1
|
Chen S, Zhang Z, Peng H, Jiang S, Xu C, Ma X, Zhang L, Zhou H, Xing X, Chen L, Wang Q, Chen W, Li D. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123564. [PMID: 38367693 DOI: 10.1016/j.envpol.2024.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Department of Toxicology, School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Honghao Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liying Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
A New CYP2E1 Inhibitor, 12-Imidazolyl-1-dodecanol, Represents a Potential Treatment for Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021; 2021:8854432. [PMID: 33604316 PMCID: PMC7872744 DOI: 10.1155/2021/8854432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is a key target protein in the development of alcoholic and nonalcoholic fatty liver disease (FLD). The pathophysiological correlate is the massive production of reactive oxygen species. The role of CYP2E1 in the development of hepatocellular carcinoma (HCC), the final complication of FLD, remains controversial. Specifically, CYP2E1 has not yet been defined as a molecular target for HCC therapy. In addition, a CYP2E1-specific drug has not been developed. We have already shown that our newly developed CYP2E1 inhibitor 12-imidazolyl-1-dodecanol (I-ol) was therapeutically effective against alcoholic and nonalcoholic steatohepatitis. In this study, we investigated the effect of I-ol on HCC tumorigenesis and whether I-ol could serve as a possible treatment option for terminal-stage FLD. I-ol exerted a very highly significant antitumour effect against hepatocellular HepG2 cells. Cell viability was reduced in a dose-dependent manner, with only the highest doses causing a cytotoxic effect associated with caspase 3/7 activation. Comparable results were obtained for the model colorectal adenocarcinoma cell line, DLD-1, whose tumorigenesis is also associated with CYP2E1. Transcriptome analyses showed a clear effect of I-ol on apoptosis and cell-cycle regulation, with the increased expression of p27Kip1 being particularly noticeable. These observations were confirmed at the protein level for HepG2 and DLD-1 cells grafted on a chorioallantoic membrane. Cell-cycle analysis showed a complete loss of proliferating cells with a simultaneous increase in S-phase arrest beginning at a threshold dose of 30 μM. I-ol also reduced xenograft tumour growth in nude mice. This antitumour effect was not associated with tumour cachexia. I-ol was not toxic to healthy tissues or organs. This study demonstrates for the first time the therapeutic effect of the specific CYP2E1 inhibitor I-ol on the tumorigenesis of HCC. Our findings imply that I-ol can potentially be applied therapeutically on patients at the final stage of FLD.
Collapse
|
3
|
Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep 2019; 39:BSR20191815. [PMID: 31320544 PMCID: PMC6680372 DOI: 10.1042/bsr20191815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Better understanding of epigenetic regulation of hepatocellular carcinoma (HCC) will help us to cure this most common malignant liver cancer worldwide. The underlying mechanisms of HCC tumorigenesis are genomic aberrations regulated by genetic and epigenetic modifications. Histone H3 lysine modifications regulate histone structure and modulate transcriptional factor binding with target gene promoters. Targetting genes include VASH2, fatty acids synthase, RIZ1, FBP1, MPP1/3, YAP, which affect tumorigenesis, metabolisms, angiogenesis, and metastasis. Signal pathway studies demonstrate that the HGF-MET-MLL axis, phosphatase and tensin homolog (PTEN)-PI3K-Akt axis; WNT-β-catenin signal pathway is involved in histone H3 modification. A variety of factors such as virus infection, reactive oxygen species, food-borne toxins, irradiation, or non-coding RNA cause hepatocellular DNA damage or modification. Dysfunctional DNA repair mechanisms, including those at the epigenetic level are also major causes of HCC tumorigenesis. The development of therapies based on epigenetic regulatory mechanisms has great potential to advance the care of HCC patients in the future.
Collapse
|
4
|
Yang ZY, Yang F, Zhang YL, Liu B, Wang M, Hong X, Yu Y, Zhou YH, Zeng H. LncRNA-ANCR down-regulation suppresses invasion and migration of colorectal cancer cells by regulating EZH2 expression. Cancer Biomark 2017; 18:95-104. [PMID: 27983539 DOI: 10.3233/cbm-161715] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our study aimed to explore the effects of long noncoding RNA (lncRNA)-ANCR on the invasion and migration of colorectal cancer (CRC) cells by regulating enhancer of zeste homolog 2 (EZH2) expression. CRC tissues and adjacent normal tissues were collected and CRC SW620 cells line and normal human intestinal epithelial cells (HIECs) were incubated. CRC SW620 cells line was transfected with ANCR-siRNA. The expressions of ANCR and EZH2 mRNA were measured by real-time quantitative polymerase chain reaction (RT-qPCR). EZH2 and trimethylation of H3K27 (H3K27me3) protein expressions were detected using Western blotting. The relationship between ANCR and EZH2 was determined through RNA pull-down and co-immunoprecipitation (co-IP) assays. Cell invasion and migration were determined by Trans-well and cell scratch assays. ANCR, EZH2 and H3K27me3 expressions were up-regulated in CRC tissues and SW620 cells (all P < 0.05). After transfected with ANCR-siRNA, SW620 cells showed decreased ANCR expression and EZH2 mRNA and protein expressions (all P < 0.05). According to the results of RNA pull-down and co-IP assays, ANCR could specifically bind to EZH2. The results of Trans-well and cell scratch tests showed that when ANCR expression was decreased, the invasion and migration abilities of SW620 cells significantly declined (both P < 0.05). In conclusion, these results suggest that lncRNA-ANCR could influence the invasion and migration of CRC cells by specifically binding to EZH2.
Collapse
Affiliation(s)
- Zhao-Yang Yang
- Department of First Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Fang Yang
- Department of First Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ying-Li Zhang
- Department of Internal Medicine, Harbin Red Cross Central Hospital, Harbin, Heilongjiang, China
| | - Bao Liu
- Department of First Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Meng Wang
- Department of First Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xuan Hong
- Department of First Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yan Yu
- Department of Sixth Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yao-Hui Zhou
- Department of Internal Medicine, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Hai Zeng
- Department of Internal Medicine, The First Hospital of Harbin, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
A New Molecular Mechanism Underlying the Antitumor Effect of DNA Methylation Inhibitors via an Antiviral Immune Response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:227-242. [DOI: 10.1016/bs.apcsb.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Arai E, Yotani T, Kanai Y. DNA and Histone Methylation in Liver Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:437-460. [DOI: 10.1007/978-3-319-59786-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
8
|
Yao J, Zhang L, Hu L, Guo B, Hu X, Borjigin U, Wei Z, Chen Y, Lv M, Lau JTY, Wang X, Li G, Hu YP. Tumorigenic potential is restored during differentiation in fusion-reprogrammed cancer cells. Cell Death Dis 2016; 7:e2314. [PMID: 27468690 PMCID: PMC4973342 DOI: 10.1038/cddis.2016.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Detailed understanding of the mechanistic steps underlying tumor initiation and malignant progression is critical for insights of potentially novel therapeutic modalities. Cellular reprogramming is an approach of particular interest because it can provide a means to reset the differentiation state of the cancer cells and to revert these cells to a state of non-malignancy. Here, we investigated the relationship between cellular differentiation and malignant progression by the fusion of four independent mouse cancer cell lines from different tissues, each with differing developmental potentials, to pluripotent mouse embryonic stem (ES) cells. Fusion was accompanied by loss of differentiated properties of the four parental cancer cell lines and concomitant emergence of pluripotency, demonstrating the feasibility to reprogram the malignant and differentiative properties of cancer cells. However, the original malignant and differentiative phenotypes re-emerge upon withdrawal of the fused cells from the embryonic environment in which they were maintained. cDNA array analysis of the malignant hepatoma progression implicated a role for Foxa1, and silencing Foxa1 prevented the re-emergence of malignant and differentiation-associated gene expression. Our findings support the hypothesis that tumor progression results from deregulation of stem cells, and our approach provides a strategy to analyze possible mechanisms in the cancer initiation.
Collapse
Affiliation(s)
- J Yao
- Department of Cell Biology, Center for Stem Cells and Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
| | - L Zhang
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - L Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Shanxi 030024, People's Republic of China
| | - B Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
| | - X Hu
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - U Borjigin
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Z Wei
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Y Chen
- Pearl Laboratory Animal Science and Technology Co. Ltd, Guangzhou, People's Republic of China
| | - M Lv
- Pearl Laboratory Animal Science and Technology Co. Ltd, Guangzhou, People's Republic of China
| | - J T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - X Wang
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
- Hepatoscience Inc., Sunnyvale, CA, USA
| | - G Li
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Y-P Hu
- Department of Cell Biology, Center for Stem Cells and Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
9
|
Altered primary chromatin structures and their implications in cancer development. Cell Oncol (Dordr) 2016; 39:195-210. [PMID: 27007278 DOI: 10.1007/s13402-016-0276-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development. METHODS During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development. CONCLUSIONS The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.
Collapse
|
10
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Environmental Health Sciences, Mailman School of Public Health and Cancer Center of Columbia University, Room 1608, 630 West 168th Street, New York, NY, 10032, USA,
| |
Collapse
|
11
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
12
|
Gao SB, Zheng QF, Xu B, Pan CB, Li KL, Zhao Y, Zheng QL, Lin X, Xue LX, Jin GH. EZH2 Represses Target Genes through H3K27-Dependent and H3K27-Independent Mechanisms in Hepatocellular Carcinoma. Mol Cancer Res 2014; 12:1388-97. [DOI: 10.1158/1541-7786.mcr-14-0034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Qin S, Li Q, Zhou J, Liu ZJ, Su N, Wilson J, Lu ZM, Deng D. Homeostatic maintenance of allele-specific p16 methylation in cancer cells accompanied by dynamic focal methylation and hydroxymethylation. PLoS One 2014; 9:e97785. [PMID: 24828678 PMCID: PMC4020935 DOI: 10.1371/journal.pone.0097785] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
AIM p16 Methylation frequently occurs in carcinogenesis. While it has been hypothesized that the p16 methylation states are dynamically maintained in cancer cells, direct evidence supporting this hypothesis has not been available until now. METHODS A fusion cell model was established which reprogrammed the native DNA methylation pattern of the cells. The methylation status of the p16 alleles was then repeatedly quantitatively analyzed in the fusion monoclonal, parental cancer cell lines (p16-completely methylated-AGS and unmethylated-MGC803), and HCT116 non-fusion cell using DHPLC and bisulfite sequencing. Histone methylation was analyzed using chromatin immuno-precipitation (ChIP)-PCR. P16 expression status was determined using immuno-staining and RT-PCR. RESULTS The methylation status for the majority of the p16 alleles was stably maintained in the fusion monoclonal cells after up to 60 passages. Most importantly, focal de novo methylation, demethylation, and hydroxymethylation were consistently observed within about 27% of the p16 alleles in the fusion monoclones, but not the homozygously methylated or unmethylated parental cells. Furthermore, subclones of the monoclones consistently maintained the same p16 methylation pattern. A similar phenomenon was also observed using the p16 hemi-methylated HCT116 non-fusion cancer cell line. Interestingly, transcription was not observed in p16 alleles that were hydroxymethylated with an antisense-strand-specific pattern. Also, the levels of H3K9 and H3K4 trimethylation in the fusion cells were found to be slightly lower than the parental AGS and MGC803 cells, respectively. CONCLUSION The present study provides the first direct evidence confirming that the methylation states of p16 CpG islands is not only homeostatically maintained, but also accompanied by a dynamic process of transient focal methylation, demethylation, and hydroxymethylation in cancer cells.
Collapse
Affiliation(s)
- Sisi Qin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhao-jun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Na Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - James Wilson
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Zhe-ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
- * E-mail: (ZML); (DD)
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, China
- * E-mail: (ZML); (DD)
| |
Collapse
|
14
|
Li GM, Wang YG, Pan Q, Wang J, Fan JG, Sun C. RNAi screening with shRNAs against histone methylation-related genes reveals determinants of sorafenib sensitivity in hepatocellular carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1085-1092. [PMID: 24696725 PMCID: PMC3971312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Sorafenib is the first drug currently approved to treat advanced hepatocellular carcinoma (HCC). However, very low response rate and acquired drug resistance makes rare patients benefit from sorafenib therapy, therefore it is urgent to find biomarkers for sorafenib sensitivity. Histone modifications, including histone methylation, have been demonstrated to influence the initiation and progression of HCC. It is of great interest to elicit the possibility whether histone methylation plays a role in regulation of sorafenib sensitivity. In present work, a high throughput RNAi screening with 176 shRNA pools against 88 histone methyltransferases (HMTs) and histone demethyltransferases genes was applied to HepG2 cells. Silencing of 3 genes (ASH1L, C17ORF49 and SETD4) was validated to specifically promote HepG2 cells sensitivity to sorafenib. Western blotting results showed that those 3 HMT genes knockdown alone or sorafenib treatments alone both induce AKT/ERK activation. However, combination treatment with sorafenib and silencing of C17ORF49 or SETD4 downregulated AKT phosphorylation and hence induced HCC cells death. Our work may provide potential biomarkers for sorafenib sensitivity and therapeutic combination for sorafenib treatment in HCC patients.
Collapse
Affiliation(s)
- Guang-Ming Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Shanghai Changning Central HospitalShanghai 200336, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Jun Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Chao Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai 200092, China
| |
Collapse
|
15
|
Saito Y, Hibino S, Saito H. Alterations of epigenetics and microRNA in hepatocellular carcinoma. Hepatol Res 2014; 44:31-42. [PMID: 23617364 DOI: 10.1111/hepr.12147] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/12/2013] [Accepted: 04/21/2013] [Indexed: 01/05/2023]
Abstract
Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri-methylation of H3K27. Chromatin-modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non-coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Chen YW, Kao SY, Wang HJ, Yang MH. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer 2013; 119:4259-67. [DOI: 10.1002/cncr.28356] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/13/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Ya-Wei Chen
- Division of Oral and Maxillofacial Surgery; Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
- Faculty of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - Shou-Yen Kao
- Division of Oral and Maxillofacial Surgery; Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
- Division of Hematology-Oncology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - Hsiao-Jung Wang
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
- Division of Hematology-Oncology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
- Cancer Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
17
|
Matsuda Y, Wakai T, Kubota M, Takamura M, Yamagiwa S, Aoyagi Y, Osawa M, Fujimaki S, Sanpei A, Genda T, Ichida T. Clinical significance of cell cycle inhibitors in hepatocellular carcinoma. Med Mol Morphol 2013; 46:185-92. [PMID: 23640750 DOI: 10.1007/s00795-013-0047-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
It is well accepted that cell cycle regulators are strongly implicated in the progression of cancer development. p16 and p27 are potent cyclin-dependent kinase (CDK) inhibitors involved in G1 phase progression, and are regarded as adverse prognostic biomarkers for various types of cancers. It has been reported that the main mechanism for p16 inactivation is aberrant DNA methylation, while p27 is exclusively inactivated by proteasome-mediated protein degradation. We have found that p27 is decreased in around half of hepatocellular carcinomas (HCCs), and in some cases p27 is inactivated by inappropriate interaction with cyclin D1/CDK4 complexes. In such cases, p16 is concomitantly inactivated through DNA methylation. Taking into consideration the complex interaction between p16 and p27, a comprehensive analysis including p16 and p27 would be useful for predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Niigata, 951-8518, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yoruker EE, Mert U, Bugra D, Yamaner S, Dalay N. Promoter and histone methylation and p16(INK4A) gene expression in colon cancer. Exp Ther Med 2012; 4:865-870. [PMID: 23226740 PMCID: PMC3493785 DOI: 10.3892/etm.2012.683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/06/2012] [Indexed: 01/08/2023] Open
Abstract
The inactivation of the cyclin-dependent kinase inhibitor p16INK4A gene by hypermethylation is observed in numerous types of cancer. New findings indicate that DNA and histone methylation act in concert in gene silencing. In this study, we investigated the methylation status of the p16INK4A gene promoter and the histone 3 lysine 9 residue in the tumors and matched normal tissue samples from patients with colorectal cancer and analyzed their association with gene expression. The methylation and expression of the p16INK4A gene were analyzed by real-time PCR, and histone methylation was analyzed by chromatin immunoprecipitation followed by real-time PCR. p16INK4A expression was significantly higher in the tumors compared to normal tissue. Mono-, di- and trimethylation levels of the H3K9 residue were similar in the tumor and normal tissue samples. We did not observe any significant correlation between p16INK4A methylation or expression and clinical parameters. Our results suggest that epigenetic modifications of the p16INK4A gene and histone lysine methylation do not play a major role in colon carcinogenesis.
Collapse
|
19
|
Lu ZM, Zhou J, Wang X, Guan Z, Bai H, Liu ZJ, Su N, Pan K, Ji J, Deng D. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis. PLoS One 2012; 7:e35928. [PMID: 22558275 PMCID: PMC3338478 DOI: 10.1371/journal.pone.0035928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/23/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP) assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC) samples (36/40) was significantly higher than that observed in gastritis (19/45) or normal samples (7/13) (P<0.01). Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01). In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo.
Collapse
Affiliation(s)
- Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiuhong Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenpo Guan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hua Bai
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhao-Jun Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Na Su
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kaifeng Pan
- Department of Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
20
|
Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PLoS One 2012; 7:e35128. [PMID: 22514714 PMCID: PMC3325931 DOI: 10.1371/journal.pone.0035128] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/13/2012] [Indexed: 12/21/2022] Open
Abstract
Microenvironment plays an important role in cancer development. We have reported that the cancer-associated stromal cells exhibit phenotypic and functional changes compared to stromal cells neighboring to normal tissues. However, the molecular mechanisms as well as the maintenance of these changes remain elusive. Here we showed that through co-culture with breast cancer cells for at least three to four passages, breast normal tissue-associated fibroblasts (NAFs) gained persistent activity for promoting cancer cell invasion, partly via up-regulating ADAM metallopeptidase with thrombospondin type 1 motif, 1 (ADAMTS1). Furthermore, we demonstrated that the DNA methylation pattern in the ADAMTS1 promoter has no alteration. Instead, the loss of EZH2 binding to the ADAMTS1 promoter and the resulting decrease of promoter-associated histone H3K27 methylation may account for the up-regulation of ADAMTS1. Importantly, the lack of EZH2 binding and the H3K27 methylation on the ADAMTS1 promoter were sustained in cancer cell-precocultured NAFs after removal of cancer cells. These results suggest that cancer cells are capable of inducing stromal fibroblasts to secrete ADAMTS1 persistently for their invasion and the effect is epigenetically inheritable.
Collapse
|
21
|
Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2012; 342:223-30. [PMID: 22306342 DOI: 10.1016/j.canlet.2012.01.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in humans. The molecular mechanisms leading to the development of HCC are extremely complicated and consist of prominent genetic, genomic, and epigenetic alterations. This review summarizes the current knowledge of the role of epigenetic aberrations, including changes in DNA methylation, histone modifications, and expression of microRNAs in the pathogenesis of HCC. It also emphasizes that identification of the underlying epigenetic alterations that drive cell transformation and promote development and progression of HCC is crucially important for understanding mechanisms of hepatocarcinogenesis, its detection, therapeutic intervention, and prevention.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | | |
Collapse
|
22
|
Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol 2012; 41:79-105. [PMID: 22253299 PMCID: PMC3304523 DOI: 10.1093/ije/dyr154] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 02/06/2023] Open
Abstract
Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
23
|
Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med 2012; 4:8. [PMID: 22293089 PMCID: PMC3334556 DOI: 10.1186/gm307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation represents the body's natural response to tissue damage; however, chronic inflammation may activate cell proliferation and induce deregulation of cell death in affected tissues. Chronic inflammation is an important factor in the development of hepatocellular carcinoma (HCC), although the precise underlying mechanism remains unknown. Epigenetic events, which are considered key mechanisms in the regulation of gene activity states, are also commonly deregulated in HCC. Here, we review the evidence that chronic inflammation might deregulate epigenetic processes, thus promoting oncogenic transformation, and we propose a working hypothesis that epigenetic deregulation is an underlying mechanism by which inflammation might promote HCC development. In this scenario, different components of the inflammatory response might directly and indirectly induce changes in epigenetic machineries ('epigenetic switch'), including those involved in setting and propagating normal patterns of DNA methylation, histone modifications and non-coding RNAs in hepatocytes. We discuss the possibility that self-reinforcing cross-talk between inflammation and epigenetic mechanisms might amplify inflammatory signals and maintain a chronic state of inflammation culminating in cancer development. The potential role of inflammation-epigenome interactions in the emergence and maintenance of cancer stem cells is also discussed.
Collapse
Affiliation(s)
- Marion Martin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| |
Collapse
|
24
|
Gao FL, Lv Y, Cao J, Zou XP, Gastroenterology DO, University TADTHOMSON, 210008 N, Province J, China. Significance of H3K27me3 expression in gastric cancer Fu-Li Gao, Ying Lv, Jun Cao, Xiao-Ping Zou. Shijie Huaren Xiaohua Zazhi 2011; 19:3597-3602. [DOI: 10.11569/wcjd.v19.i35.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of trimethylation at lysine 27 of histone H3 (H3K27me3) in gastric cancer tissue and cell lines and to evaluate its correlation with clinicopathological parameters of gastric carcinoma.
METHODS: The protein expression of H3K27me3 was detected by Western blot in gastric cancer lines SGC7901, BGC823, AGS and normal gastric mucosal epithelial cell line GES-1. Immunohistochemistry (IHC) was utilized to examine the protein expression of H3K27me3 in 61 gastric cancer specimens and 20 normal gastric epithelial specimens.
RESULTS: H3K27me3 expression significantly increased in gastric cancer lines (SGC7901, BGC823, and AGS) compared to normal gastric mucosal epithelial cell line GES-1. The positive rates of H3K27me3 protein expression in gastric cancer was 80.3%. The expression levels of H3K27me3 were significantly associated with tumor size, depth of invasion, lymph node metastasis, vascular invasion, clinical stage, and T staging (P = 0.049, 0.030, 0.034, 0.025, 0.003, and 0.031, respectively), but had no correlation with patient's age, sex, tumor location, tumor differentiation degree, or nerve invasion.
CONCLUSION: High expression of H3K27me3 correlates closely with tumor invasion and metastasis in gastric cancer and may be an important prognostic factor in patients with gastric cancer.
Collapse
|
25
|
The association between non-Hodgkin lymphoma and methylation of p73. Tumour Biol 2011; 32:1133-8. [PMID: 21811875 DOI: 10.1007/s13277-011-0215-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022] Open
Abstract
To investigate the effects of methylation of the p73 gene on the pathogenesis of non-Hodgkin lymphoma (NHL), the methylation status of the p73 gene promoter and the expression of p73 mRNA were examined in NHLs by methylation-specific polymerase chain reaction (MSP) and reverse transcription-polymerase chain reaction, respectively; p73 protein was detected by Western blotting analysis. Furthermore, the expression of p73 mRNA in NHL cells treated with 5-Aza-2'-deoxycytidine was analyzed. MSP results revealed that the promoter of p73 was methylated in 87.5% of NHLs but was not methylated in reactive hyperplasia lymph node samples. The expression of p73 mRNA was not detected in 83.33% of NHLs but was detected in all of the reactive hyperplasia lymph node samples. The p73 protein was not detected in 91.67% of NHLs but was detected in all of the reactive hyperplasia lymph node samples. The expression of p73 mRNA was detected in NHL cells treated with 5-Aza-2'-deoxycytidine. The inactivation of p73, predominantly by methylation, may be involved in the pathogenesis of NHLs.
Collapse
|
26
|
Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, Lin MC, Guan XY, Kung HF, Zeng YX, Xie D. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2010; 17:12-20. [PMID: 20844838 DOI: 10.2119/molmed.2010.00103] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/07/2010] [Indexed: 01/16/2023] Open
Abstract
It has been suggested that trimethylation of lysine 27 on histone H3 (H3K27me3) is a crucial epigenetic process in tumorigenesis. However, the expression dynamics of H3K27me3 and its clinicopathological/prognostic significance in hepatocellular carcinoma (HCC) are unclear. In this study, immunohistochemical analysis (IHC) was used to examine protein expression of H3K27me3 in HCC tissues from two independent cohorts and corresponding nontumorous hepatocellular tissues by tissue microarray. The optimal cutpoint of H3K27me3 expression was assessed by the X-tile program. Our results showed that the cutpoint for high expression of H3K27me3 in HCCs was determined when more than 70% of the tumor cells showed positive staining. High expression of H3K27me3 was observed in 134 of 212 (63.2%) and 76 of 126 (60.4%) of HCCs in the testing and validation cohorts, respectively. Correlation analysis demonstrated that high expression of H3K27me3 in HCCs was significantly correlated with large tumor size, multiplicity, poor differentiation, advanced clinical stage and vascular invasion (P < 0.05). In addition, high expression of H3K27me3 in HCC patients was associated closely with shortened survival time, independent of serum α-fetoprotein levels, tumor size and multiplicity, clinical stage, vascular invasion and relapse as evidenced by univariate and multivariate analysis in both cohorts (P < 0.05). In different subsets of HCC patients, H3K27me3 expression was also a prognostic indicator in patients with stage II tumors (P < 0.05). Thus, these findings provide evidence that a high expression of H3K27me3, as detected by IHC, correlates closely with vascular invasion of HCCs and is an independent molecular marker for poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Mu-Yan Cai
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|