1
|
Cavanagh PE, Xue AG, Dai S, Qiang A, Matsui T, Ting AY. Computational design of conformation-biasing mutations to alter protein functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.03.652001. [PMID: 40501788 PMCID: PMC12157495 DOI: 10.1101/2025.05.03.652001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Most natural proteins alternate between distinct conformational states, each associated with specific functions. Intentional manipulation of conformational equilibria could lead to improved or altered protein properties. Here we develop Conformational Biasing (CB), a rapid and streamlined computational method that utilizes contrastive scoring by inverse folding models to predict variants biased towards desired conformational states. We validated CB across seven diverse deep mutational scanning datasets, successfully predicting variants of K-Ras, SARS-CoV-2 spike, β2 adrenergic receptor, and Src kinase with improved conformation-specific functions including enhanced effector binding or enzymatic activity. Furthermore, applying CB to lipoic acid ligase, a conformation-switching bacterial enzyme that has been used for the development of protein labeling technologies, revealed a previously unknown mechanism for conformational gating of sequence-specificity. Variants biased toward the "open" conformation were highly promiscuous, while "closed" conformation-biased variants were even more specific than wild-type, enhancing the utility of LplA for site-specific protein labeling with fluorophores in living cells. The speed, simplicity, and versatility of CB (available at: https://github.com/alicetinglab/ConformationalBiasing/) suggest that it may be broadly applicable for understanding and engineering protein conformational dynamics, with implications for basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
| | | | | | | | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University
| | - Alice Y. Ting
- Department of Genetics, Stanford University
- Departments of Biology, and by courtesy, Chemistry
- Chan Zuckerberg Biohub – San Francisco
| |
Collapse
|
2
|
Zhang X, Hu Z, Pörtner R, Zeng AP. Hybrid Biological Hydrogel Provides Favorable Bioenergetic, Adhesive, and Antioxidative Effects on Wound Healing. ACS Biomater Sci Eng 2025. [PMID: 40382721 DOI: 10.1021/acsbiomaterials.5c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Wound healing is a dynamic and complex process that demands substantial energy expenditure and a biomimetic microenvironment. Developing a simple and effective biological hydrogel to enhance mitochondrial energy metabolism could effectively promote wound healing. To this end, we developed a hybrid biological hydrogel based on Escherichia coli lipoate protein ligase A (LplA), which combines its catalytic and self-assembling properties to promote wound healing. In murine fibroblast L929 cell models, LplA significantly enhances cellular activity and intracellular metabolism, promoting cell proliferation and energy supply. However, cells aggregated into spherical clusters on the pure LplA hydrogel. To address this issue, we integrated glutaraldehyde (GA) as a cross-linker into the LplA hydrogel. The GA-LplA hydrogel enhances cell adhesion and proliferation and, unexpectedly, exhibits higher catalytic activity compared with the pure LplA hydrogel. Furthermore, LplA was observed to decompose H2O2, and the GA-LplA hybrid hydrogel significantly reduced reactive oxygen species (ROS) production. The promise of this hybrid hydrogel is successfully demonstrated in a male mice full-thickness skin defect model with accelerated re-epithelialization and cell proliferation while reducing inflammation.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Bioprocess and Biosystems Engineering, Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Zhijuan Hu
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Key Laboratory of Intelligent Low-Carbon Biosynthesis of Zhejiang Province, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Key Laboratory of Intelligent Low-Carbon Biosynthesis of Zhejiang Province, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
3
|
Nie J, Zhang X, Hu Z, Wang W, Schroer MA, Ren J, Svergun D, Chen A, Yang P, Zeng AP. A globular protein exhibits rare phase behavior and forms chemically regulated orthogonal condensates in cells. Nat Commun 2025; 16:2449. [PMID: 40069234 PMCID: PMC11897184 DOI: 10.1038/s41467-025-57886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E. coli involved in lipoylation of enzymes essential for one-carbon and energy metabolisms, that exhibits structural homomeric oligomerization and a rare LCST-type reversible phase separation in vitro. In both E. coli and human U2OS cells, LplA can form orthogonal condensates, which can be specifically dissolved by its natural substrate, the small molecule lipoic acid and its analogue lipoamide. The study of LplA phase behavior and its regulatability expands our understanding and toolkit of small-molecule regulatable protein phase behavior with impacts on biomedicine and synthetic biology.
Collapse
Affiliation(s)
- Jinglei Nie
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xinyi Zhang
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Zhijuan Hu
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Low-Carbon Synthetic Biology, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology (NPPT), University of Duisburg-Essen, Duisburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
- BIOSAXS GmbH, Hamburg, Germany
| | - Anyang Chen
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
| | - Peiguo Yang
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Low-Carbon Synthetic Biology, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yamazaki S, Matsuda Y. Antibody Modification via Lipoic Acid Ligase A-Mediated Site-Specific Labeling. Chem Biodivers 2025; 22:e202402113. [PMID: 39435640 DOI: 10.1002/cbdv.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Enzymatic modification, particularly utilizing lipoic acid ligase (LplA), has emerged as a transformative approach in biopharmaceuticals, enabling precise and site-specific protein modifications. This review delves into the innovative applications of LplA in antibody modifications, including the creation of antibody-drug conjugates (ADCs) and the advancement of tag-free conjugation techniques. LplA's ability to facilitate the incorporation of bioorthogonal groups and its adaptability to various substrates underscores its versatility. Key developments include the successful generation of dual-labeled antibodies and the application of LplA in modifying antibody fragments. Additionally, the review explores the potential for LplA to enhance the therapeutic efficacy of ADCs through improved drug-to-antibody ratios and site-specific payload attachment. The implications of these advancements are significant, suggesting that LplA-mediated modifications could lead to more effective and targeted antibody-based therapies. This review aims to provide a comprehensive overview of LplA's role in expanding the possibilities of enzymatic conjugation, setting the stage for future research and clinical applications.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
5
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
6
|
Dienemann JN, Chen SY, Hitzenberger M, Sievert ML, Hacker SM, Prigge ST, Zacharias M, Groll M, Sieber SA. A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites. Angew Chem Int Ed Engl 2023; 62:e202304533. [PMID: 37249408 PMCID: PMC10896624 DOI: 10.1002/anie.202304533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 μM, making it the most effective LPL inhibitor reported to date.
Collapse
Affiliation(s)
- Jan-Niklas Dienemann
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Shu-Yu Chen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Manuel Hitzenberger
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Montana L Sievert
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, MD 21205, Baltimore, USA
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, MD 21205, Baltimore, USA
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Stephan A Sieber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| |
Collapse
|
7
|
A Lipoate-Protein Ligase Is Required for De Novo Lipoyl-Protein Biosynthesis in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2022; 88:e0064422. [PMID: 35736229 PMCID: PMC9275244 DOI: 10.1128/aem.00644-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipoic acid is an organosulfur cofactor essential for several key enzyme complexes in oxidative and one-carbon metabolism. It is covalently bound to the lipoyl domain of the E2 subunit in some 2-oxoacid dehydrogenase complexes and the H-protein in the glycine cleavage system. Lipoate-protein ligase (Lpl) is involved in the salvage of exogenous lipoate and attaches free lipoate to the E2 subunit or the H-protein in an ATP-dependent manner. In the hyperthermophilic archaeon Thermococcus kodakarensis, TK1234 and TK1908 are predicted to encode the N- and C-terminal regions of Lpl, respectively. TK1908 and TK1234 recombinant proteins form a heterodimer and together displayed significant ligase activity toward octanoate in addition to lipoate when a chemically synthesized octapeptide was used as the acceptor. The proteins also displayed activity toward other fatty acids, indicating broad fatty acid specificity. On the other hand, lipoyl synthase from T. kodakarensis only recognized octanoyl-peptide as a substrate. Examination of individual proteins indicated that the TK1908 protein alone was able to catalyze the ligase reaction although with a much lower activity. Gene disruption of TK1908 led to lipoate/serine auxotrophy, whereas TK1234 gene deletion did not. Acyl carrier protein homologs are not found on the archaeal genomes, and the TK1908/TK1234 protein complex did not utilize octanoyl-CoA, raising the possibility that the substrate of the ligase reaction is octanoic acid itself. Although Lpl has been considered as an enzyme involved in lipoate salvage, the results imply that in T. kodakarensis, the TK1908 and TK1234 proteins function in de novo lipoyl-protein biosynthesis. IMPORTANCE Based on previous studies in bacteria and eukaryotes, lipoate-protein ligases (Lpls) have been considered to be involved exclusively in lipoate salvage. The genetic analyses in this study on the lipoate-protein ligase in T. kodakarensis, however, suggest otherwise and that the enzyme is additionally involved in de novo protein lipoylation. We also provide biochemical evidence that the lipoate-protein ligase displays broad substrate specificity and is capable of ligating acyl groups of various chain-lengths to the peptide substrate. We show that this apparent ambiguity in Lpl is resolved by the strict substrate specificity of the lipoyl synthase LipS in this organism, which only recognizes octanoyl-peptide. The results provide relevant physiological insight into archaeal protein lipoylation.
Collapse
|
8
|
Lipoate protein ligase B primarily recognizes the C 8-phosphopantetheine arm of its donor substrate and weakly binds the acyl carrier protein. J Biol Chem 2022; 298:102203. [PMID: 35764173 PMCID: PMC9307952 DOI: 10.1016/j.jbc.2022.102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoic acid is a sulfur containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using E. coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H STD and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.
Collapse
|
9
|
Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:273-298. [DOI: 10.1007/10_2021_186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang H, Li Y, Nie J, Ren J, Zeng AP. Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 2020; 3:756. [PMID: 33311647 PMCID: PMC7733448 DOI: 10.1038/s42003-020-01401-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Molecular shuttles play decisive roles in many multi-enzyme systems such as the glycine cleavage system (GCS) for one-carbon (C1) metabolism. In GCS, a lipoate swinging arm containing an aminomethyl moiety is attached to protein H and serves as a molecular shuttle among different proteins. Protection of the aminomethyl moiety in a cavity of protein H and its release induced by protein T are key processes but barely understood. Here, we present a detailed structure-based dynamic analysis of the induced release of the lipoate arm of protein H. Based on molecular dynamics simulations of interactions between proteins H and T, four major steps of the release process showing significantly different energy barriers and time scales can be distinguished. Mutations of a key residue, Ser-67 in protein H, led to a bidirectional tuning of the release process. This work opens ways to target C1 metabolism in biomedicine and the utilization of formate and CO2 for biosynthesis.
Collapse
Affiliation(s)
- Han Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Yuchen Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
11
|
Zhang X, Nie J, Zheng Y, Ren J, Zeng AP. Activation and competition of lipoylation of H protein and its hydrolysis in a reaction cascade catalyzed by the multifunctional enzyme lipoate-protein ligase A. Biotechnol Bioeng 2020; 117:3677-3687. [PMID: 32749694 DOI: 10.1002/bit.27526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022]
Abstract
Protein lipoylation is essential for the function of many key enzymes but barely studied kinetically. Here, the two-step reaction cascade of H protein lipoylation catalyzed by the multifunctional enzyme lipoate-protein ligase A (LplA) was quantitatively and differentially studied. We discovered new phenomena and unusual kinetics of the cascade: (a) the speed of the first reaction is faster than the second one by two orders of magnitude, leading to high accumulation of the intermediate lipoyl-AMP (Lip-AMP); (b) Lip-AMP is hydrolyzed, but only significantly at the presence of H protein and in competition with the lipoylation; (c) both the lipoylation of H protein and its hydrolysis is enhanced by the apo and lipoylated forms of H protein and a mutant without the lipoylation site. A conceptual mechanistic model is proposed to explain these experimental observations in which conformational change of LplA upon interaction with H protein and competitive nucleophilic attacks play key roles.
Collapse
Affiliation(s)
- Xinyi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yuanmin Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
12
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well-Defined Protein-Protein Conjugates. Angew Chem Int Ed Engl 2020; 59:12885-12893. [PMID: 32342666 PMCID: PMC7496671 DOI: 10.1002/anie.201915079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Indexed: 01/19/2023]
Abstract
Bioorthogonal chemistry holds great potential to generate difficult-to-access protein-protein conjugate architectures. Current applications are hampered by challenging protein expression systems, slow conjugation chemistry, use of undesirable catalysts, or often do not result in quantitative product formation. Here we present a highly efficient technology for protein functionalization with commonly used bioorthogonal motifs for Diels-Alder cycloaddition with inverse electron demand (DAinv ). With the aim of precisely generating branched protein chimeras, we systematically assessed the reactivity, stability and side product formation of various bioorthogonal chemistries directly at the protein level. We demonstrate the efficiency and versatility of our conjugation platform using different functional proteins and the therapeutic antibody trastuzumab. This technology enables fast and routine access to tailored and hitherto inaccessible protein chimeras useful for a variety of scientific disciplines. We expect our work to substantially enhance antibody applications such as immunodetection and protein toxin-based targeted cancer therapies.
Collapse
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Laura Neises
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Hendrik Schneider
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Philipp Werther
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
13
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well‐Defined Protein–Protein Conjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Laura Neises
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
14
|
Cronan JE. Progress in the Enzymology of the Mitochondrial Diseases of Lipoic Acid Requiring Enzymes. Front Genet 2020; 11:510. [PMID: 32508887 PMCID: PMC7253636 DOI: 10.3389/fgene.2020.00510] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Three human mitochondrial diseases that directly affect lipoic acid metabolism result from heterozygous missense and nonsense mutations in the LIAS, LIPT1, and LIPT2 genes. However, the functions of the proteins encoded by these genes in lipoic acid metabolism remained uncertain due to a lack of biochemical analysis at the enzyme level. An exception was the LIPT1 protein for which a perplexing property had been reported, a ligase lacking the ability to activate its substrate. This led to several models, some contradictory, to accommodate the role of LIPT1 protein activity in explaining the phenotypes of the afflicted neonatal patients. Recent evidence indicates that this LIPT1 protein activity is a misleading evolutionary artifact and that the physiological role of LIPT1 is in transfer of lipoic acid moieties from one protein to another. This and other new biochemical data now define a straightforward pathway that fully explains each of the human disorders specific to the assembly of lipoic acid on its cognate enzyme proteins.
Collapse
Affiliation(s)
- John E Cronan
- B103 Chemical and Life Sciences Laboratory, Departments of Microbiology and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Zhu K, Chen H, Jin J, Wang N, Ma G, Huang J, Feng Y, Xin J, Zhang H, Liu H. Functional Identification and Structural Analysis of a New Lipoate Protein Ligase in Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2020; 10:156. [PMID: 32373550 PMCID: PMC7186572 DOI: 10.3389/fcimb.2020.00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the causative agent of pandemic pneumonia among pigs, namely, swine enzootic pneumonia. Although M. hyopneumoniae was first identified in 1965, little is known regarding its metabolic pathways, which might play a pivotal role during disease pathogenesis. Lipoate is an essential cofactor for enzymes important for central metabolism. However, the lipoate metabolism pathway in M. hyopneumoniae is definitely unclear. Here, we identified a novel gene, lpl, encoding a lipoate protein ligase in the genome of M. hyopneumoniae (Mhp-Lpl). This gene contains 1,032 base pairs and encodes a protein of 343 amino acids, which is between 7.5 and 36.09% identical to lipoate protein ligases (Lpls) of other species. Similar to its homologs in other species, Mhp-Lpl catalyzes the ATP-dependent activation of lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of M. hyopneumoniae GcvH (Mhp H) in vitro. Enzymatic and mutagenesis analysis indicate that residue K56 within the SKT sequence of Mhp H protein is the lipoyl moiety acceptor site. The three-dimensional structure showed typical lipoate protein ligase folding, with a large N-terminal domain and a small C-terminal domain. The large N-terminal domain is responsible for the full enzymatic activity of Mhp-Lpl. The identification and characterization of Mhp-Lpl will be beneficial to our understanding of M. hyopneumoniae metabolism. Summary Lipoic acid is an essential cofactor for the activation of some enzyme complexes involved in key metabolic processes. Lipoate protein ligases (Lpls) are responsible for the metabolism of lipoic acid. To date, little is known regarding the Lpls in M. hyopneumoniae. In this study, we identified a lipoate protein ligase of M. hyopneumoniae. We further analyzed the function, overall structure and ligand-binding site of this protein. The lipoate acceptor site on M. hyopneumoniae GcvH was also identified. Together, these findings reveal that Lpl exists in M. hyopneumoniae and will provide a basis for further exploration of the pathway of lipoic acid metabolism in M. hyopneumoniae.
Collapse
Affiliation(s)
- Kemeng Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huan Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Jin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ning Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Rasetto NB, Lavatelli A, Martin N, Mansilla MC. Unravelling the lipoyl-relay of exogenous lipoate utilization in Bacillus subtilis. Mol Microbiol 2019; 112:302-316. [PMID: 31066113 DOI: 10.1111/mmi.14271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 11/29/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative and one-carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging. The former requires octanoylation of GcvH, insertion of sulfur atoms and amidotransfer of the lipoate to E2s, catalyzed by LipL. Lipoate scavenging is mediated by a lipoyl protein ligase (LplJ) that catalyzes a classical two-step ATP-dependent reaction. Although these pathways were thought to be redundant, a ∆lipL mutant, in which the endogenous lipoylation pathway of E2 subunits is blocked, showed growth defects in minimal media even when supplemented with lipoate and despite the presence of a functional LplJ. In this study, we demonstrate that LipL is essential to modify E2 subunits of branched chain ketoacid and pyruvate dehydrogenases during lipoate scavenging. The crucial role of LipL during lipoate utilization relies on the strict substrate specificity of LplJ, determined by charge complementarity between the ligase and the lipoylable subunits. This new lipoyl-relay required for lipoate scavenging highlights the relevance of the amidotransferase as a valid target for the design of new antimicrobial agents among Gram-positive pathogens.
Collapse
Affiliation(s)
- Natalí B Rasetto
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| | - Antonela Lavatelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| | - Natalia Martin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, USA
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| |
Collapse
|
17
|
Plaks JG, Kaar JL. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization. Methods Mol Biol 2019; 2012:279-297. [PMID: 31161513 DOI: 10.1007/978-1-4939-9546-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein bioconjugation benefits from precise regional and temporal control. One notable way of achieving this control is through the enzymatic attachment of bioorthogonal reactive handles to peptide recognition sequences that are genetically fused to target proteins of interest. The lipoic acid ligase variant, LplAW37V, functionalizes proteins by covalently attaching an azide-bearing lipoic acid derivative to a 13-amino acid recognition sequence known as the lipoic acid ligase acceptor peptide (LAP). Once attached, the azide group can be modified with diverse chemical entities through azide-alkyne click chemistry, enabling conjugation of chemical probes such as fluorophores and facilitating polymer attachment, glycosylation, and protein immobilization in addition to many other possible chemical modifications. The versatility of the attached azide group is complemented by the modular nature of the LAP sequence, which can be introduced within a protein at internal and/or terminal sites as well as at multiple sites simultaneously. In this chapter we describe the in vitro LplAW37V-mediated ligation of 10-azidodecanoic acid to a LAP-containing target protein (i.e., green fluorescent protein (GFP)) and the characterization of the ligation reaction products. Additionally, methods for the modification and immobilization of azide-functionalized LAP-GFP are discussed.
Collapse
Affiliation(s)
- Joseph G Plaks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
18
|
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2017; 42:76-85. [PMID: 29169048 DOI: 10.1016/j.cbpa.2017.11.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the proteins that add or remove the modification, as well as the proteins it decorates are all evolutionarily conserved from bacteria to humans, highlighting the importance of this essential cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of understanding its regulation in health and disease states, and the advances in mass spectrometry-based proteomic technologies that can aid these studies.
Collapse
Affiliation(s)
- Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Caroline K Snowden
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
19
|
Afanador GA, Guerra AJ, Swift RP, Rodriguez RE, Bartee D, Matthews KA, Schön A, Freire E, Freel Meyers CL, Prigge ST. A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species. Mol Microbiol 2017; 106:439-451. [PMID: 28836704 DOI: 10.1111/mmi.13776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.
Collapse
Affiliation(s)
- Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alfredo J Guerra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan E Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Krista A Matthews
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Guerra AJ, Afanador GA, Prigge ST. Crystal structure of lipoate-bound lipoate ligase 1, LipL1, from Plasmodium falciparum. Proteins 2017; 85:1777-1783. [PMID: 28543853 DOI: 10.1002/prot.25324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/04/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022]
Abstract
Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP-dependent ligase that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the only known canonical lipoate ligase in Pf and functions as a redox switch between two lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a deletion construct of PfLipL1 (PfLipL1Δ243-279 ) bound to lipoate, and validate the lipoylation activity of this construct in both an in vitro lipoylation assay and a cell-based lipoylation assay. This characterization represents the first step in understanding the redox dependence of the lipoylation mechanism in malaria parasites. Proteins 2017; 85:1777-1783. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alfredo J Guerra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
21
|
Mei M, Zhou Y, Peng W, Yu C, Ma L, Zhang G, Yi L. Application of modified yeast surface display technologies for non-Antibody protein engineering. Microbiol Res 2017; 196:118-128. [DOI: 10.1016/j.micres.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023]
|
22
|
Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiol Mol Biol Rev 2016; 80:429-50. [PMID: 27074917 DOI: 10.1128/mmbr.00073-15] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism.
Collapse
|
23
|
Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Mol Cell 2015; 59:309-20. [PMID: 26166706 PMCID: PMC4518038 DOI: 10.1016/j.molcel.2015.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
Abstract
Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. A class of sirtuins (SirTMs) is identified in microbial pathogens SirTMs are linked to macrodomains and act as protein ADP-ribosyltransferases Protein ADP-ribosylation by SirTMs is strictly lipoylation dependent and reversible SirTMs modulate the response to oxidative stress
Collapse
|
24
|
Cao X, Cronan JE. The Streptomyces coelicolor lipoate-protein ligase is a circularly permuted version of the Escherichia coli enzyme composed of discrete interacting domains. J Biol Chem 2015; 290:7280-90. [PMID: 25631049 DOI: 10.1074/jbc.m114.626879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipoate-protein ligases are used to scavenge lipoic acid from the environment and attach the coenzyme to its cognate proteins, which are generally the E2 components of the 2-oxoacid dehydrogenases. The enzymes use ATP to activate lipoate to its adenylate, lipoyl-AMP, which remains tightly bound in the active site. This mixed anhydride is attacked by the ϵ-amino group of a specific lysine present on a highly conserved acceptor protein domain, resulting in the amide-linked coenzyme. The Streptomyces coelicolor genome encodes only a single putative lipoate ligase. However, this protein had only low sequence identity (<25%) to the lipoate ligases of demonstrated activity and appears to be a circularly permuted version of the known lipoate ligase proteins in that the canonical C-terminal domain seems to have been transposed to the N terminus. We tested the activity of this protein both by in vivo complementation of an Escherichia coli ligase-deficient strain and by in vitro assays. Moreover, when the domains were rearranged into a protein that mimicked the arrangement found in the canonical lipoate ligases, the enzyme retained complementation activity. Finally, when the two domains were separated into two proteins, both domain-containing proteins were required for complementation and catalysis of the overall ligase reaction in vitro. However, only the large domain-containing protein was required for transfer of lipoate from the lipoyl-AMP intermediate to the acceptor proteins, whereas both domain-containing proteins were required to form lipoyl-AMP.
Collapse
Affiliation(s)
- Xinyun Cao
- From the Departments of Biochemistry and
| | - John E Cronan
- From the Departments of Biochemistry and Microbiology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
25
|
Liu DS, Nivón LG, Richter F, Goldman PJ, Deerinck TJ, Yao JZ, Richardson D, Phipps WS, Ye AZ, Ellisman MH, Drennan CL, Baker D, Ting AY. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. Proc Natl Acad Sci U S A 2014; 111:E4551-9. [PMID: 25313043 PMCID: PMC4217414 DOI: 10.1073/pnas.1404736111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.
Collapse
Affiliation(s)
| | | | - Florian Richter
- Department of Biochemistry, Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems and
| | | | - Douglas Richardson
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093; and
| | - Catherine L Drennan
- Departments of Chemistry and Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - David Baker
- Department of Biochemistry, Howard Hughes Medical Institute, and
| | | |
Collapse
|
26
|
Afanador GA, Matthews KA, Bartee D, Gisselberg JE, Walters MS, Freel Meyers CL, Prigge ST. Redox-dependent lipoylation of mitochondrial proteins in Plasmodium falciparum. Mol Microbiol 2014; 94:156-71. [PMID: 25116855 PMCID: PMC4177315 DOI: 10.1111/mmi.12753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/26/2022]
Abstract
Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyses the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.
Collapse
Affiliation(s)
- Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Roux KJ. Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell Mol Life Sci 2013; 70:3657-64. [PMID: 23420482 PMCID: PMC11113768 DOI: 10.1007/s00018-013-1287-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Various methods have been established for the purpose of identifying and characterizing protein-protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.
Collapse
Affiliation(s)
- Kyle J Roux
- Children's Health Research Center, Sanford Research/USD, North 60th St. East, Sioux Falls, SD, 57104, USA,
| |
Collapse
|
28
|
Hermes FA, Cronan JE. The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis. Yeast 2013; 30:415-27. [PMID: 23960015 DOI: 10.1002/yea.2979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/18/2023] Open
Abstract
The covalent attachment of lipoate to the lipoyl domains (LDs) of the central metabolism enzymes pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) is essential for their activation and thus for respiratory growth in Saccharomyces cerevisiae. A third lipoate-dependent enzyme system, the glycine cleavage system (GCV), is required for utilization of glycine as a nitrogen source. Lipoate is synthesized by extraction of its precursor, octanoyl-acyl carrier protein (ACP), from the pool of fatty acid biosynthetic intermediates. Alternatively, lipoate is salvaged from previously modified proteins or from growth medium by lipoate protein ligases (Lpls). The first Lpl to be characterized, LplA of Escherichia coli, catalyses two partial reactions: activation of the acyl chain by formation of acyl-AMP, followed by transfer of the acyl chain to lipoyl domains (LDs). There is a surprising diversity within the Lpl family of enzymes, several of which catalyse reactions other than ligation reactions. For example, the Bacillus subtilis Lpl homologue LipM is an octanoyltransferase that transfers the octanoyl moiety from octanoyl-ACP to GCV. Another B. subtilis Lpl homologue, LipL, transfers octanoate from octanoyl-GCV to other LDs in an amido-transfer reaction. Study of eukaryotic Lpls has lagged behind studies of the bacterial enzymes. We report that the Lip3 Lpl homologue of the yeast S. cerevisiae has octanoyl-CoA-protein transferase activity, and discuss implications of this activity on the physiological role of Lip3 in lipoate synthesis.
Collapse
Affiliation(s)
- Fatemah A Hermes
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
29
|
White KA, Zegelbone PM. Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions. Biochemistry 2013; 52:3728-39. [PMID: 23614685 DOI: 10.1021/bi400268m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, we reported a new method for intracellular protein labeling in living cells called PRIME (probe incorporation mediated by enzymes). PRIME uses a mutant of Escherichia coli lipoic acid ligase (LplA) to catalyze covalent probe ligation onto a 13-amino acid peptide recognition sequence. While our first demonstration labeled proteins with a coumarin fluorophore, subsequent engineering produced alkyl azide and trans-cyclooctene ligases as well as an interaction-dependent form of the coumarin PRIME method (ID-PRIME). One major limitation of the PRIME methodologies is that LplA mutants have very low activity in the secretory pathway. Here, we extend PRIME labeling to oxidizing compartments such as the endoplasmic reticulum and the cell surface. We used yeast-display evolution and four rounds of selection to isolate LplA mutants with improved picolyl azide ligation activity. Then we compared the ligation activities of the evolved mutants both in vitro and on the mammalian cell surface. We characterized the picolyl azide ligation activity of the most active LplA variant in vitro, in the endoplasmic reticulum, and at the mammalian cell surface. Finally, we used the optimized LplA variant to label neurexin and neuroligin interactions at the mammalian cell surface in just 5 min. Compared to another method for imaging these protein-protein interactions (GFP recomplementation across synapses), our optimized ID-PRIME ligase is faster, more sensitive, and does not trap interacting proteins in a complex (nontrapping).
Collapse
Affiliation(s)
- Katharine A White
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
30
|
Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation. Biochem J 2013; 449:415-25. [PMID: 23116157 DOI: 10.1042/bj20121150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multi-enzyme complexes, is essential for metabolism in aerobic bacteria and eukarya. In Escherichia coli, lipoylation is catalysed by LplA (lipoate protein ligase) or by LipA (lipoic acid synthetase) and LipB [lipoyl(octanoyl) transferase] combined. Whereas bacterial and eukaryotic LplAs comprise a single two-domain protein, archaeal LplA function typically involves two proteins, LplA-N and LplA-C. In the thermophilic archaeon Thermoplasma acidophilum, LplA-N and LplA-C are encoded by overlapping genes in inverted orientation (lpla-c is upstream of lpla-n). The T. acidophilum LplA-N structure is known, but the LplA-C structure is unknown and LplA-C's role in lipoylation is unclear. In the present study, we have determined the structures of the substrate-free LplA-N-LplA-C complex and E2lipD (dihydrolipoyl acyltransferase lipoyl domain) that is lipoylated by LplA-N-LplA-C, and carried out biochemical analyses of this archaeal lipoylation system. Our data reveal the following: (i) LplA-C is disordered but folds upon association with LplA-N; (ii) LplA-C induces a conformational change in LplA-N involving substantial shortening of a loop that could repress catalytic activity of isolated LplA-N; (iii) the adenylate-binding region of LplA-N-LplA-C includes two helices rather than the purely loop structure of varying order observed in other LplA structures; (iv) LplAN-LplA-C and E2lipD do not interact in the absence of substrate; (v) LplA-N-LplA-C undergoes a conformational change (the details of which are currently undetermined) during lipoylation; and (vi) LplA-N-LplA-C can utilize octanoic acid as well as lipoic acid as substrate. The elucidated functional inter-dependence of LplA-N and LplA-C is consistent with their evolutionary co-retention in archaeal genomes.
Collapse
|
31
|
Yao JZ, Uttamapinant C, Poloukhtine A, Baskin JM, Codelli JA, Sletten EM, Bertozzi CR, Popik VV, Ting AY. Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition. J Am Chem Soc 2012; 134:3720-8. [PMID: 22239252 PMCID: PMC3306817 DOI: 10.1021/ja208090p] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods for targeting of small molecules to cellular proteins can allow imaging with fluorophores that are smaller, brighter, and more photostable than fluorescent proteins. Previously, we reported targeting of the blue fluorophore coumarin to cellular proteins fused to a 13-amino acid recognition sequence (LAP), catalyzed by a mutant of the Escherichia coli enzyme lipoic acid ligase (LplA). Here, we extend LplA-based labeling to green- and red-emitting fluorophores by employing a two-step targeting scheme. First, we found that the W37I mutant of LplA catalyzes site-specific ligation of 10-azidodecanoic acid to LAP in cells, in nearly quantitative yield after 30 min. Second, we evaluated a panel of five different cyclooctyne structures and found that fluorophore conjugates to aza-dibenzocyclooctyne (ADIBO) gave the highest and most specific derivatization of azide-conjugated LAP in cells. However, for targeting of hydrophobic fluorophores such as ATTO 647N, the hydrophobicity of ADIBO was detrimental, and superior targeting was achieved by conjugation to the less hydrophobic monofluorinated cyclooctyne (MOFO). Our optimized two-step enzymatic/chemical labeling scheme was used to tag and image a variety of LAP fusion proteins in multiple mammalian cell lines with diverse fluorophores including fluorescein, rhodamine, Alexa Fluor 568, ATTO 647N, and ATTO 655.
Collapse
Affiliation(s)
- Jennifer Z. Yao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue. Cambridge, Massachusetts 02139
| | - Chayasith Uttamapinant
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue. Cambridge, Massachusetts 02139
| | - Andrei Poloukhtine
- Bioconjugate Technologies, LLC, 7850 E. Evans Road, Ste 107, Scottsdale, Arizona, 85260
| | - Jeremy M. Baskin
- Department of Chemistry, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Julian A. Codelli
- Department of Chemistry, California Institute of Technology, 1200 East California Boulevard. Pasadena, California 91125
| | - Ellen M. Sletten
- Department of Chemistry, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Vladimir V. Popik
- Department of Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, 30602
| | - Alice Y. Ting
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue. Cambridge, Massachusetts 02139
| |
Collapse
|
32
|
Cohen JD, Thompson S, Ting AY. Structure-guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells. Biochemistry 2011; 50:8221-5. [PMID: 21859157 DOI: 10.1021/bi201037r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutation of a gatekeeper residue, tryptophan 37, in E. coli lipoic acid ligase (LplA), expands substrate specificity such that unnatural probes much larger than lipoic acid can be recognized. This approach, however, has not been successful for anionic substrates. An example is the blue fluorophore Pacific Blue, which is isosteric to 7-hydroxycoumarin and yet not recognized by the latter's ligase ((W37V)LplA) or any tryptophan 37 point mutant. Here we report the results of a structure-guided, two-residue screening matrix to discover an LplA double mutant, (E20G/W37T)LplA, that ligates Pacific Blue as efficiently as (W37V)LplA ligates 7-hydroxycoumarin. The utility of this Pacific Blue ligase for specific labeling of recombinant proteins inside living cells, on the cell surface, and inside acidic endosomes is demonstrated.
Collapse
Affiliation(s)
- Justin D Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
33
|
Christensen QH, Martin N, Mansilla MC, de Mendoza D, Cronan JE. A novel amidotransferase required for lipoic acid cofactor assembly in Bacillus subtilis. Mol Microbiol 2011; 80:350-63. [PMID: 21338421 PMCID: PMC3088481 DOI: 10.1111/j.1365-2958.2011.07598.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the companion paper we reported that Bacillus subtilis requires three proteins for lipoic acid metabolism, all of which are members of the lipoate protein ligase family. Two of the proteins, LipM and LplJ, have been shown to be an octanoyltransferase and a lipoate : protein ligase respectively. The third protein, LipL, is essential for lipoic acid synthesis, but had no detectable octanoyltransferase or ligase activity either in vitro or in vivo. We report that LipM specifically modifies the glycine cleavage system protein, GcvH, and therefore another mechanism must exist for modification of other lipoic acid requiring enzymes (e.g. pyruvate dehydrogenase). We show that this function is provided by LipL, which catalyses the amidotransfer (transamidation) of the octanoyl moiety from octanoyl-GcvH to the E2 subunit of pyruvate dehydrogenase. LipL activity was demonstrated in vitro with purified components and proceeds via a thioester-linked acyl-enzyme intermediate. As predicted, ΔgcvH strains are lipoate auxotrophs. LipL represents a new enzyme activity. It is a GcvH:[lipoyl domain] amidotransferase that probably uses a Cys-Lys catalytic dyad. Although the active site cysteine residues of LipL and LipB are located in different positions within the polypeptide chains, alignment of their structures show these residues occupy similar positions. Thus, these two homologous enzymes have convergent architectures.
Collapse
Affiliation(s)
- Quin H. Christensen
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801 USA
- Chemistry Biology Interface Training Program, University of Illinois, Urbana, Illinois 61801 USA
| | - Natalia Martin
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Maria C. Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801 USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 USA
- Chemistry Biology Interface Training Program, University of Illinois, Urbana, Illinois 61801 USA
| |
Collapse
|
34
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
35
|
A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 2010; 107:10914-9. [PMID: 20534555 DOI: 10.1073/pnas.0914067107] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Biological microscopy would benefit from smaller alternatives to green fluorescent protein for imaging specific proteins in living cells. Here we introduce PRIME (PRobe Incorporation Mediated by Enzymes), a method for fluorescent labeling of peptide-fused recombinant proteins in living cells with high specificity. PRIME uses an engineered fluorophore ligase, which is derived from the natural Escherichia coli enzyme lipoic acid ligase (LplA). Through structure-guided mutagenesis, we created a mutant ligase capable of recognizing a 7-hydroxycoumarin substrate and catalyzing its covalent conjugation to a transposable 13-amino acid peptide called LAP (LplA Acceptor Peptide). We showed that this fluorophore ligation occurs in cells in 10 min and that it is highly specific for LAP fusion proteins over all endogenous mammalian proteins. By genetically targeting the PRIME ligase to specific subcellular compartments, we were able to selectively label spatially distinct subsets of proteins, such as the surface pool of neurexin and the nuclear pool of actin.
Collapse
|