PMC6017947 DOI: 10.3390/molecules23040787] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Despite great improvements in the diagnosis and treatment of neoplasms, metastatic disease is still the leading cause of death in cancer patients, with mortality rates still rising. Given this background, new ways to treat cancer will be important for development of improved cancer control strategies. Cdc42 is a member of the Rho GTPase family and plays an important role in cell-to-cell adhesion, formation of cytoskeletal structures, and cell cycle regulation. It thus influences cellular proliferation, transformation, and homeostasis, as well as the cellular migration and invasion processes underlying tumor formation. Cdc42 acts as a collection point for signal transduction and regulates multiple signaling pathways. Moreover, recent studies show that in most human cancers Cdc42 is abnormally expressed and promoting neoplastic growth and metastasis. Regarding possible new treatments for cancer, miRNA and small molecules targeting Cdc42 and related pathways have been recently found to be effective on cancer. In this review, we analyze the newly recognized regulation mechanisms for Cdc42 and Cdc42-related signal pathways, and particularly new treatments using small molecules and miRNAs to inhibit the abnormal overexpression of Cdc42 that may slow down the metastasis process, improve cancer therapy and lead to novel strategies for development of antineoplastic drugs.
Collapse
|
28
|
Zhao X, Lv C, Chen S, Zhi F. A role for the non-receptor tyrosine kinase ACK1 in TNF-alpha-mediated apoptosis and proliferation in human intestinal epithelial caco-2 cells. Cell Biol Int 2017; 42:1097-1105. [PMID: 28921811 DOI: 10.1002/cbin.10875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
Abstract
The roles of tumor necrosis factor alpha (TNF-alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42-associated kinase 1 (ACK1) in TNF-alpha-mediated apoptosis and proliferation in Caco-2 cells. ACK1 expression was knocked down using ACK1-specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1-specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF-alpha-mediated anti-apoptotic effects and proliferation of Caco-2 cells. Interestingly, TNF-alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco-2 cells. ACK1-Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down-stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF-alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor-кB (NF-кB) activity, suggesting a correlation between NF-кB signaling and TNF-alpha-mediated apoptosis in Caco-2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF-alpha-induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down-stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation.
Collapse
Affiliation(s)
- Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaolan Lv
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengbo Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
29
|
Tetley GJN, Mott HR, Cooley RN, Owen D. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK. J Biol Chem 2017; 292:11361-11373. [PMID: 28539360 PMCID: PMC5500802 DOI: 10.1074/jbc.m117.789883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Cdc42 is a Rho-family small G protein that has been widely studied for its role in controlling the actin cytoskeleton and plays a part in several potentially oncogenic signaling networks. Similar to most other small G proteins, Cdc42 binds to many downstream effector proteins to elicit its cellular effects. These effector proteins all engage the same face of Cdc42, the conformation of which is governed by the activation state of the G protein. Previously, the importance of individual residues in conferring binding affinity has been explored for residues within Cdc42 for three of its Cdc42/Rac interactive binding (CRIB) effectors, activated Cdc42 kinase (ACK), p21-activated kinase (PAK), and Wiskott-Aldrich syndrome protein (WASP). Here, in a complementary study, we have used our structure of Cdc42 bound to ACK via an intrinsically disordered ACK region to guide an analysis of the Cdc42 interface on ACK, creating a panel of mutant proteins with which we can now describe the complete energetic landscape of the Cdc42-binding site on ACK. Our data suggest that the binding affinity of ACK relies on several conserved residues that are critical for stabilizing the quaternary structure. These residues are centered on the CRIB region, with the complete binding region anchored at each end by hydrophobic interactions. These findings suggest that ACK adopts a dock and coalesce binding mechanism with Cdc42. In contrast to other CRIB-family effectors and indeed other intrinsically disordered proteins, hydrophobic residues likely drive Cdc42-ACK binding.
Collapse
Affiliation(s)
- George J N Tetley
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| | - Helen R Mott
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| | - R Neil Cooley
- Isogenica Ltd., Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Darerca Owen
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| |
Collapse
|
30
|
Zeng QS, Xie BH, Xie YK, Wang XN. Activated Cdc42 kinase 1 and hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3853-3859. [DOI: 10.11569/wcjd.v24.i27.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocellular carcinoma. The incidence of HCC is different between countries and regions. As one of the common malignant tumors in China, HCC has high mortality and is the second most common cause of cancer-related death. Elucidating the molecular mechanism of HCC pathogenesis is important for the diagnosis and treatment of liver cancer in China. The expression of activated Cdc42 kinase 1 (ACK1) has been found in a variety of cancers, and ACK1 participates in the occurrence and development of cancers. However, there are currently few studies about the relationship between ACK1 protein and HCC. This paper reviews the structure characteristics and biological function of ACK1 as well as its relationship with invasion and metastasis of HCC.
Collapse
|
31
|
Auto-thiophosphorylation activity of Src tyrosine kinase. BMC BIOCHEMISTRY 2016; 17:13. [PMID: 27387461 PMCID: PMC4936181 DOI: 10.1186/s12858-016-0071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
Background Intermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low. Results Here, we have characterized the ability of Src to auto-thiophosphorylate. Auto-thiophosphorylation of Src at Tyr416 in the activation loop proceeds efficiently in the presence of Ni2+, resulting in kinase activation. Other tyrosine kinases (Ack1, Hck, and IGF1 receptor) also auto-thiophosphorylate in the presence of Ni2+. Tyr416-thiophosphorylated Src is resistant to dephosphorylation by PTP1B phosphatase. Conclusions Src and other tyrosine kinases catalyze auto-thiophosphorylation in the presence of Ni2+. Thiophosphorylation of Src occurs at Tyr416 in the activation loop, and results in enhanced kinase activity. Tyr416-thiophosphorylated Src could serve as a stable, persistently-activated mimic of Src. Electronic supplementary material The online version of this article (doi:10.1186/s12858-016-0071-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Hu L, Xu J, Yin MX, Zhang L, Lu Y, Wu W, Xue Z, Ho MS, Gao G, Zhao Y, Zhang L. Ack promotes tissue growth via phosphorylation and suppression of the Hippo pathway component Expanded. Cell Discov 2016; 2:15047. [PMID: 27462444 PMCID: PMC4860957 DOI: 10.1038/celldisc.2015.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Non-receptor tyrosine kinase activated cdc42 kinase was reported to participate in several types of cancers in mammals. It is also believed to have an anti-apoptotic function in Drosophila. Here, we report the identification of Drosophila activated cdc42 kinase as a growth promoter and a novel Hippo signaling pathway regulator. We find that activated cdc42 kinase promotes tissue growth through modulating Yorkie activity. Furthermore, we demonstrate that activated cdc42 kinase interacts with Expanded and induces tyrosine phosphorylation of Expanded on multiple sites. We propose a model that activated cdc42 kinase negatively regulates Expanded by changing its phosphorylation status to promote tissue growth. Moreover, we show that ack genetically interacts with merlin and expanded. Thus, we identify Drosophila activated cdc42 kinase as a Hippo pathway regulator.
Collapse
Affiliation(s)
- Lianxin Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jiajun Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yi Lu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhaoyu Xue
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Margaret S Ho
- Department of Anatomy and Neurobiology, School of Medicine, Tongji University , Shanghai, China
| | - Guanjun Gao
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
33
|
Maxson JE, Abel ML, Wang J, Deng X, Reckel S, Luty SB, Sun H, Gorenstein J, Hughes SB, Bottomly D, Wilmot B, McWeeney SK, Radich J, Hantschel O, Middleton RE, Gray NS, Druker BJ, Tyner JW. Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. Cancer Res 2015; 76:127-38. [PMID: 26677978 DOI: 10.1158/0008-5472.can-15-0817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 01/22/2023]
Abstract
The amount of genomic information about leukemia cells currently far exceeds our overall understanding of the precise genetic events that ultimately drive disease development and progression. Effective implementation of personalized medicine will require tools to distinguish actionable genetic alterations within the complex genetic landscape of leukemia. In this study, we performed kinase inhibitor screens to predict functional gene targets in primary specimens from patients with acute myeloid leukemia and chronic myelomonocytic leukemia. Deep sequencing of the same patient specimens identified genetic alterations that were then integrated with the functionally important targets using the HitWalker algorithm to prioritize the mutant genes that most likely explain the observed drug sensitivity patterns. Through this process, we identified tyrosine kinase nonreceptor 2 (TNK2) point mutations that exhibited oncogenic capacity. Importantly, the integration of functional and genomic data using HitWalker allowed for prioritization of rare oncogenic mutations that may have been missed through genomic analysis alone. These mutations were sensitive to the multikinase inhibitor dasatinib, which antagonizes TNK2 kinase activity, as well as novel TNK2 inhibitors, XMD8-87 and XMD16-5, with greater target specificity. We also identified activating truncation mutations in other tumor types that were sensitive to XMD8-87 and XMD16-5, exemplifying the potential utility of these compounds across tumor types dependent on TNK2. Collectively, our findings highlight a more sensitive approach for identifying actionable genomic lesions that may be infrequently mutated or overlooked and provide a new method for the prioritization of candidate genetic mutations.
Collapse
Affiliation(s)
- Julia E Maxson
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa L Abel
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Xianming Deng
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel B Luty
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Huahang Sun
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Julie Gorenstein
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Seamus B Hughes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard E Middleton
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Howard Hughes Medical Institute, Portland, Oregon
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
34
|
Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, Chen L, Chaerkady R, Kim MS, Zhong J, Jelinek C, Barbhuiya MA, Leal-Rojas P, Yang Y, Kashyap MK, Marimuthu A, Ling M, Fackler MJ, Merino V, Zhang Z, Zahnow CA, Gabrielson E, Stearns V, Roa JC, Sukumar S, Gill PS, Pandey A. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 2015; 6:29143-29160. [PMID: 26356563 PMCID: PMC4745717 DOI: 10.18632/oncotarget.5020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. About 15-20% of all breast cancers are triple negative breast cancer (TNBC) and are often highly aggressive when compared to other subtypes of breast cancers. To better characterize the biology that underlies the TNBC phenotype, we profiled the phosphotyrosine proteome of a panel of twenty-six TNBC cell lines using quantitative high resolution Fourier transform mass spectrometry. A heterogeneous pattern of tyrosine kinase activation was observed based on 1,789 tyrosine-phosphorylated peptides identified from 969 proteins. One of the tyrosine kinases, AXL, was found to be activated in a majority of aggressive TNBC cell lines and was accompanied by a higher level of AXL expression. High levels of AXL expression are correlated with a significant decrease in patient survival. Treatment of cells bearing activated AXL with a humanized AXL antibody inhibited cell proliferation and migration in vitro, and tumor growth in mice. Overall, our global phosphoproteomic analysis provided new insights into the heterogeneity in the activation status of tyrosine kinase pathways in TNBCs. Our approach presents an effective means of identifying important novel biomarkers and targets for therapy such as AXL in TNBC.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Muhammad Saddiq Zahari
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Binyun Ma
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Ren Liu
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nandini A. Sahasrabuddhe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Lily Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Min-Sik Kim
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jun Zhong
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Christine Jelinek
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mustafa A. Barbhuiya
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Pamela Leal-Rojas
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Yi Yang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Manoj Kumar Kashyap
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Arivusudar Marimuthu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Min Ling
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vanessa Merino
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zhen Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cynthia A. Zahnow
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Edward Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Juan Carlos Roa
- Advanced Center for Chronic Diseases (ACCDiS), Department of Pathology Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Parkash S. Gill
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
35
|
Xie B, Zen Q, Wang X, He X, Xie Y, Zhang Z, Li H. ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling. Int J Oncol 2015; 46:2057-66. [PMID: 25738261 DOI: 10.3892/ijo.2015.2910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Several studies have revealed that ACK1 is upregulated in various cancers and promotes tumor progression. However, the role and mechanism of ACK1 in hepatocellular carcinoma (HCC) remains unknown. In this study, the expression of ACK1 was assessed in several cell lines and 150 pairs of HCC and adjacent noncancerous liver tissues. The protein expression of p-ACK1 and WWOX were detected by immunohistochemistry to evaluate their correlation with ACK1. Flow cytometry, caspase 3/7 activity assay, BrdU cell proliferation assay, MTT assay and Transwell assay were used to detect apoptosis, proliferation, invasion and migration of HCC cells. The regulatory effect of ACK1 on WWOX, AKT, p-AKT, MMP2 and MMP9 in HCC cells was confirmed by immuno-blotting. We found that ACK1 was more highly expressed in HCC tissues than in non-HCC tissues, and over-expression of ACK1 was correlated with clinicopathological features of poor prognosis. Clinical analysis demonstrated that ACK1 is an independent prognostic marker for predicting overall survival and disease-free survival of HCC patients. Pearson's correlation coefficient analysis indicated that ACK1 was positively associated with p-ACK1 and was negatively associated with WWOX expression. In vitro studies showed that knockdown of ACK1 promoted HCC cell apoptosis and repressed HCC cells invasion, migration and proliferation. Furthermore, knockdown of ACK1 resulted in upregulation of WWOX and inactivation of AKT signaling. In this study, we also found that knockdown of ACK1 resulted in the downregulation of MMP2 and MMP9 in HCC. Our results indicate that ACK1 is an independent prognostic marker and promotes HCC progression via downregulating WWOX and activating AKT signaling.
Collapse
Affiliation(s)
- Binhui Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Qinshan Zen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Zixiang Zhang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Heping Li
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
36
|
Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene 2014; 34:4162-7. [PMID: 25347744 PMCID: PMC4411206 DOI: 10.1038/onc.2014.350] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/11/2023]
Abstract
Deregulated tyrosine kinase signaling alters cellular homeostasis to drive cancer progression. The emergence of a non-receptor tyrosine kinase, ACK1 as an oncogenic kinase, has uncovered novel mechanisms by which tyrosine kinase signaling promotes cancer progression. While early studies focused on ACK1 (also known as activated Cdc42-associated kinase 1 or TNK2) as a cytosolic effecter of activated transmembrane receptor tyrosine kinases (RTKs), wherein it shuttles between the cytosol and the nucleus to rapidly transduce extracellular signals from the RTKs to the intracellular effectors, recent data unfold a new aspect of its functionality as an epigenetic regulator. ACK1 interacts with the Estrogen Receptor (ER)/histone demethylase KDM3A (JHDM2a) complex, modifies KDM3A by tyrosine phosphorylation to regulate transcriptional outcome at HOXA1 locus to promote the growth of tamoxifen-resistant breast cancer. It is also well established that ACK1 regulates the activity of Androgen Receptor (AR) by tyrosine phosphorylation to fuel the growth of hormone-refractory prostate cancers. Further, recent explosion in genomic sequencing has revealed recurrent ACK1 gene amplification and somatic mutations in a variety of human malignancies, providing a molecular basis for its role in neoplastic transformation. In this review, we will discuss the various facets of ACK1 signaling, including its newly uncovered epigenetic regulator function, which enables cells to bypass the blockade to major survival pathways to promote resistance to standard cancer treatments. Not surprisingly, cancer cells appear to acquire an `addiction’ to ACK1 mediated survival, particularly under stress conditions, such as growth factor deprivation or genotoxic insults or hormone deprivation. With the accelerated development of potent and selective ACK1 inhibitors, targeted treatment for cancers harboring aberrant ACK1 activity may soon become a clinical reality.
Collapse
Affiliation(s)
- K Mahajan
- 1] Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA [2] Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| | - N P Mahajan
- 1] Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA [2] Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
37
|
Wang B, Xu T, Liu J, Zang S, Gao L, Huang A. Overexpression of activated Cdc42-associated kinase1 (Ack1) predicts tumor recurrence and poor survival in human hepatocellular carcinoma. Pathol Res Pract 2014; 210:787-92. [PMID: 25445114 DOI: 10.1016/j.prp.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in China. Recent research suggested that activated Cdc42-associated kinase 1 (Ack1) played an important role in facilitating tumorigenesis, tumor invasion and metastasis. However, the role of Ack1 in HCC is not clear. Herein, the expression level of Ack1 mRNA in 30 fresh HCC specimens (carcinoma, peri-carcinoma and distal-carcinoma tissues) was detected by reverse transcription-polymerase chain reaction (RT-PCR), while the expression of Ack1 protein in 18 fresh HCC specimens (carcinoma, peri-carcinoma and distal-carcinoma tissues) was analyzed by Western blotting. Immunohistochemical (IHC) staining was also employed to assess both the expression level and distribution of Ack1 protein in HCC tissues collected from 173 lesions, so as to study the correlations between Ack1 protein expression and other HCC-related clinicopathologic parameters. The results showed that both Ack1 mRNA and protein were significantly over-expressed in HCC tissues than that of either peri-carcinoma or distal-carcinoma tissues (P < 0.001, P = 0.012, respectively), while there was no significant difference between peri-carcinoma and distal-carcinoma tissues. Furthermore, the results of IHC indicated that the rates of Ack1 expressions in the patients with capsular invasion, hepatic vessel involvement and recurrence were higher than without above three conditions (P = 0.037, P = 0.036, P = 0.019, respectively), whereas the patients with overexpression of Ack1 protein had low survival rate (P = 0.007). Ack1 expression, tumor size and recurrence were independently related to survival (P = 0.014, P = 0.018, P < 0.001, respectively). Thus, the level of Ack1 is associated with tumor invasion potential, and the expression of Ack1 plays an important role as predictor of recurrence and poor outcome in HCC patients.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pathology and Institution of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Tao Xu
- Department of Pathology, Yuncheng Central Hospital of Shanxi Province, Yuncheng 044000, China
| | - Jingfeng Liu
- Department of Hepatic Surgery, Liver Disease Center of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shengbing Zang
- Department of Pathology and Institution of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Lingyun Gao
- Department of Pathology and Institution of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Aimin Huang
- Department of Pathology and Institution of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
38
|
FRK suppresses the proliferation of human glioma cells by inhibiting cyclin D1 nuclear accumulation. J Neurooncol 2014; 119:49-58. [PMID: 24792491 DOI: 10.1007/s11060-014-1461-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/23/2014] [Indexed: 01/01/2023]
Abstract
The Fyn related kinase (FRK) is a noteworthy member of the Src non-receptor tyrosine kinase family for its distinctive tumor suppressive function. Recently, we have shown that FRK plays a protective role against the progression of glioma by suppressing cell migration and invasion. However, it is unclear whether the cell growth of glioma is also regulated by FRK and by which mechanism FRK alters its specific biological functions. In the current study, we found that FRK over-expression significantly suppressed the proliferation of glioma cells. In contrast, FRK knockdown by siRNA promoted glioma cell growth. In addition, FRK over-expression caused G1 phase arrest as well as apoptosis of glioma cells. Further investigation disclosed that FRK-induced G1 arrest was accompanied by down-regulation of hyperphosphorylated retinoblastoma protein (pRb), which led to the consequent suppression of E2F1. More importantly, we found that over-expression of FRK inhibited proper cyclin D1 accumulation in the nucleus of proliferating cells. Taken together, our results demonstrate a combined mechanism for the anti-proliferative effects of FRK by inhibiting cyclin D1 nucleus accumulation and pRb phosphorylation in glioma cells.
Collapse
|
39
|
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014; 51:125-37. [PMID: 24446827 DOI: 10.3109/10408363.2013.874403] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTKs) are enzymes that transfer phosphate groups to tyrosine residues on protein substrates. Phosphorylation of proteins causes changes in their function and/or enzymatic activity resulting in specific biological responses. There are two classes of PTKs: the transmembrane receptor PTKs and the cytoplasmic non-receptor PTKs (NRTKs). NRTKs are involved in transduction of signals originating from extracellular clues, which often interact with transmembrane receptors. Thus, they are important components of signaling pathways which regulate fundamental cellular functions such as cell differentiation, apoptosis, survival, and proliferation. The activity of NRTKs is tightly regulated, and de-regulation and/or overexpression of NRTKs has been implicated in malignant transformation and carcinogenesis. Research on NRTKs has shed light on the mechanisms of a number of cellular processes including those involved in carcinogenesis. Not surprisingly, several tyrosine kinase inhibitors are in use as treatment for a number of malignancies, and more are under investigation. This review deals with the structure, function, and signaling pathways of nine main families of NRTKs in normal and cancer cells.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| | | | | |
Collapse
|
40
|
Jones S, Cunningham DL, Rappoport JZ, Heath JK. The non-receptor tyrosine kinase Ack1 regulates the fate of activated EGFR by inducing trafficking to the p62/NBR1 pre-autophagosome. J Cell Sci 2014; 127:994-1006. [PMID: 24413169 DOI: 10.1242/jcs.136895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Growth factor signalling regulates multiple cellular functions and its misregulation has been linked to the development and progression of cancer. Ack1 (activated Cdc42-associated kinase 1, also known as TNK2) is a non-receptor tyrosine kinase that has been implicated in trafficking and degradation of epidermal growth factor receptor (EGFR), yet its precise functions remain elusive. In this report, we investigate the role of Ack1 in EGFR trafficking and show that Ack1 partially colocalises to Atg16L-positive structures upon stimulation with EGF. These structures are proposed to be the isolation membranes that arise during formation of autophagosomes. In addition, we find that Ack1 colocalises and interacts with sequestosome 1 (p62/SQSTM1), a receptor for selective autophagy, through a ubiquitin-associated domain, and this interaction decreases upon treatment with EGF, thus suggesting that Ack1 moves away from p62/SQSTM1 compartments. Furthermore, Ack1 interacts and colocalises with NBR1, another autophagic receptor, and this colocalisation is enhanced in the presence of ectopically expressed p62/SQSTM1. Finally, knockdown of Ack1 results in accelerated localisation of EGFR to lysosomes upon treatment with EGF. Structure-function analyses of a panel of Ack1 deletion mutants revealed key mechanistic aspects of these relationships. The Mig6-homology domain and clathrin-binding domain both contribute to colocalisation with EGFR, whereas the UBA domain is essential for colocalisation with p62/SQSTM1, but not NBR1. Taken together, our studies demonstrate a novel role for Ack1 in diverting activated EGFR into a non-canonical degradative pathway, marked by association with p62/SQSTM1, NBR1 and Atg16L.
Collapse
Affiliation(s)
- Sylwia Jones
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
41
|
Linderoth E, Pilia G, Mahajan NP, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem 2013; 288:32922-31. [PMID: 24085293 DOI: 10.1074/jbc.m113.481507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) holds promise for treatment of cancer due to its ability to selectively kill cancer cells while sparing normal cells. Ligand-induced translocation of TRAIL receptors (TRAIL-R) 1 and 2 (also called DR4 and DR5, respectively) into lipid raft membrane microdomains is required for TRAIL-induced cell death by facilitating receptor clustering and formation of the death-inducing signaling complex, yet the underlying regulatory mechanisms remain largely unknown. We show here that the non-receptor tyrosine kinase Ack1, previously implicated in the spatiotemporal regulation of the EGF receptor, is required for TRAIL-induced cell death in multiple epithelial cell lines. TRAIL triggered a transient up-regulation of Ack1 and its recruitment to lipid rafts along with TRAIL-R1/2. siRNA-mediated depletion of Ack1 disrupted TRAIL-induced accumulation of TRAIL-R1/2 in lipid rafts and efficient recruitment of caspase-8 to the death-inducing signaling complex. Pharmacological inhibition of Ack1 did not affect TRAIL-induced cell death, indicating that Ack1 acts in a kinase-independent manner to promote TRAIL-R1/2 accumulation in lipid rafts. These findings identify Ack1 as an essential player in the spatial regulation of TRAIL-R1/2.
Collapse
Affiliation(s)
- Emma Linderoth
- From the Wolfson Institute for Biomedical Research, University College London, WC1E 6BT London, United Kingdom
| | | | | | | |
Collapse
|
42
|
Mahajan K, Mahajan NP. ACK1 tyrosine kinase: targeted inhibition to block cancer cell proliferation. Cancer Lett 2013; 338:185-92. [PMID: 23597703 DOI: 10.1016/j.canlet.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/05/2023]
Abstract
ACK1 tyrosine kinase, located on chromosome 3q29, is aberrantly activated, amplified or mutated in a wide variety of human cancers. While the deregulated kinase is oncogenic and its activation correlates with progression to metastatic stage, its inhibition causes cell cycle arrest, sensitizes cells to ionizing radiation and induces apoptosis. Oncogenicity of ACK1 is not only due to its ability to promote activation of critical pro-survival kinases and harmone receptors by phosphorylating at distinct tyrosine residues, but also by employing a similar mechanism to eliminate a tumor suppressor from cancer cells. Despite the substantial data supporting the oncogenic role of ACK1, and the potential clinical benefit of blocking ACK1 in metastatic disease, to date ACK1-specific small molecule inhibitors have not been exploited for cancer therapy. This review highlights recent advances that elucidate how cancer cells employ ACK1 kinase to their advantage and discusses some of the novel ACK1 inhibitors that have shown promise in pre-clinical studies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | |
Collapse
|
43
|
Abdallah AM, Zhou X, Kim C, Shah KK, Hogden C, Schoenherr JA, Clemens JC, Chang HC. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis. Dev Biol 2013; 378:141-53. [PMID: 23562806 DOI: 10.1016/j.ydbio.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 11/25/2022]
Abstract
Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation.
Collapse
Affiliation(s)
- Abbas M Abdallah
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiao X, Kopecky DJ, Liu J, Liu J, Jaen JC, Cardozo MG, Sharma R, Walker N, Wesche H, Li S, Farrelly E, Xiao SH, Wang Z, Kayser F. Synthesis and optimization of substituted furo[2,3-d]-pyrimidin-4-amines and 7H-pyrrolo[2,3-d]pyrimidin-4-amines as ACK1 inhibitors. Bioorg Med Chem Lett 2012; 22:6212-7. [PMID: 22929232 DOI: 10.1016/j.bmcl.2012.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/16/2023]
Affiliation(s)
- XianYun Jiao
- Department of Medicinal Chemistry, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem J 2012; 445:255-64. [PMID: 22553920 DOI: 10.1042/bj20111575] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.
Collapse
|
46
|
Mahajan K, Coppola D, Rawal B, Chen YA, Lawrence HR, Engelman RW, Lawrence NJ, Mahajan NP. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem 2012; 287:22112-22. [PMID: 22566699 DOI: 10.1074/jbc.m112.357384] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Androgen deprivation therapy has been the standard of care in prostate cancer due to its effectiveness in initial stages. However, the disease recurs, and this recurrent cancer is referred to as castration-resistant prostate cancer (CRPC). Radiotherapy is the treatment of choice; however, in addition to androgen independence, CRPC is often resistant to radiotherapy, making radioresistant CRPC an incurable disease. The molecular mechanisms by which CRPC cells acquire radioresistance are unclear. Androgen receptor (AR)-tyrosine 267 phosphorylation by Ack1 tyrosine kinase (also known as TNK2) has emerged as an important mechanism of CRPC growth. Here, we demonstrate that pTyr(267)-AR is recruited to the ATM (ataxia telangiectasia mutated) enhancer in an Ack1-dependent manner to up-regulate ATM expression. Mice engineered to express activated Ack1 exhibited a significant increase in pTyr(267)-AR and ATM levels. Furthermore, primary human CRPCs with up-regulated activated Ack1 and pTyr(267)-AR also exhibited significant increase in ATM expression. The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr(267) phosphorylation and its recruitment to the ATM enhancer. Notably, AIM-100 suppressed Ack1 mediated ATM expression and mitigated the growth of radioresistant CRPC tumors. Thus, our study uncovers a previously unknown mechanism of radioresistance in CRPC, which can be therapeutically reversed by a new synergistic approach that includes radiotherapy along with the suppression of Ack1/AR/ATM signaling by the Ack1 inhibitor, AIM-100.
Collapse
Affiliation(s)
- Kiran Mahajan
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J 2011; 435:355-64. [PMID: 21309750 DOI: 10.1042/bj20102156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The non-RTK (receptor tyrosine kinase) ACK1 [activated Cdc42 (cell division cycle 42)-associated kinase 1] binds a number of RTKs and is associated with their endocytosis and turnover. Its mode of activation is not well established, but models have suggested that this is an autoinhibited kinase. Point mutations in its SH3 (Src homology 3)- or EGF (epidermal growth factor)-binding domains have been reported to activate ACK1, but we find neither of the corresponding W424K or F820A mutations do so. Indeed, deletion of the various ACK1 domains C-terminal to the catalytic domain are not associated with increased activity. A previous report identified only one major tyrosine phosphorylated protein of 60 kDa co-purified with ACK1. In a screen for new SH3 partners for ACK1 we found multiple Src family kinases; of these c-Src itself binds best. The SH2 and SH3 domains of Src interact with ACK1 Tyr518 and residues 623-652 respectively. Src targets the ACK1 activation loop Tyr284, a poor autophosphorylation site. We propose that ACK1 fails to undergo significant autophosphorylation on Tyr284 in vivo because it is basophilic (whereas Src is acidophilic). Subsequent ACK1 activation downstream of receptors such as EGFR (EGF receptor) (and Src) promotes turnover of ACK1 in vivo, which is blocked by Src inhibitors, and is compromised in the Src-deficient SYF cell line. The results of the present study can explain why ACK1 is responsive to so many external stimuli including RTKs and integrin ligation, since Src kinases are commonly recruited by multiple receptor systems.
Collapse
|
48
|
Regulation of ack-family nonreceptor tyrosine kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:742372. [PMID: 21637378 PMCID: PMC3101793 DOI: 10.1155/2011/742372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 01/17/2023]
Abstract
Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
Collapse
|
49
|
Prieto-Echagüe V, Gucwa A, Brown DA, Miller WT. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC BIOCHEMISTRY 2010; 11:42. [PMID: 20979614 PMCID: PMC2987765 DOI: 10.1186/1471-2091-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/27/2010] [Indexed: 12/31/2022]
Abstract
Background The mechanisms that regulate the activity of the nonreceptor tyrosine kinase Ack1 (activated Cdc42-associated kinase) are poorly understood. The amino-terminal region of Ack1 is predicted to contain a sterile alpha motif (SAM) domain. SAM domains share a common fold and mediate protein-protein interactions in a wide variety of proteins. Here, we addressed the importance of the Ack1 SAM domain in kinase activity. Results We used immunofluorescence and Western blotting to show that Ack1 deletion mutants lacking the N-terminus displayed significantly reduced autophosphorylation in cells. A minimal construct comprising the N-terminus and kinase domain (NKD) was autophosphorylated, while the kinase domain alone (KD) was not. When expressed in mammalian cells, NKD localized to the plasma membrane, while KD showed a more diffuse cytosolic localization. Co-immunoprecipitation experiments showed a stronger interaction between full length Ack1 and NKD than between full length Ack1 and KD, indicating that the N-terminus was important for Ack1 dimerization. Increasing the local concentration of purified Ack1 kinase domain at the surface of lipid vesicles stimulated autophosphorylation and catalytic activity, consistent with a requirement for dimerization and trans-phosphorylation for activity. Conclusions Collectively, the data suggest that the N-terminus of Ack1 promotes membrane localization and dimerization to allow for autophosphorylation.
Collapse
Affiliation(s)
- Victoria Prieto-Echagüe
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | |
Collapse
|
50
|
Bobenchik AM, Choi JY, Mishra A, Rujan IN, Hao B, Voelker DR, Hoch JC, Mamoun CB. Identification of inhibitors of Plasmodium falciparum phosphoethanolamine methyltransferase using an enzyme-coupled transmethylation assay. BMC BIOCHEMISTRY 2010; 11:4. [PMID: 20085640 PMCID: PMC2824672 DOI: 10.1186/1471-2091-11-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/19/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The phosphoethanolamine methyltransferase, PfPMT, of the human malaria parasite Plasmodium falciparum, a member of a newly identified family of phosphoethanolamine methyltransferases (PMT) found solely in some protozoa, nematodes, frogs, and plants, is involved in the synthesis of the major membrane phospholipid, phosphatidylcholine. PMT enzymes catalyze a three-step S-adenosylmethionine-dependent methylation of the nitrogen atom of phosphoethanolamine to form phosphocholine. In P. falciparum, this activity is a limiting step in the pathway of synthesis of phosphatidylcholine from serine and plays an important role in the development, replication and survival of the parasite within human red blood cells. RESULTS We have employed an enzyme-coupled methylation assay to screen for potential inhibitors of PfPMT. In addition to hexadecyltrimethylammonium, previously known to inhibit PfPMT, two compounds dodecyltrimethylammonium and amodiaquine were also found to inhibit PfPMT activity in vitro. Interestingly, PfPMT activity was not inhibited by the amodiaquine analog, chloroquine, or other aminoquinolines, amino alcohols, or histamine methyltransferase inhibitors. Using yeast as a surrogate system we found that unlike wild-type cells, yeast mutants that rely on PfPMT for survival were sensitive to amodiaquine, and their phosphatidylcholine biosynthesis was inhibited by this compound. Furthermore NMR titration studies to characterize the interaction between amoidaquine and PfPMT demonstrated a specific and concentration dependent binding of the compound to the enzyme. CONCLUSION The identification of amodiaquine as an inhibitor of PfPMT in vitro and in yeast, and the biophysical evidence for the specific interaction of the compound with the enzyme will set the stage for the development of analogs of this drug that specifically inhibit this enzyme and possibly other PMTs.
Collapse
Affiliation(s)
- April M Bobenchik
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Jae-Yeon Choi
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Arunima Mishra
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Iulian N Rujan
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Bing Hao
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Dennis R Voelker
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Jeffrey C Hoch
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
| |
Collapse
|