1
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. Mol Biol Cell 2025; 36:ar66. [PMID: 40202836 DOI: 10.1091/mbc.e25-01-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature-sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wild-type proteins behave and are regulated in the presence of limiting Hsp70s. Using the wild-type yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104, and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wild type, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wild-type cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggest that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
Affiliation(s)
- Hannah E Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Sean A Martin
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Claire M Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Adam S Knier
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Natalia B Beans
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
2
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633617. [PMID: 39896508 PMCID: PMC11785122 DOI: 10.1101/2025.01.17.633617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wildtype proteins behave and are regulated in the presence of limiting Hsp70s. Using the wildtype yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104 and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wildtype, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wildtype cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggests that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
Affiliation(s)
- Hannah E Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Sean A Martin
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Claire M Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Adam S Knier
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Natalia B Beans
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| |
Collapse
|
3
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
4
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
5
|
Fairman G, Ouimet M. Lipophagy pathways in yeast are controlled by their distinct modes of induction. Yeast 2022; 39:429-439. [PMID: 35652813 DOI: 10.1002/yea.3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid droplet (LD) autophagy (lipophagy) is a recently discovered selective form of autophagy and is a pathway for LD catabolism. This ubiquitous process has been an ongoing area of research within the budding yeast, Saccharomyces cerevisiae. Yeast lipophagy phenotypically resembles microautophagy, although it has a distinct set of genetic requirements depending on the mode of induction. This review highlights the similarities and differences between different forms of yeast lipophagy and offers perspectives on how our knowledge of lipophagy in yeast may guide our understanding of this process within mammalian cells to ultimately inform future applications of lipophagy.
Collapse
Affiliation(s)
- Garrett Fairman
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. mBio 2020; 11:mBio.01666-20. [PMID: 33051364 PMCID: PMC7554666 DOI: 10.1128/mbio.01666-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Directional growth and tissue invasion by hyphae of the pathogenic fungus, Candida albicans, are disrupted by deletion of the small GTPase, Rsr1, which localizes Cdc42 and its kinase, Cla4, to the site of polarized growth. We investigated additional abnormalities observed in rsr1Δ hyphae, including vacuole development, cytoplasm inheritance, mitochondrial morphology, septin ring organization, nuclear division and migration, and branching frequency, which together demonstrate a fundamental role for Rsr1 in cellular organization. Rsr1 contains a C-terminal CCAAX box, which putatively undergoes both reversible palmitoylation and farnesylation for entry into the secretory pathway. We expressed variants of Rsr1 with mutated C244 or C245, or which lacked GTPase activity (Rsr1K16N and Rsr1G12V), in the rsr1Δ background and compared the resulting phenotypes with those of mutants lacking Bud5 (Rsr1 GEF), Bud2 (Rsr1 GAP), or Cla4. Bud5 was required only for cell size and bud site selection in yeast, suggesting there are alternative activators for Rsr1 in hyphae. Septin ring and vacuole dynamics were restored by expression of unpalmitoylated Rsr1C244S, which localized to endomembranes, but not by cytoplasmic Rsr1C245A or GTP/GDP-locked Rsr1, suggesting Rsr1 functions at intracellular membranes in addition to the plasma membrane. Rsr1K16N or cytoplasmic Rsr1C245A restored normal nuclear division but not septin ring or vacuole dynamics. Rsr1-GDP therefore plays a specific role in suppressing START, which can be signaled from the cytosol. Via differential palmitoylation and activity states, Rsr1 operates at diverse cell sites to orchestrate proper nuclear division and inheritance during constitutive polarized growth. As cla4Δ phenocopied rsr1Δ, it is likely these functions involve Cdc42-Cla4 activity.IMPORTANCE Understanding how single eukaryotic cells self-organize to replicate and migrate is relevant to health and disease. In the fungal pathogen, Candida albicans, the small GTPase, Rsr1, guides the directional growth of hyphae that invade human tissue during life-threatening infections. Rsr1 is a Ras-like GTPase and a homolog of the conserved Rap1 subfamily, which directs migration in mammalian cells. Research into how this single GTPase delivers complex intracellular patterning is challenging established views of GTPase regulation, trafficking, and interaction. Here, we show that Rsr1 directly and indirectly coordinates the spatial and temporal development of key intracellular macrostructures, including septum formation and closure, vacuole dynamics, and nuclear division and segregation, as well as whole-cell morphology by determining branching patterns. Furthermore, we categorize these functions by differential Rsr1 localization and activity state and provide evidence to support the emerging view that the cytosolic pool of Ras-like GTPases is functionally active.
Collapse
|
7
|
Hurst LR, Fratti RA. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Front Cell Dev Biol 2020; 8:539. [PMID: 32719794 PMCID: PMC7349313 DOI: 10.3389/fcell.2020.00539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023] Open
Abstract
The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.
Collapse
Affiliation(s)
- Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 2015; 34:2117-31. [PMID: 26162625 DOI: 10.15252/embj.201490315] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/09/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a major catabolic process responsible for the delivery of proteins and organelles to the lysosome/vacuole for degradation. Malfunction of this pathway has been implicated in numerous pathological conditions. Different organelles have been found to contribute to the formation of autophagosomes, but the exact mechanism mediating this process remains obscure. Here, we show that lipid droplets (LDs) are important for the regulation of starvation-induced autophagy. Deletion of Dga1 and Lro1 enzymes responsible for triacylglycerol (TAG) synthesis, or of Are1 and Are2 enzymes responsible for the synthesis of steryl esters (STE), results in the inhibition of autophagy. Moreover, we identified the STE hydrolase Yeh1 and the TAG lipase Ayr1 as well as the lipase/hydrolase Ldh1 as essential for autophagy. Finally, we provide evidence that the ER-LD contact-site proteins Ice2 and Ldb16 regulate autophagy. Our study thus highlights the importance of lipid droplet dynamics for the autophagic process under nitrogen starvation.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Evelyn Welter
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Noam Borovsky
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Nira Amar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Muriel Mari
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Bodman JAR, Yang Y, Logan MR, Eitzen G. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 2015; 290:4705-4716. [PMID: 25561732 DOI: 10.1074/jbc.m114.630764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.
Collapse
Affiliation(s)
- James A R Bodman
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yang Yang
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael R Logan
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Gary Eitzen
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
11
|
Zhang C, Hicks GR, Raikhel NV. Plant vacuole morphology and vacuolar trafficking. FRONTIERS IN PLANT SCIENCE 2014; 5:476. [PMID: 25309565 PMCID: PMC4173805 DOI: 10.3389/fpls.2014.00476] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 05/23/2023]
Abstract
Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking.
Collapse
Affiliation(s)
- Chunhua Zhang
- *Correspondence: Chunhua Zhang, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| | | | | |
Collapse
|
12
|
Baier A, Ndoh VNE, Lacy P, Eitzen G. Rac1 and Rac2 control distinct events during antigen-stimulated mast cell exocytosis. J Leukoc Biol 2014; 95:763-774. [PMID: 24399839 DOI: 10.1189/jlb.0513281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 02/02/2023] Open
Abstract
The release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis. These two isoforms showed equivalent levels of expression in mouse BMMCs. Although Rac1 and Rac2 share 92% sequence identity, they were not functionally redundant, as Rac2-/- BMMCs were defective in exocytosis, even though Rac1 levels were unaffected. Antigen-stimulated WT mast cells underwent a series of morphological transitions: initial flattening, followed by actin-mediated peripheral membrane ruffling and calcium influx, which preceded exocytosis. Whereas membrane ruffling was unaffected in Rac2-/- BMMCs, calcium influx was decreased significantly. Calcium influx was studied further by examining SOCE. In Rac2-/- BMMCs, the activation of PLCγ1 and calcium release from intracellular stores occurred normally; however, activation of plasma membrane calcium channels was defective, shown by the lack of extracellular calcium influx and a reduction of YFP-STIM1 puncta at the plasma membrane. Additionally, we used the small molecule Rac inhibitor, EHT 1864, to target Rac signaling acutely in WT BMMCs. EHT 1864 blocked exocytosis and membrane ruffling completely in conjunction with exocytosis. Our findings suggest that antigen-stimulated membrane ruffling in mast cells is a Rac1-mediated process, as this persisted in the absence of Rac2. Therefore, we define distinct modes of Rac-regulated mast cell exocytosis: Rac2-mediated calcium influx and Rac1-mediated membrane ruffling.
Collapse
Affiliation(s)
| | - Vivian N E Ndoh
- Department of Cell Biology and
- Department of Medicine, University of Örebro, Örebro, Sweden
| | - Paige Lacy
- The Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | | |
Collapse
|
13
|
The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in Saccharomyces cerevisiae mutants affected by endogenous oxidative stress. Appl Environ Microbiol 2013; 79:6459-71. [PMID: 23956390 DOI: 10.1128/aem.01692-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress causes transient actin cytoskeleton depolarization and also provokes vacuole fragmentation in wild-type cells. Under conditions of oxidative stress induced by hydrogen peroxide, the Slt2 protein is required to repolarize the actin cytoskeleton and to promote vacuole fusion. In this study, we show that grx3 grx4 and grx5 mutants are cellular models of endogenous oxidative stress. This stress is the result of alterations in iron homeostasis that lead to impairment of vacuolar function and also to disorganization of the actin cytoskeleton. Slt2 overexpression suppresses defects in vacuolar function and actin cytoskeleton organization in the grx3 grx4 mutant. Slt2 exerts this effect independently of the intracellular levels of reactive oxygen species (ROS) and of iron homeostasis. The deletion of SLT2 in the grx3 grx4 mutant results in synthetic lethality related to vacuolar function with substantial vacuole fragmentation. The observation that both Vps4 and Vps73 (two proteins related to vacuole sorting) suppress vacuole fragmentation and actin depolarization in the grx3 grx4 slt2 triple mutant strengthens the hypothesis that Slt2 plays a role in vacuole homeostasis related to actin dynamics. Here we show that in sod1, grx5, and grx3 grx4 slt2 mutants, all of which are affected by chronic oxidative stress, the overexpression of Slt2 favors vacuole fusion through a mechanism dependent on an active actin cytoskeleton.
Collapse
|
14
|
Abstract
Cdc42 is a key factor in the control of cell polarity and morphogenesis. Fission yeast Cdc42 regulates formin activation and actin cable assembly. Cdc42 is also required for exocyst function, contributing to polarized secretion. Additionally, Cdc42 participates in membrane trafficking, endosome recycling, and vacuole formation. We show here how Cdc42 is required for the correct transport/recycling to the plasma membrane of the glucan synthases Bgs1 and Bgs4, responsible of cell wall biosynthesis and polarized growth at the cell tips.
Collapse
Affiliation(s)
- Miguel Estravis
- CSIC; Departamento de Microbiología y Genética; Instituto de Biología Funcional y Genómica; Universidad de Salamanca; Edificio Departamental; Salamanca, Spain
| | | | | |
Collapse
|
15
|
Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:471-81. [PMID: 22327008 DOI: 10.1128/ec.00011-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.
Collapse
|
16
|
Abstract
Rho proteins act as molecular switches to control multiple cellular processes. The switch mechanism involves cycling between active and inactive states based on GTP loading and hydrolysis. Assays that quantitatively analyze the GTP loading of Rho proteins have become important molecular tools to decipher upstream signals and mechanisms that regulate activation and de-activation. These assays make use of Rho activation probes constructed from Rho-binding domains of downstream effectors. The utility of these assays comes from effector domains that show selective high affinity interactions with specific subsets of GTP-bound activated GTPases. Here, we describe assays used to analyze yeast Rho GTPase activation.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
17
|
Abstract
RhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes. We have shown previously that purified yeast RhoGDI Rdi1p, can inhibit vacuole membrane fusion in vitro. In the present paper we functionally dissect Rdi1p to discover its mode of regulating membrane fusion. Overexpression of Rdi1p in vivo profoundly affected cell morphology including increased actin patches in mother cells indicative of polarity defects, delayed ALP (alkaline phosphatase) sorting and the presence of highly fragmented vacuoles indicative of membrane fusion defects. These defects were not caused by the loss of typical transport and fusion proteins, but rather were linked to the reduction of membrane localization and activation of Cdc42p and Rho1p. Subcellular fractionation showed that Rdi1p is predominantly a cytosolic monomer, free of bound Rho GTPases. Overexpression of endogenous Rdi1p, or the addition of exogenous Rdi1p, generated stable cytosolic complexes. Rdi1p structure-function analysis showed that membrane association via the C-terminal β-sheet domain was required for the functional inhibition of membrane fusion. Furthermore, Rdi1p inhibited membrane fusion through the binding of Rho GTPases independent from its extraction activity.
Collapse
|