1
|
Bracey KM, Fye M, Cario A, Ho KH, Noguchi P, Gu G, Kaverina I. Glucose-stimulated KIF5B-driven microtubule sliding organizes microtubule networks in pancreatic β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546468. [PMID: 37425827 PMCID: PMC10327020 DOI: 10.1101/2023.06.25.546468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In pancreatic islet β cells, molecular motors use cytoskeletal polymers microtubules as tracks for intracellular transport of insulin secretory granules. The β-cell microtubule network has a complex architecture and is non-directional, which provides insulin granules at the cell periphery for rapid secretion response, yet to avoid over-secretion and subsequent hypoglycemia. We have previously characterized a peripheral sub-membrane microtubule array, which is critical for the withdrawal of excessive insulin granules from the secretion sites. Microtubules in β cells originate at the Golgi in the cell interior, and how the peripheral array is formed is unknown. Using real-time imaging and photo-kinetics approaches in clonal mouse pancreatic β cells MIN6, we now demonstrate that kinesin KIF5B, a motor protein with a capacity to transport microtubules as cargos, slides existing microtubules to the cell periphery and aligns them to each other along the plasma membrane. Moreover, like many physiological β-cell features, microtubule sliding is facilitated by a high glucose stimulus. These new data, together with our previous report that in high glucose sub-membrane MT array is destabilized to allow for robust secretion, indicate that MT sliding is another integral part of glucose-triggered microtubule remodeling, likely replacing destabilized peripheral microtubules to prevent their loss over time and β-cell malfunction.
Collapse
|
2
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. 'Mitotic' kinesin-5 is a dynamic brake for axonal growth in Drosophila. Development 2025; 152:dev204424. [PMID: 40223510 DOI: 10.1242/dev.204424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
During neuronal development, microtubule reorganization shapes axons and dendrites, establishing the framework for efficient nervous system wiring. Our previous work has demonstrated the role of kinesin-1 in driving microtubule sliding, which powers early axon outgrowth and regeneration in Drosophila melanogaster. Here, we reveal a crucial new role for kinesin-5, a mitotic motor, in modulating postmitotic neuron development. The Drosophila kinesin-5, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F in neurons leads to severe adult locomotion defects and lethality, primarily due to defects in VNC motor neurons. Klp61F depletion results in excessive microtubule penetration into the axon growth cone, causing significant axon growth defects in culture and in vivo. These defects are rescued by a chimeric human-Drosophila kinesin-5 motor, indicating a conserved role for kinesin-5 in neuronal development. Altogether, we propose that kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, ensuring proper axon pathfinding in growing neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. "Mitotic" kinesin-5 is a dynamic brake for axonal growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612721. [PMID: 39314406 PMCID: PMC11419024 DOI: 10.1101/2024.09.12.612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During neuronal development, neurons undergo significant microtubule reorganization to shape axons and dendrites, establishing the framework for efficient wiring of the nervous system. Previous studies from our laboratory demonstrated the key role of kinesin-1 in driving microtubule-microtubule sliding, which provides the mechanical forces necessary for early axon outgrowth and regeneration in Drosophila melanogaster. In this study, we reveal the critical role of kinesin-5, a mitotic motor, in modulating the development of postmitotic neurons. Kinesin-5, a conserved homotetrameric motor, typically functions in mitosis by sliding antiparallel microtubules apart in the spindle. Here, we demonstrate that the Drosophila kinesin-5 homolog, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F using a pan-neuronal driver leads to severe locomotion defects and complete lethality in adult flies, mainly due to the absence of kinesin-5 in VNC motor neurons during early larval development. Klp61F depletion results in significant axon growth defects, both in cultured and in vivo neurons. By imaging individual microtubules, we observe a significant increase in microtubule motility, and excessive penetration of microtubules into the axon growth cone in Klp61F-depleted neurons. Adult lethality and axon growth defects are fully rescued by a chimeric human-Drosophila kinesin-5 motor, which accumulates at the axon tips, suggesting a conserved role of kinesin-5 in neuronal development. Altogether, our findings show that at the growth cone, kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, preventing premature microtubule entry into the growth cone. This regulatory role of kinesin-5 is essential for precise axon pathfinding during nervous system development.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S. Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
7
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
8
|
Fan X, McKenney RJ. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail. Nat Commun 2023; 14:4715. [PMID: 37543636 PMCID: PMC10404244 DOI: 10.1038/s41467-023-40425-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Microtubules are major components of the eukaryotic cytoskeleton. Posttranslational modifications (PTMs) of tubulin regulates interactions with microtubule-associated proteins (MAPs). One unique PTM is the cyclical removal and re-addition of the C-terminal tyrosine of α-tubulin and MAPs containing CAP-Gly domains specifically recognize tyrosinated microtubules. KIF13B, a long-distance transport kinesin, contains a conserved CAP-Gly domain, but the role of the CAP-Gly domain in KIF13B's motility along microtubules remains unknown. To address this, we investigate the interaction between KIF13B's CAP-Gly domain, and tyrosinated microtubules. We find that KIF13B's CAP-Gly domain influences the initial motor-microtubule interaction, as well as processive motility along microtubules. The effect of the CAP-Gly domain is enhanced when the motor domain is in the ADP state, suggesting an interplay between the N-terminal motor domain and C-terminal CAP-Gly domain. These results reveal that specialized kinesin tail domains play active roles in the initiation and continuation of motor movement.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
10
|
Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep 2022; 23:e54234. [PMID: 35735139 PMCID: PMC9346498 DOI: 10.15252/embr.202154234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| | | | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Isabel Loss
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | | | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Liang Shi
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| | | | | | - Philipp Koch
- Hector Institute of Translational Brain Research, Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Jie Jiang
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| |
Collapse
|
11
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
12
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
13
|
Conze C, Rierola M, Trushina NI, Peters M, Janning D, Holzer M, Heinisch JJ, Arendt T, Bakota L, Brandt R. Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Mol Psychiatry 2022; 27:3010-3023. [PMID: 35393558 PMCID: PMC9205779 DOI: 10.1038/s41380-022-01538-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator. Here we report that the proportion of tau that is proteolytically cleaved at the caspase-3 site (TauC3) doubles in the hippocampus of senescent mice. TauC3 is also elevated in AD patients. Through quantitative live-cell imaging, we show that TauC3 has a drastically reduced dynamics of its microtubule interaction. Single-molecule tracking of tau confirmed that TauC3 has a longer residence time on axonal microtubules. The reduced dynamics of the TauC3-microtubule interaction correlated with a decreased transport of mitochondria, a reduced processivity of APP-vesicle transport and an induction of region-specific dendritic atrophy in CA1 neurons of the hippocampus. The microtubule-targeting drug Epothilone D normalized the interaction of TauC3 with microtubules and modulated the transport of APP-vesicles dependent on the presence of overexpressed human tau. The results indicate a novel toxic gain of function, in which a post-translational modification of tau changes the dynamics of the tau-microtubule interaction and thus leads to axonal transport defects and neuronal degeneration. The data also introduce microtubule-targeting drugs as pharmacological modifiers of the tau-microtubule interaction with the potential to restore the physiological interaction of pathologically altered tau with microtubules.
Collapse
Affiliation(s)
- Christian Conze
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Marina Rierola
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Nataliya I. Trushina
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Michael Peters
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Dennis Janning
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany ,grid.10854.380000 0001 0672 4366Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Max Holzer
- grid.9647.c0000 0004 7669 9786Center for Neuropathology and Brain Research, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Jürgen J. Heinisch
- grid.10854.380000 0001 0672 4366Department of Genetics, Osnabrück University, Osnabrück, Germany
| | - Thomas Arendt
- grid.9647.c0000 0004 7669 9786Center for Neuropathology and Brain Research, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Lidia Bakota
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany. .,Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany. .,Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
14
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
15
|
Masucci EM, Relich PK, Lakadamyali M, Ostap EM, Holzbaur ELF. Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Mol Biol Cell 2021; 33:ar52. [PMID: 34705476 PMCID: PMC9265162 DOI: 10.1091/mbc.e21-10-0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end–directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end–out microtubules to be more dynamic than plus end–in microtubules, with nocodazole preferentially stabilizing the plus end–out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end–in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.
Collapse
Affiliation(s)
- Erin M Masucci
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter K Relich
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Melike Lakadamyali
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - E Michael Ostap
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Erika L F Holzbaur
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
16
|
Hu X, Dinu CZ. A bio-pen for direct writing of single molecules on user-functionalized surfaces. NANOSCALE ADVANCES 2020; 2:156-165. [PMID: 36133986 PMCID: PMC9417116 DOI: 10.1039/c9na00379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 06/16/2023]
Abstract
Advancing ultrahigh resolution (below 10 nm) direct writing technologies could lead to impacts in areas as diverse as disease detection, genetic analysis and nanomanufacturing. Current methods based on electron-beams and photo- or dip-pen nanolithography are laborious and lack flexibility when aiming to create single molecule patterns for application specific integration. We hypothesize that a novel strategy could be developed to allow for writing of parallel and yet individually addressable patterns of single molecules on user-controlled surfaces. The strategy is based on using in vitro self-recognition of tubulin protein to assemble rigid protofilaments of microtubules, with one such microtubule to be subsequently used as a "bio-pen" capable of writing "inks" of single kinesin molecules in user-defined environments. Our results show that single kinesin inks could be written under the energy of adenosine triphosphate hydrolysis and observed by both atomic force and optical microscopy. Upon extending ink functionalities, the integration of soft and hard materials for nanostructure assembly and complex single molecule pattern formation is envisioned.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources PO Box 6102 Morgantown WV 26506 USA +1 304 293 4139 +1 304 293 9338
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources PO Box 6102 Morgantown WV 26506 USA +1 304 293 4139 +1 304 293 9338
| |
Collapse
|
17
|
Hu X, Guiseppi-Elie A, Dinu CZ. Biomolecular interfaces based on self-assembly and self-recognition form biosensors capable of recording molecular binding and release. NANOSCALE 2019; 11:4987-4998. [PMID: 30839012 DOI: 10.1039/c8nr10090j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This research proposed to create the next generation of versatile electrochemical-based biosensors capable of monitoring target capture and release as dictated by molecular binding or unbinding. The biosensor integrates cellular machines (i.e., microtubules, structural elements of cells and kinesin molecular motors involved in cellular transport) as functional units; its assembly is based on molecular self-assembly and self-recognition. Our results demonstrate that the designed biosensor was capable of allowing detection of binding and unbinding events based on redox reactions at user-controlled electrode interfaces. The analysis also showed that the sensitivity of the designed biosensor or its ability to record such events could be user-controlled at any given time by adjusting the energy source that "fuels" the system.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, WV, USA.
| | | | | |
Collapse
|
18
|
Korten T, Tavkin E, Scharrel L, Kushwaha VS, Diez S. An automated in vitro motility assay for high-throughput studies of molecular motors. LAB ON A CHIP 2018; 18:3196-3206. [PMID: 30204813 PMCID: PMC6180315 DOI: 10.1039/c8lc00547h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices. These devices are based on in vitro motility assays that reconstitute molecular transport with purified motor proteins, requiring a deep understanding of the biophysical properties of motor proteins and thorough optimization to enable motility under varying environmental conditions. Until now, these assays have been prepared manually, severely limiting throughput. To overcome this limitation, we developed an in vitro motility assay where sample preparation, imaging and data evaluation are fully automated, enabling the processing of a 384-well plate within less than three hours. We demonstrate the automated assay for the analysis of peptide inhibitors for kinesin-1 at a wide range of concentrations, revealing that the IAK domain responsible for kinesin-1 auto-inhibition is both necessary and sufficient to decrease the affinity of the motor protein for microtubules, an aspect that was hidden in previous experiments due to scarcity of data.
Collapse
Affiliation(s)
- Till Korten
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Elena Tavkin
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Lara Scharrel
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Vandana Singh Kushwaha
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| |
Collapse
|
19
|
Tymanskyj SR, Yang BH, Verhey KJ, Ma L. MAP7 regulates axon morphogenesis by recruiting kinesin-1 to microtubules and modulating organelle transport. eLife 2018; 7:36374. [PMID: 30132755 PMCID: PMC6133550 DOI: 10.7554/elife.36374] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell morphogenesis depends on proper regulation of microtubule-based transport, but the underlying mechanisms are not well understood. Here, we report our study of MAP7, a unique microtubule-associated protein that interacts with both microtubules and the motor protein kinesin-1. Structure-function analysis in rat embryonic sensory neurons shows that the kinesin-1 interacting domain in MAP7 is required for axon and branch growth but not for branch formation. Also, two unique microtubule binding sites are found in MAP7 that have distinct dissociation kinetics and are both required for branch formation. Furthermore, MAP7 recruits kinesin-1 dynamically to microtubules, leading to alterations in organelle transport behaviors, particularly pause/speed switching. As MAP7 is localized to branch sites, our results suggest a novel mechanism mediated by the dual interactions of MAP7 with microtubules and kinesin-1 in the precise control of microtubule-based transport during axon morphogenesis.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| | - Benjamin H Yang
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Le Ma
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
20
|
Robert A, Tian P, Adam SA, Kittisopikul M, Jaqaman K, Goldman RD, Gelfand VI. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB J 2018; 33:388-399. [PMID: 29944446 PMCID: PMC6355078 DOI: 10.1096/fj.201800604r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Keratin intermediate filaments (IFs) are the major cytoskeletal component in epithelial cells. The dynamics of keratin IFs have been described to depend mostly on the actin cytoskeleton, but the rapid transport of fully polymerized keratin filaments has not been reported. In this work, we used a combination of photoconversion experiments and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing to study the role of microtubules and microtubule motors in keratin filament transport. We found that long keratin filaments, like other types of IFs, are transported along microtubules by kinesin-1. Our data revealed that keratin and vimentin are nonconventional kinesin-1 cargoes because their transport did not require kinesin light chains, which are a typical adapter for kinesin-dependent cargo transport. Furthermore, we found that the same domain of the kinesin heavy chain tail is involved in keratin and vimentin IF transport, strongly suggesting that multiple types of IFs move along microtubules using an identical mechanism.-Robert, A., Tian, P., Adam, S. A., Kittisopikul, M., Jaqaman, K., Goldman, R. D., Gelfand, V. I. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peirun Tian
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mark Kittisopikul
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Lüdecke A, Seidel AM, Braun M, Lansky Z, Diez S. Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules. Nat Commun 2018; 9:2214. [PMID: 29880831 PMCID: PMC5992172 DOI: 10.1038/s41467-018-04656-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/17/2018] [Indexed: 12/27/2022] Open
Abstract
Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein's performance. Here, we show that diffusive anchorage of Ncd's tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s-1 to 60 nm s-1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.
Collapse
Affiliation(s)
- Annemarie Lüdecke
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany
| | - Anja-Maria Seidel
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany
| | - Marcus Braun
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| | - Zdenek Lansky
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| |
Collapse
|
22
|
A small-molecule activator of kinesin-1 drives remodeling of the microtubule network. Proc Natl Acad Sci U S A 2017; 114:13738-13743. [PMID: 29229862 DOI: 10.1073/pnas.1715115115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The microtubule motor kinesin-1 interacts via its cargo-binding domain with both microtubules and organelles, and hence plays an important role in controlling organelle transport and microtubule dynamics. In the absence of cargo, kinesin-1 is found in an autoinhibited conformation. The molecular basis of how cargo engagement affects the balance between kinesin-1's active and inactive conformations and roles in microtubule dynamics and organelle transport is not well understood. Here we describe the discovery of kinesore, a small molecule that in vitro inhibits kinesin-1 interactions with short linear peptide motifs found in organelle-specific cargo adaptors, yet activates kinesin-1's function of controlling microtubule dynamics in cells, demonstrating that these functions are mechanistically coupled. We establish a proof-of-concept that a microtubule motor-cargo interface and associated autoregulatory mechanism can be manipulated using a small molecule, and define a target for the modulation of microtubule dynamics.
Collapse
|
23
|
TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nat Commun 2017; 8:1592. [PMID: 29150602 PMCID: PMC5693993 DOI: 10.1038/s41467-017-01687-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) sense viral RNA through toll-like
receptor 7 (TLR7), form self-adhesive pDC–pDC clusters, and produce type I
interferons. This cell adhesion enhances type I interferon production, but little is
known about the underlying mechanisms. Here we show that MyD88-dependent TLR7
signaling activates CD11a/CD18 integrin to induce microtubule elongation.
TLR7+ lysosomes then become linked with these
microtubules through the GTPase Arl8b and its effector SKIP/Plekhm2, resulting in
perinuclear to peripheral relocalization of TLR7. The type I interferon signaling
molecules TRAF3, IKKα, and mTORC1 are constitutively associated in pDCs. TLR7
localizes to mTORC1 and induces association of TRAF3 with the upstream molecule
TRAF6. Finally, type I interferons are secreted in the vicinity of cell–cell
contacts between clustered pDCs. These results suggest that TLR7 needs to move to
the cell periphery to induce robust type I interferon responses in pDCs. Antiviral immune responses involve clustering of plasmacytoid
dendritic cells (pDC) in response to endosomal TLR7-mediated sensing of viral RNA.
Here the authors show the GTPase Arl8b controls translocation of
TLR7+ endosomes to the periphery of the cell via
microtubule interactions, thus enabling pDC clustering and type I interferon
production.
Collapse
|
24
|
Li Q, King SJ, Xu J. Native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules in vitro. Cytoskeleton (Hoboken) 2017; 74:356-366. [PMID: 28699205 DOI: 10.1002/cm.21386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022]
Abstract
Molecular motors such as kinesin-1 work in small teams to actively shuttle cargos in cells, for example in polarized transport in axons. Here, we examined the potential regulatory role of the nucleotide state of tubulin on the run length of cargos carried by multiple kinesin motors, using an optical trapping-based in vitro assay. Based on a previous report that kinesin binds preferentially to GTP-tubulin-rich microtubules, we anticipated that multiple-kinesin cargos would run substantially greater distances along GMPCPP microtubules than along GDP microtubules. Surprisingly, we did not uncover any significant differences in run length between microtubule types. A combination of single-molecule experiments, comparison with previous theory, and classic microtubule affinity pulldown assays revealed that native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules. The apparent discrepancy between our observations and the previous report likely reflects differences in post-translational modifications between the native motors used here and the recombinant motors examined previously. Future investigations will help shed light on the interplay between the motor's post-translational modification and the microtubule's nucleotide-binding state for transport regulation in vivo.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Physics, University of California, Merced, California
| | - Stephen J King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Jing Xu
- Department of Physics, University of California, Merced, California
| |
Collapse
|
25
|
Ravindran MS, Engelke MF, Verhey KJ, Tsai B. Exploiting the kinesin-1 molecular motor to generate a virus membrane penetration site. Nat Commun 2017; 8:15496. [PMID: 28537258 PMCID: PMC5458101 DOI: 10.1038/ncomms15496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Viruses exploit cellular machineries to penetrate a host membrane and cause infection, a process that remains enigmatic for non-enveloped viruses. Here we probe how the non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a crucial infection step. We find that the microtubule-based motor kinesin-1 is recruited to the ER membrane by binding to the transmembrane J-protein B14. Strikingly, this motor facilitates SV40 ER-to-cytosol transport by constructing a penetration site on the ER membrane called a ‘focus'. Neither kinesin-2, kinesin-3 nor kinesin-5 promotes foci formation or infection. The specific use of kinesin-1 is due to its unique ability to select posttranslationally modified microtubules for cargo transport and thereby spatially restrict focus formation to the perinucleus. These findings support the idea of a ‘tubulin code' for motor-dependent trafficking and establish a distinct kinesin-1 function in which a motor is exploited to create a viral membrane penetration site. How non-enveloped viruses cross host membranes is incompletely understood. Here, Ravindran et al. show that polyomavirus SV40 recruits kinesin-1 to construct a penetration site on the ER membrane.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Martin F Engelke
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
26
|
Lu W, Gelfand VI. Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends Cell Biol 2017; 27:505-514. [PMID: 28284467 DOI: 10.1016/j.tcb.2017.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023]
Abstract
In addition to their well-known role in transporting cargoes in the cytoplasm, microtubule motors organize their own tracks - the microtubules. While this function is mostly studied in the context of cell division, it is essential for microtubule organization and generation of cell polarity in interphase cells. Kinesin-1, the most abundant microtubule motor, plays a role in the initial formation of neurites. This review describes the mechanism of kinesin-1-driven microtubule sliding and discusses its biological significance in neurons. Recent studies describing the interplay between kinesin-1 and cytoplasmic dynein in the translocation of microtubules are discussed. In addition, we evaluate recent work exploring the developmental regulation of microtubule sliding during axonal outgrowth and regeneration. Collectively, the discussed works suggest that sliding of interphase microtubules by motors is a novel force-generating mechanism that reorganizes the cytoskeleton and drives shape change and polarization.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Girotra M, Srivastava S, Kulkarni A, Barbora A, Bobra K, Ghosal D, Devan P, Aher A, Jain A, Panda D, Ray K. The C-terminal tails of heterotrimeric kinesin-2 motor subunits directly bind to α-tubulin1: Possible implications for cilia-specific tubulin entry. Traffic 2017; 18:123-133. [PMID: 27976831 DOI: 10.1111/tra.12461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023]
Abstract
The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.
Collapse
Affiliation(s)
- Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shalini Srivastava
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuttama Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ayan Barbora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kratika Bobra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debnath Ghosal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pavithra Devan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Amol Aher
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
28
|
Ghiretti AE, Thies E, Tokito MK, Lin T, Ostap EM, Kneussel M, Holzbaur ELF. Activity-Dependent Regulation of Distinct Transport and Cytoskeletal Remodeling Functions of the Dendritic Kinesin KIF21B. Neuron 2016; 92:857-872. [PMID: 27817978 DOI: 10.1016/j.neuron.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023]
Abstract
The dendritic arbor is subject to continual activity-dependent remodeling, requiring a balance between directed cargo trafficking and dynamic restructuring of the underlying microtubule tracks. How cytoskeletal components are able to dynamically regulate these processes to maintain this balance remains largely unknown. By combining single-molecule assays and live imaging in rat hippocampal neurons, we have identified the kinesin-4 KIF21B as a molecular regulator of activity-dependent trafficking and microtubule dynamicity in dendrites. We find that KIF21B contributes to the retrograde trafficking of brain-derived neurotrophic factor (BDNF)-TrkB complexes and also regulates microtubule dynamics through a separable, non-motor microtubule-binding domain. Neuronal activity enhances the motility of KIF21B at the expense of its role in cytoskeletal remodeling, the first example of a kinesin whose function is directly tuned to neuronal activity state. These studies suggest a model in which KIF21B navigates the complex cytoskeletal environment of dendrites by compartmentalizing functions in an activity-dependent manner.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Edda Thies
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Mariko K Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Tianming Lin
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Proc Natl Acad Sci U S A 2016; 113:E4995-5004. [PMID: 27512034 DOI: 10.1073/pnas.1522424113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.
Collapse
|
30
|
Role of kinesin-1-based microtubule sliding in Drosophila nervous system development. Proc Natl Acad Sci U S A 2016; 113:E4985-94. [PMID: 27512046 DOI: 10.1073/pnas.1522416113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plus-end microtubule (MT) motor kinesin-1 is essential for normal development, with key roles in the nervous system. Kinesin-1 drives axonal transport of membrane cargoes to fulfill the metabolic needs of neurons and maintain synapses. We have previously demonstrated that kinesin-1, in addition to its well-established role in organelle transport, can drive MT-MT sliding by transporting "cargo" MTs along "track" MTs, resulting in dramatic cell shape changes. The mechanism and physiological relevance of this MT sliding are unclear. In addition to its motor domain, kinesin-1 contains a second MT-binding site, located at the C terminus of the heavy chain. Here, we mutated this C-terminal MT-binding site such that the ability of kinesin-1 to slide MTs is significantly compromised, whereas cargo transport is unaffected. We introduced this mutation into the genomic locus of kinesin-1 heavy chain (KHC), generating the Khc(mutA) allele. Khc(mutA) neurons displayed significant MT sliding defects while maintaining normal transport of many cargoes. Using this mutant, we demonstrated that MT sliding is required for axon and dendrite outgrowth in vivo. Consistent with these results, Khc(mutA) flies displayed severe locomotion and viability defects. To test the role of MT sliding further, we engineered a chimeric motor that actively slides MTs but cannot transport organelles. Activation of MT sliding in Khc(mutA) neurons using this chimeric motor rescued axon outgrowth in cultured neurons and in vivo, firmly establishing the role of sliding in axon outgrowth. These results demonstrate that MT sliding by kinesin-1 is an essential biological phenomenon required for neuronal morphogenesis and normal nervous system development.
Collapse
|
31
|
Lara-Padilla E, Miliar-Garcia A, Gomez-Lopez M, Romero-Morelos P, Bazan-Mendez C, Alfaro-Rodriguez A, Anaya-Ruiz M, Callender K, Carlos A, Bandala C. Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells. Asian Pac J Cancer Prev 2016; 17:1967-71. [PMID: 27221882 DOI: 10.7314/apjcp.2016.17.4.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines. MATERIALS AND METHODS Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR. RESULTS Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP- Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.
Collapse
Affiliation(s)
- E Lara-Padilla
- Laboratory of Molecular Oncology and Oxidative Stress, Mexico City, Mexico, E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
del Castillo U, Winding M, Lu W, Gelfand VI. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 2015; 4:e10140. [PMID: 26615019 PMCID: PMC4739764 DOI: 10.7554/elife.10140] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides ‘minus-end-out’ microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein. DOI:http://dx.doi.org/10.7554/eLife.10140.001 Motor proteins can move along filaments called microtubules to transport proteins and other materials to different parts of the cell. Microtubules are “polar” filaments, meaning that they have two distinct ends that have different chemical properties. Motor proteins can only move along these filaments in one direction, for example, the kinesin motor proteins generally move toward the so-called “plus-end”, while dynein motors move in the opposite direction. A typical nerve cell (or neuron) is composed of a cell body, a long projection called an axon and many small branch-like structures called dendrites. Within the axon, the microtubules are arranged so that their plus-ends point outwards, but the microtubules in dendrites are arranged differently so that many minus-ends point outwards instead. This polarity is important for the neuron in deciding which proteins should be transported to axons, and which should go to the dendrites. However, it is not clear how these different microtubule arrangements are established. Here, del Castillo et al. used microscopy to study microtubules in the axons of fruit fly neurons. The experiments show that in the very early stages of neuron development, the axons contained microtubules of mixed polarity. However, by the later stages, the microtubules had become uniform with all the plus-ends directed outwards. Further experiments show that dynein is responsible for this organization as it pushes the minus-end-out microtubules out of the axons. Dynein uses a scaffold made of a protein called actin to attach to the inner surface of the cell and move the minus-end microtubules to the cell body of the neuron. Thus, del Castillo et al.’s findings reveal that these dynein motors are responsible for the polarity of microtubules in mature axons. The next challenge is to understand how dynein is attached to the actin scaffold and why it rearranges microtubules in axons, but not in dendrites. DOI:http://dx.doi.org/10.7554/eLife.10140.002
Collapse
Affiliation(s)
- Urko del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
33
|
Sasabe M, Ishibashi N, Haruta T, Minami A, Kurihara D, Higashiyama T, Nishihama R, Ito M, Machida Y. The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site. JOURNAL OF PLANT RESEARCH 2015; 128:327-36. [PMID: 25502072 PMCID: PMC5114321 DOI: 10.1007/s10265-014-0687-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 05/19/2023]
Abstract
Plant cytokinesis is achieved by formation of cell plates in the phragmoplast, a plant-specific cytokinetic apparatus, which consists of microtubules (MTs) and microfilaments. During cytokinesis, the cell plate is expanded centrifugally outward from the inside of cells in a process that is supported by dynamic turnover of MTs. M-phase-specific kinesin NACK1, which comprises the motor domain at the amino-terminal half to move on MT bundles and the stalk region in the carboxyl-terminal half, is a key player in the process of MT turnover. That is, the specific region in the stalk binds the MAP kinase kinase kinase to activate the whole MAP kinase cascade, which stimulates depolymerization of MTs for the MT turnover. The stalk is also responsible for recruiting the activated kinase cascade to the mid-zone of the phragmoplast, which corresponds to the cell-plate formation site. It should be crucial to uncover roles of the NACK1 kinesin stalk as well as the motor domain in the formation of cell plates in order to understand the mechanisms of cell plate formation. Using dissected Arabidopsis NACK1 (AtNACK1/HINKEL) molecules and AtNACK1-fused GFP, we showed that the C-terminal tail of the stalk in addition to the motor domain is critical for its proper localization to the site of cell plate formation in the phragmoplast, probably by affecting its motility activity.
Collapse
Affiliation(s)
- Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561 Japan
| | - Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tsuyoshi Haruta
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Aki Minami
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| |
Collapse
|
34
|
Lu W, Lakonishok M, Gelfand VI. Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons. Mol Biol Cell 2015; 26:1296-307. [PMID: 25657321 PMCID: PMC4454177 DOI: 10.1091/mbc.e14-10-1423] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule sliding drives initial axon regeneration in Drosophila neurons. Axotomy leads to fast calcium influx and subsequent microtubule reorganization. Kinesin-1 heavy chain drives the sliding of antiparallel microtubules to power axonal regrowth, and the JNK pathway promotes axonal regeneration by enhancing microtubule sliding. Understanding the mechanism underlying axon regeneration is of great practical importance for developing therapeutic treatment for traumatic brain and spinal cord injuries. Dramatic cytoskeleton reorganization occurs at the injury site, and microtubules have been implicated in the regeneration process. Previously we demonstrated that microtubule sliding by conventional kinesin (kinesin-1) is required for initiation of neurite outgrowth in Drosophila embryonic neurons and that sliding is developmentally down-regulated when neurite outgrowth is completed. Here we report that mechanical axotomy of Drosophila neurons in culture triggers axonal regeneration and regrowth. Regenerating neurons contain actively sliding microtubules; this sliding, like sliding during initial neurite outgrowth, is driven by kinesin-1 and is required for axonal regeneration. The injury induces a fast spike of calcium, depolymerization of microtubules near the injury site, and subsequent formation of local new microtubule arrays with mixed polarity. These events are required for reactivation of microtubule sliding at the initial stages of regeneration. Furthermore, the c-Jun N-terminal kinase pathway promotes regeneration by enhancing microtubule sliding in injured mature neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
35
|
Del Castillo U, Lu W, Winding M, Lakonishok M, Gelfand VI. Pavarotti/MKLP1 regulates microtubule sliding and neurite outgrowth in Drosophila neurons. Curr Biol 2014; 25:200-205. [PMID: 25557664 DOI: 10.1016/j.cub.2014.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022]
Abstract
Recently, we demonstrated that kinesin-1 can slide microtubules against each other, providing the mechanical force required for initial neurite extension in Drosophila neurons. This sliding is only observed in young neurons actively forming neurites and is dramatically downregulated in older neurons. The downregulation is not caused by the global shutdown of kinesin-1, as the ability of kinesin-1 to transport membrane organelles is not diminished in mature neurons, suggesting that microtubule sliding is regulated by a dedicated mechanism. Here, we have identified the "mitotic" kinesin-6 Pavarotti (Pav-KLP) as an inhibitor of kinesin-1-driven microtubule sliding. Depletion of Pav-KLP in neurons strongly stimulated the sliding of long microtubules and neurite outgrowth, while its ectopic overexpression in the cytoplasm blocked both of these processes. Furthermore, postmitotic depletion of Pav-KLP in Drosophila neurons in vivo reduced embryonic and larval viability, with only a few animals surviving to the third instar larval stage. A detailed examination of motor neurons in the surviving larvae revealed the overextension of axons and mistargeting of neuromuscular junctions, resulting in uncoordinated locomotion. Taken together, our results identify a new role for Pav-KLP as a negative regulator of kinesin-1-driven neurite formation. These data suggest an important parallel between long microtubule-microtubule sliding in anaphase B and sliding of interphase microtubules during neurite formation.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA; IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis. Biophys J 2014; 107:2567-78. [PMID: 25468336 DOI: 10.1016/j.bpj.2014.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/22/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes, which is noticeably different from that in vitro.
Collapse
|
37
|
Janning D, Igaev M, Sündermann F, Brühmann J, Beutel O, Heinisch JJ, Bakota L, Piehler J, Junge W, Brandt R. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol Biol Cell 2014; 25:3541-51. [PMID: 25165145 PMCID: PMC4230615 DOI: 10.1091/mbc.e14-06-1099] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP-tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin-microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport.
Collapse
Affiliation(s)
- Dennis Janning
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jörg Brühmann
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Genetics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Wolfgang Junge
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
38
|
Werner ME, Mitchell JW, Putzbach W, Bacon E, Kim SK, Mitchell BJ. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol 2014; 206:367-76. [PMID: 25070955 PMCID: PMC4121976 DOI: 10.1083/jcb.201312045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/25/2014] [Indexed: 01/28/2023] Open
Abstract
The directed movement of cells is critical for numerous developmental and disease processes. A developmentally reiterated form of migration is radial intercalation; the process by which cells move in a direction orthogonal to the plane of the tissue from an inner layer to an outer layer. We use the radial intercalation of cells into the skin of Xenopus laevis embryos as a model to study directed cell migration within an epithelial tissue. We identify a novel function for both the microtubule-binding protein CLAMP and members of the microtubule-regulating Par complex during intercalation. Specifically, we show that Par3 and aPKC promote the apical positioning of centrioles, whereas CLAMP stabilizes microtubules along the axis of migration. We propose a model in which the Par complex defines the orientation of apical migration during intercalation and in which subcellular localization of CLAMP promotes the establishment of an axis of microtubule stability required for the active migration of cells into the outer epithelium.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Jennifer W Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - William Putzbach
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Bacon
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Sun K Kim
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Brian J Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
39
|
Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. ACTA ACUST UNITED AC 2013; 203:11-22. [PMID: 24127213 PMCID: PMC3798257 DOI: 10.1083/jcb.201307020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.
Collapse
Affiliation(s)
- Poh Hui Chia
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|
40
|
Williams LS, Ganguly S, Loiseau P, Ng BF, Palacios IM. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline. Development 2013; 141:176-86. [PMID: 24257625 PMCID: PMC3865757 DOI: 10.1242/dev.097592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major motor Kinesin-1 provides a key pathway for cell polarization through intracellular transport. Little is known about how Kinesin works in complex cellular surroundings. Several cargos associate with Kinesin via Kinesin light chain (KLC). However, KLC is not required for all Kinesin transport. A putative cargo-binding domain was identified in the C-terminal tail of fungal Kinesin heavy chain (KHC). The tail is conserved in animal KHCs and might therefore represent an alternative KLC-independent cargo-interacting region. By comprehensive functional analysis of the tail during Drosophila oogenesis we have gained an understanding of how KHC achieves specificity in its transport and how it is regulated. This is, to our knowledge, the first in vivo structural/functional analysis of the tail in animal Kinesins. We show that the tail is essential for all functions of KHC except Dynein transport, which is KLC dependent. These tail-dependent KHC activities can be functionally separated from one another by further characterizing domains within the tail. In particular, our data show the following. First, KHC is temporally regulated during oogenesis. Second, the IAK domain has an essential role distinct from its auto-inhibitory function. Third, lack of auto-inhibition in itself is not necessarily detrimental to KHC function. Finally, the ATP-independent microtubule-binding motif is required for cargo localization. These results stress that two unexpected highly conserved domains, namely the auto-inhibitory IAK and the auxiliary microtubule-binding motifs, are crucial for transport by Kinesin-1 and that, although not all cargos are conserved, their transport involves the most conserved domains of animal KHCs.
Collapse
Affiliation(s)
- Lucy S Williams
- University of Cambridge, Zoology Department, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | |
Collapse
|
41
|
Aoki T, Tomishige M, Ariga T. Single molecule FRET observation of kinesin-1's head-tail interaction on microtubule. Biophysics (Nagoya-shi) 2013; 9:149-59. [PMID: 27493553 PMCID: PMC4629677 DOI: 10.2142/biophysics.9.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023] Open
Abstract
Kinesin-1 (conventional kinesin) is a molecular motor that transports various cargo such as endoplasmic reticulum and mitochondria in cells. Its two head domains walk along microtubule by hydrolyzing ATP, while the tail domains at the end of the long stalk bind to the cargo. When a kinesin is not carrying cargo, its motility and ATPase activity is inhibited by direct interactions between the tail and head. However, the mechanism of this tail regulation is not well understood. Here, we apply single molecule fluorescence resonance energy transfer (smFRET) to observe this interaction in stalk-truncated kinesin. We found that kinesin with two tails forms a folding conformation and dissociates from microtubules, whereas kinesin with one tail remains bound to the micro-tubule and is immobile even in the presence of ATP. We further investigated the head-tail interaction as well as head-head coordination on the microtubule at various nucleotide conditions. From these results, we propose a two-step inhibition model for kinesin motility.
Collapse
Affiliation(s)
- Takahiro Aoki
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| | - Michio Tomishige
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| | - Takayuki Ariga
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
42
|
Welburn JPI. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 2013; 70:476-93. [PMID: 24039047 PMCID: PMC4065354 DOI: 10.1002/cm.21135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
43
|
Acharya BR, Espenel C, Kreitzer G. Direct regulation of microtubule dynamics by KIF17 motor and tail domains. J Biol Chem 2013; 288:32302-32313. [PMID: 24072717 DOI: 10.1074/jbc.m113.494989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KIF17 is a kinesin-2 family motor that interacts with EB1 at microtubule (MT) plus-ends and contributes to MT stabilization in epithelial cells. The mechanism by which KIF17 affects MTs and how its activity is regulated are not yet known. Here, we show that EB1 and the KIF17 autoinhibitory tail domain (KIF17-Tail) interacted competitively with the KIF17 catalytic motor domain (K370). Both EB1 and KIF17-Tail decreased the K0.5MT of K370, with opposing effects on MT-stimulated ATPase activity. Importantly, K370 had independent effects on MT dynamic instability, resulting in formation of long MTs without affecting polymerization rate or total polymer mass. K370 also inhibited MT depolymerization induced by dilution in vitro and by nocodazole in cells, suggesting that it acts by protecting MT plus-ends. Interestingly, KIF17-Tail bound MTs and tubulin dimers, delaying initial MT polymerization in vitro and MT regrowth in cells. However, neither EB1 nor KIF17-Tail affected K370-mediated MT polymerization or stabilization significantly in vitro, and EB1 was dispensable for MT stabilization by K370 in cells. Thus, although EB1 and KIF17-Tail may coordinate KIF17 catalytic activity, our data reveal a novel and direct role for KIF17 in regulating MT dynamics.
Collapse
Affiliation(s)
- Bipul R Acharya
- From the Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065
| | - Cedric Espenel
- From the Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065
| | - Geri Kreitzer
- From the Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065.
| |
Collapse
|
44
|
Tanenbaum ME, Vale RD, McKenney RJ. Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains. eLife 2013; 2:e00943. [PMID: 24015359 PMCID: PMC3762337 DOI: 10.7554/elife.00943] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/29/2013] [Indexed: 01/24/2023] Open
Abstract
Cytoplasmic dynein is the predominant minus-end-directed microtubule (MT) motor in most eukaryotic cells. In addition to transporting vesicular cargos, dynein helps to organize MTs within MT networks such as mitotic spindles. How dynein performs such non-canonical functions is unknown. Here we demonstrate that dynein crosslinks and slides anti-parallel MTs in vitro. Surprisingly, a minimal dimeric motor lacking a tail domain and associated subunits can cause MT sliding. Single molecule imaging reveals that motors pause and frequently reverse direction when encountering an anti-parallel MT overlap, suggesting that the two motor domains can bind both MTs simultaneously. In the mitotic spindle, inward microtubule sliding by dynein counteracts outward sliding generated by kinesin-5, and we show that a tailless, dimeric motor is sufficient to drive this activity in mammalian cells. Our results identify an unexpected mechanism for dynein-driven microtubule sliding, which differs from filament sliding mechanisms described for other motor proteins. DOI:http://dx.doi.org/10.7554/eLife.00943.001 When cells divide, they must also divide their contents. In particular, both ‘mother’ and ‘daughter’ cells require full sets of chromosomes, which must first be duplicated, and then evenly distributed between the cells. Protein filaments called microtubules form a network that helps to accurately segregate the chromosomes. Microtubules emanate from structures at each end of the dividing cell known as spindle poles; after the chromosomes have duplicated, the microtubules latch onto them and align the pairs in the middle of the cell. As the two cells separate, microtubules at opposite spindle poles reel in one chromosome from each pair. Microtubules are composed of alternating copies of two different types of a protein called tubulin, and have ends with distinct properties. The ‘minus’ ends are directed outwards, away from the chromosomes; the ‘plus’ ends—which can actively add tubulin—grow toward the middle of the cell, and can also bind to chromosomes. Microtubules can be manipulated by motor proteins that ‘walk’ along them carrying cargoes, which can include other microtubules. The combined actions of many motor proteins rearrange the microtubule network into a configuration that enables the chromosomes, and other cellular structures, to partition equally between the mother and daughter cells. Motor proteins such as dynein and kinesin transport cargoes along microtubules; each motor is composed of two identical copies of the protein bound to each other. Kinesin walks toward the plus end of a microtubule, propelling itself using ‘feet’ that are called motor domains; it binds cargoes (including other microtubules) through additional regions located at the opposite end of the protein. In contrast, dynein walks toward the minus end of a microtubule. Although dynein is known to carry certain cargoes through regions outside its motor domain, how it transports other microtubules is not well understood. Tanenbaum et al. now show that regions outside the motor domain of dynein are unnecessary to transport microtubule cargoes. When two dynein motor domains are isolated and linked to each other in vitro, each can bind to a separate microtubule. By walking toward the minus ends of their respective microtubules, the motor domains drive the microtubules in opposite directions, sliding them apart. These studies thus provide insight into the mechanism through which dynein works with additional motor proteins (such as kinesin) to rearrange microtubules during cell division—and also to ensure that chromosomes segregate evenly between mother and daughter cells. DOI:http://dx.doi.org/10.7554/eLife.00943.002
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department Cellular and Molecular Pharmacology , Howard Hughes Medical Institute, University of California, San Francisco , San Francisco , United States
| | | | | |
Collapse
|
45
|
Abstract
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new view describes cell signaling in terms of dynamic allosteric interactions within and among distinct, spatially organized transient clusters. The clusters vary over time and space and are on length scales from nanometers to micrometers. When considered across these length scales, primary factors in the spatial organization are cell membrane domains and the actin cytoskeleton, both also highly dynamic. A key challenge is to understand the interplay across these multiple scales, link it to the physicochemical basis of the conformational behavior of single molecules and ultimately relate it to cellular function. Overall, our premise is that at these scales, cell signaling should be thought of not primarily as a sequence of diffusion-controlled molecular collisions, but instead transient, allostery-driven cluster re-forming interactions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol 2013; 23:1018-23. [PMID: 23707427 DOI: 10.1016/j.cub.2013.04.050] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/28/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022]
Abstract
Remarkably, forces within a neuron can extend its axon to a target that could be meters away. The two main cytoskeleton components in neurons are microtubules, which are mostly bundled along the axon shaft, and actin filaments, which are highly enriched in a structure at the axon distal tip, the growth cone. Neurite extension has been thought to be driven by a combination of two forces: pushing via microtubule assembly, and/or pulling by an actin-driven mechanism in the growth cone. Here we show that a novel mechanism, sliding of microtubules against each other by the microtubule motor kinesin-1, provides the mechanical forces necessary for initial neurite extension in Drosophila neurons. Neither actin filaments in the growth cone nor tubulin polymerization is required for initial outgrowth. Microtubule sliding in neurons is developmentally regulated and is suppressed during neuronal maturation. As kinesin-1 is highly evolutionarily conserved from Drosophila to humans, it is likely that kinesin-1-powered microtubule sliding plays an important role in neurite extension in many types of neurons across species.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
47
|
Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, Shen K. Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2013; 2:e00133. [PMID: 23482306 PMCID: PMC3591006 DOI: 10.7554/elife.00133] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
In neurons, microtubules (MTs) span the length of both axons and dendrites, and the molecular motors use these intracellular ‘highways' to transport diverse cargo to the appropriate subcellular locations. Whereas axonal MTs are organized such that the plus-end is oriented out from the cell body, dendrites exhibit a mixed MTs polarity containing both minus-end-out and plus-end-out MTs. The molecular mechanisms underlying this differential organization, as well as its functional significance, are unknown. Here, we show that kinesin-1 is critical in establishing the characteristic minus-end-out MT organization of the dendrite in vivo. In unc-116 (kinesin-1/kinesin heavy chain) mutants, the dendritic MTs adopt an axonal-like plus-end-out organization. Kinesin-1 protein is able to cross-link anti-paralleled MTs in vitro. We propose that kinesin-1 regulates the dendrite MT polarity through directly gliding the plus-end-out MTs out of the dendrite using both the motor domain and the C-terminal MT-binding domain. DOI:http://dx.doi.org/10.7554/eLife.00133.001 Neurons, or nerve cells, are excitable cells that transmit information using electrical and chemical signals. Nerve cells are generally composed of a cell body, multiple dendrites, and a single axon. The dendrites are responsible for receiving inputs and for transferring these signals to the cell body, whereas the axon carries signals away from the cell body and relays them to other cells. Like all cells, nerve cells have a cytoskeleton made up of microtubules, which help to determine cellular shape and which act as ‘highways' for intracellular transport. Microtubules are long hollow fibers composed of alternating α- and β-tubulin proteins: each microtubule has a ‘plus'-end, where the β subunits are exposed, and a ‘minus'-end, where the α subunits are exposed. Nerve cells are highly polarized: within the axon, the microtubules are uniformly oriented with their plus-ends pointing outward, whereas in dendrites, there are many microtubules with their minus-ends pointing outward. This arrangement is conserved across the animal kingdom, but the mechanisms that establish it are largely unknown. Yan et al. use the model organism Caenorhabditis elegans (the nematode worm) to conduct a detailed in vivo analysis of dendritic microtubule organization. They find that a motor protein called kinesin-1 is critical for generating the characteristic minus-end-out pattern in dendrites: when the gene that codes for this protein is knocked out, the dendrites in microtubules undergo a dramatic polarity shift and adopt the plus-end-out organization that is typical of axons. The mutant dendrites also show other axon-like features: for example, they lack many of the proteins that are usually found in dendrites. Based on these and other data, Yan et al. propose that kinesin-1 determines microtubule polarity in dendrites by moving plus-end-out microtubules out of dendrites. These first attempts to explain, at the molecular level, how dendritic microtubule polarity is achieved in vivo could lead to new insights into the structure and function of the neuronal cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.00133.002
Collapse
Affiliation(s)
- Jing Yan
- Department of Biology , Howard Hughes Medical Institute, Stanford University , Stanford , United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Non-taxoid site microtubule-stabilizing drugs work independently of tau overexpression in mouse N2a neuroblastoma cells. Brain Res 2012; 1489:121-32. [DOI: 10.1016/j.brainres.2012.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/11/2012] [Accepted: 10/10/2012] [Indexed: 11/23/2022]
|
50
|
Seeger MA, Zhang Y, Rice SE. Kinesin tail domains are intrinsically disordered. Proteins 2012; 80:2437-46. [PMID: 22674872 DOI: 10.1002/prot.24128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022]
Abstract
Kinesin motor proteins transport a wide variety of molecular cargoes in a spatially and temporally regulated manner. Kinesin motor domains, which hydrolyze ATP to produce a directed mechanical force along a microtubule, are well conserved throughout the entire superfamily. Outside of the motor domains, kinesin sequences diverge along with their transport functions. The nonmotor regions, particularly the tails, respond to a wide variety of structural and molecular cues that enable kinesins to carry specific cargoes in response to particular cellular signals. Here, we demonstrate that intrinsic disorder is a common structural feature of kinesins. A bioinformatics survey of the full-length sequences of all 43 human kinesins predicts that significant regions of intrinsically disordered residues are present in all kinesins. These regions are concentrated in the nonmotor domains, particularly in the tails and near sites for ligand binding or post-translational modifications. In order to experimentally verify these predictions, we expressed and purified the tail domains of kinesins representing three different families (Kif5B, Kif10, and KifC3). Circular dichroism and NMR spectroscopy experiments demonstrate that the isolated tails are disordered in vitro, yet they retain their functional microtubule-binding activity. On the basis of these results, we propose that intrinsic disorder is a common structural feature that confers functional specificity to kinesins.
Collapse
Affiliation(s)
- Mark A Seeger
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|