1
|
Ataie-Ashtiani S, Forbes B. A Review of the Biosynthesis and Structural Implications of Insulin Gene Mutations Linked to Human Disease. Cells 2023; 12:cells12071008. [PMID: 37048081 PMCID: PMC10093311 DOI: 10.3390/cells12071008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The discovery of the insulin hormone over 100 years ago, and its subsequent therapeutic application, marked a key landmark in the history of medicine and medical research. The many roles insulin plays in cell metabolism and growth have been revealed by extensive investigations into the structure and function of insulin, the insulin tyrosine kinase receptor (IR), as well as the signalling cascades, which occur upon insulin binding to the IR. In this review, the insulin gene mutations identified as causing disease and the structural implications of these mutations will be discussed. Over 100 studies were evaluated by one reviewing author, and over 70 insulin gene mutations were identified. Mutations may impair insulin gene transcription and translation, preproinsulin trafficking and proinsulin sorting, or insulin-IR interactions. A better understanding of insulin gene mutations and the resultant pathophysiology can give essential insight into the molecular mechanisms underlying impaired insulin biosynthesis and insulin-IR interaction.
Collapse
|
2
|
Lin J, Asai S, Selicharová I, Mitrová K, Kaminský J, Young E, Jiráček J. Recombinant Insulin-Like Growth Factor 1 Dimers: Receptor Binding Affinities and Activation Abilities. Int J Pept Res Ther 2023; 29:33. [PMID: 36891560 PMCID: PMC9985566 DOI: 10.1007/s10989-023-10499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 03/07/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) and its IGF-1 receptor (IGF-1R) belong to an important biological system that is involved in the regulation of normal growth, but that has also been recognized as playing a role in cancer. IGF-1R antagonists could be interesting for the testing of their potential antiproliferative properties as an alternative to IGF-1R tyrosine-kinase inhibitors or anti-IGF-1R monoclonal antibodies. In this study, we were inspired by the successful development of insulin dimers capable of antagonizing insulin effects on the insulin receptor (IR) by simultaneous binding to two separated binding sites and by blocking structural rearrangement of the IR. We designed and produced in Escherichia coli three different IGF-1 dimers in which IGF-1 monomers are interlinked through their N- and C-termini, with linkers having 8, 15 or 25 amino acids. We found that the recombinant products were susceptible to the formation of misfolded or reduced variants, but that some of them were able to bind IGF-1R in low nanomolar affinities and all of them activate IGF-1R proportionally to their binding affinities. Overall, our work can be considered as a pilot study that, although it did not lead to the discovery of new IGF-1R antagonists, explored the possibility of recombinant production of IGF-1 dimers and led to the preparation of active compounds. This work could inspire further studies dealing, for example, with the preparation of IGF-1 conjugates with specific proteins for the study of the hormone and its receptor or for therapeutic applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10989-023-10499-1.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Elinor Young
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
3
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Structural Lessons From the Mutant Proinsulin Syndrome. Front Endocrinol (Lausanne) 2021; 12:754693. [PMID: 34659132 PMCID: PMC8514764 DOI: 10.3389/fendo.2021.754693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Insight into folding mechanisms of proinsulin has been provided by analysis of dominant diabetes-associated mutations in the human insulin gene (INS). Such mutations cause pancreatic β-cell dysfunction due to toxic misfolding of a mutant proinsulin and impairment in trans of wild-type insulin secretion. Anticipated by the "Akita" mouse (a classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse clinical mutations directly or indirectly perturb native disulfide pairing leading to protein misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships, but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of non-syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of non-foldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
| | | | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Haataja L, Arunagiri A, Hassan A, Regan K, Tsai B, Dhayalan B, Weiss MA, Liu M, Arvan P. Distinct states of proinsulin misfolding in MIDY. Cell Mol Life Sci 2021; 78:6017-6031. [PMID: 34245311 PMCID: PMC8316239 DOI: 10.1007/s00018-021-03871-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
A precondition for efficient proinsulin export from the endoplasmic reticulum (ER) is that proinsulin meets ER quality control folding requirements, including formation of the Cys(B19)–Cys(A20) “interchain” disulfide bond, facilitating formation of the Cys(B7)–Cys(A7) bridge. The third proinsulin disulfide, Cys(A6)–Cys(A11), is not required for anterograde trafficking, i.e., a “lose-A6/A11” mutant [Cys(A6), Cys(A11) both converted to Ser] is well secreted. Nevertheless, an unpaired Cys(A11) can participate in disulfide mispairings, causing ER retention of proinsulin. Among the many missense mutations causing the syndrome of Mutant INS gene-induced Diabetes of Youth (MIDY), all seem to exhibit perturbed proinsulin disulfide bond formation. Here, we have examined a series of seven MIDY mutants [including G(B8)V, Y(B26)C, L(A16)P, H(B5)D, V(B18)A, R(Cpep + 2)C, E(A4)K], six of which are essentially completely blocked in export from the ER in pancreatic β-cells. Three of these mutants, however, must disrupt the Cys(A6)–Cys(A11) pairing to expose a critical unpaired cysteine thiol perturbation of proinsulin folding and ER export, because when introduced into the proinsulin lose-A6/A11 background, these mutants exhibit native-like disulfide bonding and improved trafficking. This maneuver also ameliorates dominant-negative blockade of export of co-expressed wild-type proinsulin. A growing molecular understanding of proinsulin misfolding may permit allele-specific pharmacological targeting for some MIDY mutants.
Collapse
Affiliation(s)
- Leena Haataja
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Anoop Arunagiri
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Anis Hassan
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Kaitlin Regan
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Ming Liu
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Peter Arvan
- The Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
5
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Diabetes mellitus due to toxic misfolding of proinsulin variants. Mol Metab 2021:101229. [PMID: 33823319 DOI: 10.1016/j.molmet.2021.101229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dominant mutations in the human insulin gene (INS) lead to pancreatic β-cell dysfunction and diabetes mellitus (DM) due to toxic misfolding of a mutant proinsulin. Analogous to a classical mouse model of monogenic DM ("Akita"), this syndrome highlights the susceptibility of β-cells to endoreticulum (ER) stress due to protein misfolding and aberrant aggregation. SCOPE OF REVIEW Diverse clinical mutations directly or indirectly perturb native disulfide pairing. Whereas most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of nonsyndromic Type 2 DM. MAJOR CONCLUSIONS Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of nonfoldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Arneth B. Insulin gene mutations and posttranslational and translocation defects: associations with diabetes. Endocrine 2020; 70:488-497. [PMID: 32656694 DOI: 10.1007/s12020-020-02413-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
The mechanism underlying the pathogenesis of diabetes is complex and poorly understood. Recent investigations have revealed that insulin gene mutations can lead to the development of specific subtypes of diabetes. This systematic review aimed to explore the associations of insulin gene mutations and insulin translocation defects with diabetes. This review was generated using articles from PsycINFO, PubMed, Web of Science, and CINAHL. Search terms and phrases such as "diabetes," "mutations," "insulin," "preproinsulin," "INS gene," "role," "VNTR polymorphisms," and "INS promotor" were used to identify articles relevant to the research topic. The gathered data showed the significant role of insulin gene mutations and insulin translocation defects during diabetes development and progression. Genetic changes can adversely affect the development of various types of diabetes, such as neonatal diabetes mellitus and MIDY. Genetic alterations can affect insulin production, thus compromising the regulation of glucose utilization by tissues. Targeting insulin gene mutations is a potential new avenue for diagnosing and managing diabetes. There are specific subcategories of diabetes, such as MIDY and neonatal diabetes mellitus, caused by insulin gene mutations and defects in posttranslational modification. Further investigations are needed to examine the diagnostic and therapeutic potential of mutation-based biomarkers.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr 12, 35332, Giessen, Germany.
| |
Collapse
|
7
|
Distribution and Transition of Stable Conformations in Unfolding of Bovine Insulin Induced by Urea and Guanidine Hydrochloride. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Glucose-Regulated Protein 94 (GRP94): A Novel Regulator of Insulin-Like Growth Factor Production. Cells 2020; 9:cells9081844. [PMID: 32781621 PMCID: PMC7465916 DOI: 10.3390/cells9081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Mammals have two insulin-like growth factors (IGF) that are key mediators of somatic growth, tissue differentiation, and cellular responses to stress. Thus, the mechanisms that regulate the bioavailability of IGFs are important in both normal and aberrant development. IGF-I levels are primarily controlled via the growth hormone-IGF axis, in response to nutritional status, and also reflect metabolic diseases and cancer. One mechanism that controls IGF bioavailablity is the binding of circulating IGF to a number of binding proteins that keep IGF in a stable, but receptor non-binding state. However, even before IGF is released from the cells that produce it, it undergoes an obligatory association with a ubiquitous chaperone protein, GRP94. This binding is required for secretion of a properly folded, mature IGF. This chapter reviews the known aspects of the interaction and highlights the specificity issues yet to be determined. The IGF–GRP94 interaction provides a potential novel mechanism of idiopathic short stature, involving the obligatory chaperone and not just IGF gene expression. It also provides a novel target for cancer treatment, as GRP94 activity can be either inhibited or enhanced.
Collapse
|
9
|
Glidden MD, Yang Y, Smith NA, Phillips NB, Carr K, Wickramasinghe NP, Ismail-Beigi F, Lawrence MC, Smith BJ, Weiss MA. Solution structure of an ultra-stable single-chain insulin analog connects protein dynamics to a novel mechanism of receptor binding. J Biol Chem 2018; 293:69-88. [PMID: 29114034 PMCID: PMC5766920 DOI: 10.1074/jbc.m117.808667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Domain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound "micro-receptors." In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This "open" conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR. Here, we report the high-resolution solution structure and dynamics of such an active SCI. The hormone's closed-to-open transition is foreshadowed by segmental flexibility in the native state as probed by heteronuclear NMR spectroscopy and multiple conformer simulations of crystallographic protomers as described in the companion article. We propose a model of the SCI's IR-bound state based on molecular-dynamics simulations of a micro-receptor complex. In this model, a loop defined by the SCI's B and C domains encircles the C-terminal segment of the IR α-subunit. This binding mode predicts a conformational transition between an ultra-stable closed state (in the free hormone) and an active open state (on receptor binding). Optimization of this switch within an ultra-stable SCI promises to circumvent insulin's complex global cold chain. The analog's biphasic activity, which serendipitously resembles current premixed formulations of soluble insulin and microcrystalline suspension, may be of particular utility in the developing world.
Collapse
Affiliation(s)
- Michael D Glidden
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kelley Carr
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
10
|
Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med 2015; 42:105-18. [PMID: 25579745 PMCID: PMC4404191 DOI: 10.1016/j.mam.2015.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
Abstract
To maintain copious insulin granule stores in the face of ongoing metabolic demand, pancreatic beta cells must produce large quantities of proinsulin, the insulin precursor. Proinsulin biosynthesis can account for up to 30-50% of total cellular protein synthesis of beta cells. This puts pressure on the beta cell secretory pathway, especially the endoplasmic reticulum (ER), where proinsulin undergoes its initial folding, including the formation of three evolutionarily conserved disulfide bonds. In normal beta cells, up to 20% of newly synthesized proinsulin may fail to reach its native conformation, suggesting that proinsulin is a misfolding-prone protein. Misfolded proinsulin molecules can either be refolded to their native structure or degraded through ER associated degradation (ERAD) and autophagy. These degraded molecules decrease proinsulin yield but do not otherwise compromise beta cell function. However, under certain pathological conditions, proinsulin misfolding increases, exceeding the genetically determined threshold of beta cells to handle the misfolded protein load. This results in accumulation of misfolded proinsulin in the ER - a causal factor leading to beta cell failure and diabetes. In patients with Mutant INS-gene induced diabetes of Youth (MIDY), increased proinsulin misfolding due to insulin gene mutations is the primary defect operating as a "first hit" to beta cells. Additionally, increased proinsulin misfolding can be secondary to an unfavorable ER folding environment due to genetic and/or environmental factors. Under these conditions, increased wild-type proinsulin misfolding becomes a "second hit" to the ER and beta cells, aggravating beta cell failure and diabetes. In this article, we describe our current understanding of the normal proinsulin folding pathway in the ER, and then review existing links between proinsulin misfolding, ER dysfunction, and beta cell failure in the development and progression of type 2, type 1, and some monogenic forms of diabetes.
Collapse
Affiliation(s)
- Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
11
|
Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Aspects Med 2014; 42:3-18. [PMID: 25542748 DOI: 10.1016/j.mam.2014.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China; Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Jinqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Chen
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Tor Vergata, Rome and Bambino Gesù Children's Hospital, Rome, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
12
|
Yang X, Li Y, Huang L, Zhang X, Cheng C, Gong H, Ma L, Huang K. Diethylpyrocarbonate modification reveals HisB5 as an important modulator of insulin amyloid formation. J Biochem 2014; 157:45-51. [PMID: 25172962 DOI: 10.1093/jb/mvu052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 30 amyloid proteins are reported to be associated with amyloidosis diseases. Studies have implicated histidine may be critically involved in amyloid formation. Here, we used diethylpyrocarbonate (DEPC) modification to obtain a His(B5) mono-ethyloxyformylated insulin (DMI-B(5)). The secondary structure, amyloidogenicity, metal ion interaction, and cytotoxicity of DMI-B(5) and insulin were compared. DMI-B(5) was less prone to aggregation in acidic condition but easier to aggregate at neutral pH. DEPC modification resulted in attenuated inhibitory effect of Zn(2+) on aggregation, whereas DMI-B(5) fibrils induced more severe erythrocytes haemolysis compared to insulin fibrils. This study not only provides a fast new approach for studying the impact of imidazole ring in amyloid formation, but also reveals the critical modulating role of histidine imidazole ring on the amyloidogenicity of insulin.
Collapse
Affiliation(s)
- Xin Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xin Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cheng Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Hao Gong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, P.R. China
| |
Collapse
|
13
|
Avital-Shmilovici M, Whittaker J, Weiss MA, Kent SBH. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin. J Biol Chem 2014; 289:23683-92. [PMID: 25002580 DOI: 10.1074/jbc.m114.572040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding.
Collapse
Affiliation(s)
- Michal Avital-Shmilovici
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| | | | - Michael A Weiss
- the Departments of Biochemistry and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stephen B H Kent
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
14
|
Kosinová L, Veverka V, Novotná P, Collinsová M, Urbanová M, Moody NR, Turkenburg JP, Jiráček J, Brzozowski AM, Žáková L. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 2014; 53:3392-402. [PMID: 24819248 PMCID: PMC4047818 DOI: 10.1021/bi500073z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The N-terminus of the B-chain of
insulin may adopt two alternative
conformations designated as the T- and R-states. Despite the recent
structural insight into insulin–insulin receptor (IR) complexes,
the physiological relevance of the T/R transition is still unclear.
Hence, this study focused on the rational design, synthesis, and characterization
of human insulin analogues structurally locked in expected R- or T-states.
Sites B3, B5, and B8, capable of affecting the conformation of the
N-terminus of the B-chain, were subjects of rational substitutions
with amino acids with specific allowed and disallowed dihedral φ
and ψ main-chain angles. α-Aminoisobutyric acid was systematically
incorporated into positions B3, B5, and B8 for stabilization of the
R-state, and N-methylalanine and d-proline
amino acids were introduced at position B8 for stabilization of the
T-state. IR affinities of the analogues were compared and correlated
with their T/R transition ability and analyzed against their crystal
and nuclear magnetic resonance structures. Our data revealed that
(i) the T-like state is indeed important for the folding efficiency
of (pro)insulin, (ii) the R-state is most probably incompatible with
an active form of insulin, (iii) the R-state cannot be induced or
stabilized by a single substitution at a specific site, and (iv) the
B1–B8 segment is capable of folding into a variety of low-affinity
T-like states. Therefore, we conclude that the active conformation
of the N-terminus of the B-chain must be different from the “classical”
T-state and that a substantial flexibility of the B1–B8 segment,
where GlyB8 plays a key role, is a crucial prerequisite for an efficient
insulin–IR interaction.
Collapse
Affiliation(s)
- Lucie Kosinová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci U S A 2012; 109:11166-71. [PMID: 22736795 DOI: 10.1073/pnas.1205681109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.
Collapse
|
17
|
Liu M, Lara-Lemus R, Shan SO, Wright J, Haataja L, Barbetti F, Guo H, Larkin D, Arvan P. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 2012; 61:828-37. [PMID: 22357960 PMCID: PMC3314357 DOI: 10.2337/db11-0878] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, missense mutations upstream of preproinsulin's signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER-oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
- Tianjin Medical University General Hospital, Tianjin, China
| | - Roberto Lara-Lemus
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Fabrizio Barbetti
- Laboratory of Molecular Endocrinology and Metabolism, Bambino Gesù Children’s Hospital, Scientific Institute (Istituto Di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
18
|
Usón I, Patzer SI, Rodríguez DD, Braun V, Zeth K. The crystal structure of the dimeric colicin M immunity protein displays a 3D domain swap. J Struct Biol 2012; 178:45-53. [PMID: 22366279 DOI: 10.1016/j.jsb.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 02/06/2012] [Indexed: 11/19/2022]
Abstract
Bacteriocins are proteins secreted by many bacterial cells to kill related bacteria of the same niche. To avoid their own suicide through reuptake of secreted bacteriocins, these bacteria protect themselves by co-expression of immunity proteins in the compartment of colicin destination. In Escherichia coli the colicin M (Cma) is inactivated by the interaction with the Cma immunity protein (Cmi). We have crystallized and solved the structure of Cmi at a resolution of 1.95Å by the recently developed ab initio phasing program ARCIMBOLDO. The monomeric structure of the mature 10kDa protein comprises a long N-terminal α-helix and a four-stranded C-terminal β-sheet. Dimerization of this fold is mediated by an extended interface of hydrogen bond interactions between the α-helix and the four-stranded β-sheet of the symmetry related molecule. Two intermolecular disulfide bridges covalently connect this dimer to further lock this complex. The Cmi protein resembles an example of a 3D domain swapping being stalled through physical linkage. The dimer is a highly charged complex with a significant surplus of negative charges presumably responsible for interactions with Cma. Dimerization of Cmi was also demonstrated to occur in vivo. Although the Cmi-Cma complex is unique among bacteria, the general fold of Cmi is representative for a class of YebF-like proteins which are known to be secreted into the external medium by some Gram-negative bacteria.
Collapse
Affiliation(s)
- Isabel Usón
- Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Liu M, Hodish I, Haataja L, Lara-Lemus R, Rajpal G, Wright J, Arvan P. Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends Endocrinol Metab 2010; 21:652-9. [PMID: 20724178 PMCID: PMC2967602 DOI: 10.1016/j.tem.2010.07.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/23/2022]
Abstract
Type 1B diabetes (typically with early onset and without islet autoantibodies) has been described in patients bearing small coding sequence mutations in the INS gene. Not all mutations in the INS gene cause the autosomal dominant Mutant INS-gene Induced Diabetes of Youth (MIDY) syndrome, but most missense mutations affecting proinsulin folding produce MIDY. MIDY patients are heterozygotes, with the expressed mutant proinsulins exerting dominant-negative (toxic gain of function) behavior in pancreatic beta cells. Here we focus primarily on proinsulin folding in the endoplasmic reticulum, providing insight into perturbations of this folding pathway in MIDY. Accumulated evidence indicates that, in the molecular pathogenesis of the disease, misfolded proinsulin exerts dominant effects that initially inhibit insulin production, progressing to beta cell demise with diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Arvan
- To whom correspondence may be addressed: Division of Metabolism, Endocrinology & Diabetes University of Michigan, 5560 MSRB2 1150 W. Medical Center Drive Ann Arbor, MI 48109-0678 Telephone: 734-936-5006 FAX: 734-936-6684
| |
Collapse
|
20
|
Liu M, Hua QX, Hu SQ, Jia W, Yang Y, Saith SE, Whittaker J, Arvan P, Weiss MA. Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone. J Biol Chem 2010; 285:30989-1001. [PMID: 20663888 PMCID: PMC2945590 DOI: 10.1074/jbc.m110.152645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/21/2010] [Indexed: 01/28/2023] Open
Abstract
Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (Phe(B1) in placental mammals) is variably positioned within crystal structures and exhibits (1)H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1-B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with β-cell dysfunction and neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Ming Liu
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Qing-xin Hua
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shi-Quan Hu
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wenhua Jia
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sunil Evan Saith
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Jonathan Whittaker
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Peter Arvan
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Michael A. Weiss
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|