1
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles ÁO. Pannexin 1 channels: A bridge between synaptic plasticity and learning and memory processes. Neurosci Biobehav Rev 2025; 174:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Casillas Martinez A, Wicki-Stordeur LE, Ariano AV, Swayne LA. Dual role for pannexin 1 at synapses: regulating functional and morphological plasticity. J Physiol 2024. [PMID: 39264228 DOI: 10.1113/jp285228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Pannexin 1 (PANX1) is an ion and metabolite membrane channel and scaffold protein enriched in synaptic compartments of neurons in the central nervous system. In addition to a well-established link between PANX1 and synaptic plasticity, we recently identified a role for PANX1 in the regulation of dendritic spine stability. Notably, PANX1 and its interacting proteins are linked to neurological conditions involving dendritic spine loss. Understanding the dual role of PANX1 in synaptic function and morphology may help to shed light on these links. We explore potential mechanisms, including PANX1's interactions with postsynaptic receptors and cytoskeleton regulating proteins. Finally, we contextualize PANX1's dual role within neurological diseases involving dendritic spine and synapse dysfunction.
Collapse
Affiliation(s)
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Annika V Ariano
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
4
|
Ahn Y, Park JH. Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis. Biomol Ther (Seoul) 2024; 32:291-300. [PMID: 38589290 PMCID: PMC11063481 DOI: 10.4062/biomolther.2023.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 04/10/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), a congenital genetic disorder, is a notable contributor to the prevalence of chronic kidney disease worldwide. Despite the absence of a complete cure, ongoing research aims for early diagnosis and treatment. Although agents such as tolvaptan and mTOR inhibitors have been utilized, their effectiveness in managing the disease during its initial phase has certain limitations. This review aimed to explore new targets for the early diagnosis and treatment of ADPKD, considering ongoing developments. We particularly focus on cell polarity, which is a key factor that influences the process and pace of cyst formation. In addition, we aimed to identify agents or treatments that can prevent or impede the progression of renal fibrosis, ultimately slowing its trajectory toward end-stage renal disease. Recent advances in slowing ADPKD progression have been examined, and potential therapeutic approaches targeting multiple pathways have been introduced. This comprehensive review discusses innovative strategies to address the challenges of ADPKD and provides valuable insights into potential avenues for its prevention and treatment.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
| |
Collapse
|
5
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
7
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
8
|
Rusiecka OM, Molica F, Nielsen MS, Tollance A, Morel S, Frieden M, Chanson M, Boengler K, Kwak BR. Mitochondrial pannexin1 controls cardiac sensitivity to ischaemia/reperfusion injury. Cardiovasc Res 2023; 119:2342-2354. [PMID: 37556386 PMCID: PMC10597630 DOI: 10.1093/cvr/cvad120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 08/11/2023] Open
Abstract
AIMS No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R. METHODS AND RESULTS Panx1 was found in cardiac endothelial cells, neutrophils, and cardiomyocytes. After in vivo I/R, serum Troponin-I, and infarct size were less pronounced in Panx1-/- mice, but leukocyte infiltration in the infarct area was similar between Panx1-/- and wild-type mice. Serum Troponin-I and infarct size were not different between mice with neutrophil-specific deletion of Panx1 and Panx1fl/fl mice, suggesting that cardioprotection by Panx1 deletion rather involved cardiomyocytes than the inflammatory response. Physiological cardiac function in wild-type and Panx1-/- hearts was similar. The time to onset of contracture and time to maximal contracture were delayed in Panx1-/- hearts, suggesting reduced sensitivity of these hearts to ischaemic injury. Moreover, Panx1-/- hearts showed better recovery of left ventricle developed pressure, cardiac contractility, and relaxation after I/R. Ischaemic preconditioning failed to confer further protection in Panx1-/- hearts. Panx1 was found in subsarcolemmal mitochondria (SSM). SSM in WT or Panx1-/- hearts showed no differences in morphology. The function of the mitochondrial permeability transition pore and production of reactive oxygen species in SSM was not affected, but mitochondrial respiration was reduced in Panx1-/- SSM. Finally, Panx1-/- cardiomyocytes had a decreased mitochondrial membrane potential and an increased mitochondrial ATP content. CONCLUSION Panx1-/- mice display decreased sensitivity to cardiac I/R injury, resulting in smaller infarcts and improved recovery of left ventricular function. This cardioprotective effect of Panx1 deletion seems to involve cardiac mitochondria rather than a reduced inflammatory response. Thus, Panx1 may represent a new target for controlling cardiac reperfusion damage.
Collapse
Affiliation(s)
- Olga M Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel Tollance
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
10
|
Flores-Muñoz C, García-Rojas F, Pérez MA, Santander O, Mery E, Ordenes S, Illanes-González J, López-Espíndola D, González-Jamett AM, Fuenzalida M, Martínez AD, Ardiles ÁO. The Long-Term Pannexin 1 Ablation Produces Structural and Functional Modifications in Hippocampal Neurons. Cells 2022; 11:cells11223646. [PMID: 36429074 PMCID: PMC9688914 DOI: 10.3390/cells11223646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Francisca García-Rojas
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Miguel A. Pérez
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar 2572007, Chile
| | - Odra Santander
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Elena Mery
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Stefany Ordenes
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2529002, Chile
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2529002, Chile
| | - Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Álvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de estudios en salud, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2572007, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| |
Collapse
|
11
|
Cibelli A, Scemes E, Spray DC. Activity and Stability of Panx1 Channels in Astrocytes and Neuroblastoma Cells Are Enhanced by Cholesterol Depletion. Cells 2022; 11:3219. [PMID: 36291086 PMCID: PMC9600160 DOI: 10.3390/cells11203219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-β-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, NY10595, USA
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Segars KL, Azzari NA, Gomez S, Machen C, Rich CB, Trinkaus-Randall V. Age Dependent Changes in Corneal Epithelial Cell Signaling. Front Cell Dev Biol 2022; 10:886721. [PMID: 35602595 PMCID: PMC9117764 DOI: 10.3389/fcell.2022.886721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
The cornea is exposed daily to a number of mechanical stresses including shear stress from tear film and blinking. Over time, these stressors can lead to changes in the extracellular matrix that alter corneal stiffness, cell-substrate structures, and the integrity of cell-cell junctions. We hypothesized that changes in tissue stiffness of the cornea with age may alter calcium signaling between cells after injury, and the downstream effects of this signaling on cellular motility and wound healing. Nanoindentation studies revealed that there were significant differences in the stiffness of the corneal epithelium and stroma between corneas of 9- and 27-week mice. These changes corresponded to differences in the timeline of wound healing and in cell signaling. Corneas from 9-week mice were fully healed within 24 h. However, the wounds on corneas from 27-week mice remained incompletely healed. Furthermore, in the 27-week cohort there was no detectable calcium signaling at the wound in either apical or basal corneal epithelial cells. This is in contrast to the young cohort, where there was elevated basal cell activity relative to background levels. Cell culture experiments were performed to assess the roles of P2Y2, P2X7, and pannexin-1 in cellular motility during wound healing. Inhibition of P2Y2, P2X7, or pannexin-1 all significantly reduce wound closure. However, the inhibitors all have different effects on the trajectories of individual migrating cells. Together, these findings suggest that there are several significant differences in the stiffness and signaling that underlie the decreased wound healing efficacy of the cornea in older mice.
Collapse
Affiliation(s)
- Kristen L. Segars
- Department of Pharmacology, School of Medicine, Boston University, Boston, MA, United States
| | - Nicholas A. Azzari
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Stephanie Gomez
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Cody Machen
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Celeste B. Rich
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
- *Correspondence: Vickery Trinkaus-Randall,
| |
Collapse
|
13
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Mechanisms of Pannexin 1 (PANX1) Channel Mechanosensitivity and Its Pathological Roles. Int J Mol Sci 2022; 23:ijms23031523. [PMID: 35163442 PMCID: PMC8836264 DOI: 10.3390/ijms23031523] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexins (PANX) were cloned based on their sequence homology to innexins (Inx), invertebrate gap junction proteins. Although there is no sequence homology between PANX and connexins (Cx), these proteins exhibit similar configurations. The PANX family has three members, PANX1, PANX2 and PANX3. Among them, PANX1 has been the most extensively studied. The PANX1 channels are activated by many factors, including high extracellular K+ ([K+]e), high intracellular Ca2+ ([Ca2+]i), Src family kinase (SFK)-mediated phosphorylation, caspase cleavage and mechanical stimuli. However, the mechanisms mediating this mechanosensitivity of PANX1 remain unknown. Both force-from-lipids and force-from-filaments models are proposed to explain the gating mechanisms of PANX1 channel mechanosensitivity. Finally, both the physiological and pathological roles of mechanosensitive PANX1 are discussed.
Collapse
|
15
|
Laird DW, Penuela S. Pannexin biology and emerging linkages to cancer. Trends Cancer 2021; 7:1119-1131. [PMID: 34389277 DOI: 10.1016/j.trecan.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Pannexins are a family of glycoproteins that comprises three members, PANX1, PANX2, and PANX3. The widely expressed and interrogated PANX1 forms heptameric membrane channels that primarily serve to connect the cytoplasm to the extracellular milieu by being selectively permeable to small signaling molecules when activated. Apart from notable exceptions, PANX1 in many tumor cells appears to facilitate tumor growth and metastasis, suggesting that pannexin-blocking therapeutics may have utility in cancer. Attenuation of PANX1 function must also consider the fact that PANX1 is found in stromal cells of the tumor microenvironment (TME), including immune cells. This review highlights the key discoveries of the past 5 years that suggest pannexins facilitate, or in some cases inhibit, tumor cell growth and metastasis via direct protein interactions and through the regulated efflux of signaling molecules.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Oncology, Divisions of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Xiang X, Langlois S, St-Pierre ME, Blinder A, Charron P, Graber TE, Fowler SL, Baird SD, Bennett SAL, Alain T, Cowan KN. Identification of pannexin 1-regulated genes, interactome, and pathways in rhabdomyosarcoma and its tumor inhibitory interaction with AHNAK. Oncogene 2021; 40:1868-1883. [PMID: 33564071 PMCID: PMC7946643 DOI: 10.1038/s41388-020-01623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023]
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is an aggressive cancer with a poor prognosis. Despite current management, the 5-year survival rate for patients with metastatic RMS is ∼30%; underscoring the need to develop better treatment strategies. We have recently reported that pannexin 1 (PANX1) levels are downregulated in RMS and that restoring its expression inhibits RMS progression. Here, we have surveyed and characterized the molecular changes induced by PANX1 re-expression in RMS. We cataloged transcriptomic changes in this context by RNA sequencing. At the protein level, we unveiled PANX1 interactors using BioID, complemented by co-immunoprecipitation coupled to high-performance liquid chromatography/electrospray ionization tandem mass spectrometry performed in PANX1-enriched fractions. Using these data, we generated searchable public databases for the PANX1 interactome and changes to the RMS transcriptome occurring when PANX1 expression is restored. STRING network analyses revealed a PANX1 interactome involving plasma membrane and cytoskeleton-associated proteins including the previously undescribed interactor AHNAK. Indeed, AHNAK knockdown abrogated the PANX1-mediated reduction in RMS cell viability and migration. Using these unbiased approaches, we bring insight to the mechanisms by which PANX1 inhibits RMS progression, identifying the cell migration protein AHNAK as a key modifier of PANX1-mediated changes in RMS malignant properties.
Collapse
Affiliation(s)
- Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Blinder
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Charron
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Stephanie L Fowler
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- UK Dementia Research Institute, University College London, London, UK
| | - Stephen D Baird
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD. Restraint of Human Skin Fibroblast Motility, Migration, and Cell Surface Actin Dynamics, by Pannexin 1 and P2X7 Receptor Signaling. Int J Mol Sci 2021; 22:1069. [PMID: 33499026 PMCID: PMC7865282 DOI: 10.3390/ijms22031069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ana C. Abbott
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Valparaíso 2360102, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| |
Collapse
|
18
|
Wei ZY, Qu HL, Dai YJ, Wang Q, Ling ZM, Su WF, Zhao YY, Shen WX, Chen G. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells. Neural Regen Res 2021; 16:899-904. [PMID: 33229726 PMCID: PMC8178772 DOI: 10.4103/1673-5374.290911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.
Collapse
Affiliation(s)
- Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui-Lin Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Juan Dai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Wei-Xing Shen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University; Medical School of Nantong University; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
19
|
Sayedyahossein S, Huang K, Li Z, Zhang C, Kozlov AM, Johnston D, Nouri-Nejad D, Dagnino L, Betts DH, Sacks DB, Penuela S. Pannexin 1 binds β-catenin to modulate melanoma cell growth and metabolism. J Biol Chem 2021; 296:100478. [PMID: 33647315 PMCID: PMC8027267 DOI: 10.1016/j.jbc.2021.100478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of β-catenin, a key transcription factor in the Wnt pathway. At the protein level, β-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of β-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with β-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and β-catenin interact as a potential new component of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alexandra M Kozlov
- Department of Biology, Faculty of Science, University of Western Ontario, London, Ontario, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Daniel Nouri-Nejad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentristry, University of Western Ontario, London, Ontario, Canada; Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dean H Betts
- Department of Biology, Faculty of Science, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentristry, University of Western Ontario, London, Ontario, Canada
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
20
|
López X, Escamilla R, Fernández P, Duarte Y, González-Nilo F, Palacios-Prado N, Martinez AD, Sáez JC. Stretch-Induced Activation of Pannexin 1 Channels Can Be Prevented by PKA-Dependent Phosphorylation. Int J Mol Sci 2020; 21:ijms21239180. [PMID: 33276429 PMCID: PMC7731223 DOI: 10.3390/ijms21239180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.
Collapse
Affiliation(s)
- Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| | - Rosalba Escamilla
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Yorley Duarte
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Agustín D. Martinez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Juan C. Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| |
Collapse
|
21
|
Hasegawa DK, Zhang P, Turnbull MW. Intracellular dynamics of polydnavirus innexin homologues. INSECT MOLECULAR BIOLOGY 2020; 29:477-489. [PMID: 32683761 DOI: 10.1111/imb.12657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Polydnaviruses associated with ichneumonid parasitoid wasps (Ichnoviruses) encode large numbers of genes, often in multigene families. The Ichnovirus Vinnexin gene family, which is expressed in parasitized lepidopteran larvae, encodes homologues of Innexins, the structural components of insect gap junctions. Here, we have examined intracellular behaviours of the Campoletis sonorensis Ichnovirus (CsIV) Vinnexins, alone and in combination with a host Innexin orthologue, Innexin2 (Inx2). QRT-PCR verified that transcription of CsIV vinnexins occurs contemporaneously with inx2, implying co-occurrence of Vinnexin and Inx2 proteins. Confocal microscopy demonstrated that epitope-tagged VinnexinG (VnxG) and VinnexinQ2 (VnxQ2) exhibit similar subcellular localization as Spodoptera frugiperda Inx2 (Sf-Inx2). Surface biotinylation assays verified that all three proteins localize to the cell surface, and cytochalasin B and nocodazole that they rely on actin and microtubule cytoskeletal networks for localization. Immunomicroscopy following co-transfection of constructs indicates extensive co-localization of Vinnexins with each other and Sf-Inx2, and live-cell imaging of mCherry-labelled Inx2 supports that Vinnexins may affect Sf-Inx2 distribution in a Vinnexin-specific fashion. Our findings support that the Vinnexins may disrupt host cell physiology in a protein-specific manner through altering gap junctional intercellular channel communication, as well as indirectly by affecting multicellular junction characteristics.
Collapse
Affiliation(s)
- D K Hasegawa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, USA
| | - P Zhang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - M W Turnbull
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
22
|
Pannexin 1 Regulates Dendritic Protrusion Dynamics in Immature Cortical Neurons. eNeuro 2020; 7:ENEURO.0079-20.2020. [PMID: 32737184 PMCID: PMC7544189 DOI: 10.1523/eneuro.0079-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
The integration of neurons into networks relies on the formation of dendritic spines. These specialized structures arise from dynamic filopodia-like dendritic protrusions. It was recently reported that cortical neurons lacking the channel protein pannexin 1 (PANX1) exhibited higher dendritic spine densities. Here, we expanded on those findings to investigate, at an earlier developmental time point (with more abundant dendritic protrusions), whether differences in the properties of dendritic protrusion dynamics could contribute to this previously discovered phenomenon. Using a fluorescent membrane tag (mCherry-CD9-10) to visualize dendritic protrusions in developing neurons [at 10 d in vitro (DIV10)], we confirmed that lack of PANX1 led to higher protrusion density, while transient transfection of Panx1 led to decreased protrusion density. To quantify the impact of PANX1 expression on protrusion formation, elimination, and motility, we used live cell imaging in DIV10 neurons (one frame every 5 s for 10 min). We discovered that at DIV10, loss of PANX1 stabilized protrusions. Notably, re-expression of PANX1 in Panx1 knock-out (KO) neurons resulted in a significant increase in protrusion motility and turnover. In summary, these new data revealed that PANX1 could regulate the development of dendritic spines, in part, by controlling dendritic protrusion dynamics.
Collapse
|
23
|
Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci 2020; 11:2163-2172. [PMID: 32639715 DOI: 10.1021/acschemneuro.0c00333] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexin 1 (Panx1) channels are transmembrane proteins that release adenosine triphosphate and play an important role in intercellular communication. They are widely expressed in somatic and nervous system tissues, and their activity has been associated with many pathologies such as stroke, epilepsy, inflammation, and chronic pain. While there are a variety of small molecules known to inhibit Panx1, currently little is known about the mechanism of channel inhibition, and there is a dearth of sufficiently potent and selective drugs targeting Panx1. Herein we provide a review of the current literature on Panx1 structural biology and known pharmacological agents that will help provide a basis for rational development of Panx1 chemical modulators.
Collapse
Affiliation(s)
- Kathleen E. Navis
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Churmy Y. Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roger J. Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Darren J. Derksen
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Yeung AK, Patil CS, Jackson MF. Pannexin‐1 in the CNS: Emerging concepts in health and disease. J Neurochem 2020; 154:468-485. [DOI: 10.1111/jnc.15004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Albert K. Yeung
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Chetan S. Patil
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Michael F. Jackson
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
26
|
Flores-Muñoz C, Gómez B, Mery E, Mujica P, Gajardo I, Córdova C, Lopez-Espíndola D, Durán-Aniotz C, Hetz C, Muñoz P, Gonzalez-Jamett AM, Ardiles ÁO. Acute Pannexin 1 Blockade Mitigates Early Synaptic Plasticity Defects in a Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2020; 14:46. [PMID: 32265655 PMCID: PMC7103637 DOI: 10.3389/fncel.2020.00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic loss induced by soluble oligomeric forms of the amyloid β peptide (sAβos) is one of the earliest events in Alzheimer’s disease (AD) and is thought to be the major cause of the cognitive deficits. These abnormalities rely on defects in synaptic plasticity, a series of events manifested as activity-dependent modifications in synaptic structure and function. It has been reported that pannexin 1 (Panx1), a nonselective channel implicated in cell communication and intracellular signaling, modulates the induction of excitatory synaptic plasticity under physiological contexts and contributes to neuronal death under inflammatory conditions. Here, we decided to study the involvement of Panx1 in functional and structural defects observed in excitatory synapses of the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mice, an animal model of AD. We found an age-dependent increase in the Panx1 expression that correlates with increased Aβ levels in hippocampal tissue from Tg mice. Congruently, we also observed an exacerbated Panx1 activity upon basal conditions and in response to glutamate receptor activation. The acute inhibition of Panx1 activity with the drug probenecid (PBN) did not change neurodegenerative parameters such as amyloid deposition or astrogliosis, but it significantly reduced excitatory synaptic defects in the AD model by normalizing long-term potentiation (LTP) and depression and improving dendritic arborization and spine density in hippocampal neurons of the Tg mice. These results suggest a major contribution of Panx1 in the early mechanisms leading to the synaptopathy in AD. Indeed, PBN induced a reduction in the activation of p38 mitogen-activated protein kinase (MAPK), a kinase widely implicated in the early neurotoxic signaling in AD. Our data strongly suggest that an enhanced expression and activation of Panx1 channels contribute to the Aβ-induced cascades leading to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Bárbara Gómez
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Elena Mery
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Paula Mujica
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivana Gajardo
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Lopez-Espíndola
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia Durán-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Pablo Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Álvaro O Ardiles
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| |
Collapse
|
27
|
Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 2020; 10:biom10020272. [PMID: 32053881 PMCID: PMC7072349 DOI: 10.3390/biom10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.
Collapse
|
28
|
Epp AL, Ebert SN, Sanchez-Arias JC, Wicki-Stordeur LE, Boyce AKJ, Swayne LA. A novel motif in the proximal C-terminus of Pannexin 1 regulates cell surface localization. Sci Rep 2019; 9:9721. [PMID: 31278290 PMCID: PMC6611761 DOI: 10.1038/s41598-019-46144-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
The Pannexin 1 (Panx1) ion and metabolite channel is expressed in a wide variety of cells where it regulates a number of cell behaviours including proliferation and differentiation. Panx1 is expressed on the cell surface as well as intracellular membranes. Previous work suggests that a region within the proximal Panx1 C-terminus (Panx1CT) regulates cell surface localization. Here we report the discovery of a putative leucine-rich repeat (LRR) motif in the proximal Panx1CT necessary for Panx1 cell surface expression in HEK293T cells. Deletion of the putative LRR motif results in significant loss of Panx1 cell surface distribution. Outcomes of complementary cell surface oligomerization and glycosylation state analyses were consistent with reduced cell surface expression of Panx1 LRR deletion mutants. Of note, the oligomerization analysis revealed the presence of putative dimers and trimers of Panx1 at the cell surface. Expression of Panx1 increased HEK293T cell growth and reduced doubling time, while expression of a Panx1 LRR deletion mutant (highly conserved segment) did not reproduce this effect. In summary, here we discovered the presence of a putative LRR motif in the Panx1CT that impacts on Panx1 cell surface localization. Overall these findings provide new insights into the molecular mechanisms underlying C-terminal regulation of Panx1 trafficking and raise potential new lines of investigation with respect to Panx1 oligomerization and glycosylation.
Collapse
Affiliation(s)
- Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sarah N Ebert
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada.
| |
Collapse
|
29
|
Destination and consequences of Panx1 and mutant expression in polarized MDCK cells. Exp Cell Res 2019; 381:235-247. [PMID: 31102595 DOI: 10.1016/j.yexcr.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
The channel-forming membrane glycoprotein pannexin 1 (Panx1) is best characterized as an ATP release channel. To investigate the trafficking and sorting of Panx1, we used polarized MDCK cells and non-polarized BICR-M1Rk cells to track the fate of GFP-tagged Panx1. In non-polarized cells, Panx1 was found throughout the plasma membrane, including the lamellipodia of the tumor cells and the cell surface-targeting domain was mapped to residues 307-379. Panx1 was preferentially enriched at the apical membrane domain of polarized MDCK cells grown as monolayer sheets or as spheroids. Residual Panx1 localized within basolateral membranes of polarized MDCK cells was independent of a putative dileucine sorting motif LL365/6 found within the C-terminal of Panx1. Unexpectedly, stable expression of a Panx1 mutant, where a putative tyrosine-based basolateral sorting motif (YxxØ) was mutated (Y308F), or a truncated Δ379 Panx1 mutant, caused MDCK cells to lose cell-cell contacts and their ability to polarize as they underwent a switch to a more fibroblast-like phenotype. We conclude that Panx1 is preferentially delivered to the apical domain of polarized epithelial cells, and Panx1 mutants drive phenotypic changes to MDCK cells preventing their polarization.
Collapse
|
30
|
Inhibition of Pannexin 1 Reduces the Tumorigenic Properties of Human Melanoma Cells. Cancers (Basel) 2019; 11:cancers11010102. [PMID: 30654593 PMCID: PMC6356688 DOI: 10.3390/cancers11010102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
Pannexin 1 (PANX1) is a channel-forming glycoprotein expressed in many tissues including the skin. PANX1 channels allow the passage of ions and molecules up to 1 kDa, including ATP and other metabolites. In this study, we show that PANX1 is highly expressed in human melanoma tumors at all stages of disease progression, as well as in patient-derived cells and established melanoma cell lines. Reducing PANX1 protein levels using shRNA or inhibiting channel function with the channel blockers, carbenoxolone (CBX) and probenecid (PBN), significantly decreased cell growth and migration, and increased melanin production in A375-P and A375-MA2 cell lines. Further, treatment of A375-MA2 tumors in chicken embryo xenografts with CBX or PBN significantly reduced melanoma tumor weight and invasiveness. Blocking PANX1 channels with PBN reduced ATP release in A375-P cells, suggesting a potential role for PANX1 in purinergic signaling of melanoma cells. In addition, cell-surface biotinylation assays indicate that there is an intracellular pool of PANX1 in melanoma cells. PANX1 likely modulates signaling through the Wnt/β-catenin pathway, because β-catenin levels were significantly decreased upon PANX1 silencing. Collectively, our findings identify a role for PANX1 in controlling growth and tumorigenic properties of melanoma cells contributing to signaling pathways that modulate melanoma progression.
Collapse
|
31
|
Michalski K, Henze E, Nguyen P, Lynch P, Kawate T. The weak voltage dependence of pannexin 1 channels can be tuned by N-terminal modifications. J Gen Physiol 2018; 150:1758-1768. [PMID: 30377218 PMCID: PMC6279361 DOI: 10.1085/jgp.201711804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Voltage stimulation is commonly used to study pannexin 1 (Panx1). However, whether Panx1 is a voltage-gated channel remains controversial. Michalski et al. demonstrate that Panx1 is a channel with weak voltage dependence, whose activity can be tuned by N-terminal modifications. Pannexins are a family of ATP release channels important for physiological and pathological processes like blood pressure regulation, epilepsy, and neuropathic pain. To study these important channels in vitro, voltage stimulation is the most common and convenient tool, particularly for pannexin 1 (Panx1). However, whether Panx1 is a voltage-gated channel remains controversial. Here, we carefully examine the effect of N-terminal modification on voltage-dependent Panx1 channel activity. Using a whole-cell patch-clamp recording technique, we demonstrate that both human and mouse Panx1, with their nativeN termini, give rise to voltage-dependent currents, but only at membrane potentials larger than +100 mV. This weak voltage-dependent channel activity profoundly increases when a glycine–serine (GS) motif is inserted immediately after the first methionine. Single-channel recordings reveal that the addition of GS increases the channel open probability as well as the number of unitary conductance classes. We also find that insertions of other amino acid(s) at the same position mimics the effect of GS. On the other hand, tagging the N terminus with GFP abolishes voltage-dependent channel activity. Our results suggest that Panx1 is a channel with weak voltage dependence whose activity can be tuned by N-terminal modifications.
Collapse
Affiliation(s)
- Kevin Michalski
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY
| | - Erik Henze
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY
| | - Phillip Nguyen
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY
| | - Patrick Lynch
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY
| |
Collapse
|
32
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
33
|
DeLalio LJ, Keller AS, Chen J, Boyce AK, Artamonov M, Askew-Page HR, Keller TS, Johnstone SR, Weaver RB, Good ME, Murphy S, Best AK, Mintz EL, Penuela S, Greenwood I, Machado RF, Somlyo AV, Swayne LA, Minshall R, Isakson BE. Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure. Arterioscler Thromb Vasc Biol 2018; 38:2065-2078. [PMID: 30026274 PMCID: PMC6202122 DOI: 10.1161/atvbaha.118.311290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.
Collapse
Affiliation(s)
- Leon J. DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Alexander S. Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jiwang Chen
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL
| | - Andrew K.J. Boyce
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Mykhaylo Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Henry R. Askew-Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - T.C. Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Rachel B. Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Sara Murphy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Angela K. Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ellen L. Mintz
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich Scholl of Medicine and Dentistry, University of Western Ontario, London ON, Canada
| | - Iain Greenwood
- Molecular and Clinical Sciences Research Institute, St. George’s University London UK
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, & Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Avril V. Somlyo
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Leigh Anne Swayne
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Richard Minshall
- Department of Pharmacology and Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| |
Collapse
|
34
|
Sanchez-Pupo RE, Johnston D, Penuela S. N-Glycosylation Regulates Pannexin 2 Localization but Is Not Required for Interacting with Pannexin 1. Int J Mol Sci 2018; 19:ijms19071837. [PMID: 29932112 PMCID: PMC6073767 DOI: 10.3390/ijms19071837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pannexins (Panx1, 2, 3) are channel-forming glycoproteins expressed in mammalian tissues. We previously reported that N-glycosylation acts as a regulator of the localization and intermixing of Panx1 and Panx3, but its effects on Panx2 are currently unknown. Panx1 and Panx2 intermixing can regulate channel properties, and both pannexins have been implicated in neuronal cell death after ischemia. Our objectives were to validate the predicted N-glycosylation site of Panx2 and to study the effects of Panx2 glycosylation on localization and its capacity to interact with Panx1. We used site-directed mutagenesis, enzymatic de-glycosylation, cell-surface biotinylation, co-immunoprecipitation, and confocal microscopy. Our results showed that N86 is the only N-glycosylation site of Panx2. Panx2 and the N86Q mutant are predominantly localized to the endoplasmic reticulum (ER) and cis-Golgi matrix with limited cell surface localization was seen only in the presence of Panx1. The Panx2 N86Q mutant is glycosylation-deficient and tends to aggregate in the ER reducing its cell surface trafficking but it can still interact with Panx1. Our study indicates that N-glycosylation may be important for folding and trafficking of Panx2. We found that the un-glycosylated forms of Panx1 and 2 can readily interact, regulating their localization and potentially their channel function in cells where they are co-expressed.
Collapse
Affiliation(s)
- Rafael E Sanchez-Pupo
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
35
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Boucher J, Simonneau C, Denet G, Clarhaut J, Balandre AC, Mesnil M, Cronier L, Monvoisin A. Pannexin-1 in Human Lymphatic Endothelial Cells Regulates Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19061558. [PMID: 29882918 PMCID: PMC6032340 DOI: 10.3390/ijms19061558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms governing the formation of lymphatic vasculature are not yet well understood. Pannexins are transmembrane proteins that form channels which allow for diffusion of ions and small molecules (<1 kDa) between the extracellular space and the cytosol. The expression and function of pannexins in blood vessels have been studied in the last few decades. Meanwhile, no studies have been conducted to evaluate the role of pannexins during human lymphatic vessel formation. Here we show, using primary human dermal lymphatic endothelial cells (HDLECs), pharmacological tools (probenecid, Brilliant Blue FCF, mimetic peptides [10Panx]) and siRNA-mediated knockdown that Pannexin-1 is necessary for capillary tube formation on Matrigel and for VEGF-C-induced invasion. These results newly identify Pannexin-1 as a protein highly expressed in HDLECs and its requirement during in vitro lymphangiogenesis.
Collapse
Affiliation(s)
- Jonathan Boucher
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Claire Simonneau
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Golthlay Denet
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Jonathan Clarhaut
- CNRS UMR 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), University of Poitiers, 86073 Poitiers, France.
- CHU de Poitiers, 86021 Poitiers, France.
| | - Annie-Claire Balandre
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Marc Mesnil
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Laurent Cronier
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Arnaud Monvoisin
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| |
Collapse
|
37
|
Xu X, Wicki-Stordeur LE, Sanchez-Arias JC, Liu M, Weaver MS, Choi CSW, Swayne LA. Probenecid Disrupts a Novel Pannexin 1-Collapsin Response Mediator Protein 2 Interaction and Increases Microtubule Stability. Front Cell Neurosci 2018; 12:124. [PMID: 29867357 PMCID: PMC5958195 DOI: 10.3389/fncel.2018.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
Neurite formation relies on finely-tuned control of the cytoskeleton. Here we identified a novel protein-protein interaction between the ion and metabolite channel protein Pannexin 1 (Panx1) and collapsin response mediator protein 2 (Crmp2), a positive regulator of microtubule polymerization and stabilization. Panx1 and Crmp2 co-precipitated from both Neuro-2a (N2a) cells and mouse ventricular zone (VZ) tissue. In vitro binding assays between purified proteins revealed the interaction occurs directly between the Panx1 C-terminus (Panx1 CT) and Crmp2. Because Crmp2 is a well-established microtubule-stabilizing protein, and we previously observed a marked increase in neurite formation following treatment with the Panx1 blocker, probenecid, in N2a cells and VZ neural precursor cells (NPCs), we investigated the impact of probenecid on the Panx1-Crmp2 interaction. Probenecid treatment significantly disrupted the Panx1-Crmp2 interaction by both immunoprecipitation (IP) and proximity ligation analysis, without altering overall Crmp2 protein expression levels. In the presence of probenecid, Crmp2 was concentrated at the distal ends of growing neurites. Moreover, probenecid treatment increased tubulin polymerization and microtubule stability in N2a cells. These results reveal that probenecid disrupts a novel interaction between Panx1 and the microtubule stabilizer, Crmp2, and also increases microtubule stability.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Mei Liu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nanjing, China
| | - Maria S Weaver
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Catherine S W Choi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Leigh A Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
39
|
Guerrero J, Oliveira H, Aid R, Bareille R, Siadous R, Letourneur D, Mao Y, Kohn J, Amédée J. Influence of the three‐dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. J Tissue Eng Regen Med 2018; 12:e1936-e1949. [DOI: 10.1002/term.2625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Julien Guerrero
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
- Department of BiomedicineUniversity Hospital Basel, University of Basel Basel Switzerland
| | - Hugo Oliveira
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Rachida Aid
- Inserm U1148, LVTS, X. Bichat HospitalUniversity Paris Diderot F‐75018 Paris, Institut Galilée, University Paris 13, 93430 Villetaneuse Paris Cedex 18; University Paris Diderot, CHUX, Bichat Paris France
| | - Reine Bareille
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Robin Siadous
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Didier Letourneur
- Inserm U1148, LVTS, X. Bichat HospitalUniversity Paris Diderot F‐75018 Paris, Institut Galilée, University Paris 13, 93430 Villetaneuse Paris Cedex 18; University Paris Diderot, CHUX, Bichat Paris France
| | - Yong Mao
- The New Jersey Center for Biomaterials, Department of Chemistry and Chemical BiologyRutgers The State University of New Jersey Piscataway NJ USA
| | - Joachim Kohn
- The New Jersey Center for Biomaterials, Department of Chemistry and Chemical BiologyRutgers The State University of New Jersey Piscataway NJ USA
| | - Joëlle Amédée
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| |
Collapse
|
40
|
Chiu YH, Schappe MS, Desai BN, Bayliss DA. Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 2017; 150:19-39. [PMID: 29233884 PMCID: PMC5749114 DOI: 10.1085/jgp.201711888] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms plasma membrane ion channels that are widely expressed throughout the body. Panx1 activation results in the release of nucleotides such as adenosine triphosphate and uridine triphosphate. Thus, these channels have been implicated in diverse physiological and pathological functions associated with purinergic signaling, such as apoptotic cell clearance, blood pressure regulation, neuropathic pain, and excitotoxicity. In light of this, substantial attention has been directed to understanding the mechanisms that regulate Panx1 channel expression and activation. Here we review accumulated evidence for the various activation mechanisms described for Panx1 channels and, where possible, the unitary channel properties associated with those forms of activation. We also emphasize current limitations in studying Panx1 channel function and propose potential directions to clarify the exciting and expanding roles of Panx1 channels.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael S Schappe
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
41
|
Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC. ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X 7 receptors. Sci Signal 2017; 10:10/506/eaah7107. [PMID: 29162744 DOI: 10.1126/scisignal.aah7107] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Upon its release from injured cells, such as infected, transformed, inflamed, or necrotic cells, extracellular adenosine-5'-triphosphate (ATP) acts as a danger signal that recruits phagocytes, such as neutrophils, macrophages, and dendritic cells (DCs), to the site of injury. The sensing of extracellular ATP occurs through purinergic (P2) receptors. We investigated the cellular mechanisms linking purinergic signaling to DC motility. We found that ATP stimulated fast DC motility through an autocrine signaling loop, which was initiated by the activation of P2X7 receptors and further amplified by pannexin 1 (Panx1) channels. Upon stimulation of the P2X7 receptor by ATP, Panx1 contributed to fast DC motility by increasing the permeability of the plasma membrane, which resulted in supplementary ATP release. In the absence of Panx1, DCs failed to increase their speed of migration in response to ATP, despite exhibiting a normal P2X7 receptor-mediated Ca2+ response. In addition to DC migration, Panx1 channel- and P2X7 receptor-dependent signaling was further required to stimulate the reorganization of the actin cytoskeleton. In vivo, functional Panx1 channels were required for the homing of DCs to lymph nodes, although they were dispensable for DC maturation. These data suggest that P2X7 receptors and Panx1 channels are crucial players in the regulation of DC migration to endogenous danger signals.
Collapse
Affiliation(s)
- Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France
| | - Pablo Vargas
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.,CNRS UMR144, Institut Curie, PSL Research University, 12 Rue Lhomond, Paris 75005, France
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile.,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| |
Collapse
|
42
|
Swayne LA, Boyce AKJ. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease. Front Cell Neurosci 2017; 11:230. [PMID: 28848396 PMCID: PMC5550711 DOI: 10.3389/fncel.2017.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023] Open
Abstract
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.
Collapse
Affiliation(s)
- Leigh A Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, VancouverBC, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada
| |
Collapse
|
43
|
Role of Pannexin1 channels in the resistance of I-10 testicular cancer cells to cisplatin mediated by ATP/IP 3 pathway. Biomed Pharmacother 2017; 94:514-522. [PMID: 28780469 DOI: 10.1016/j.biopha.2017.07.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (DDP) is the most commonly used drug in testicular cancer. However, drug resistance severely limits its clinical use and the underlying mechanisms need to be further clarified. The aim of present study was to investigate the role of ATP/IP3 pathway mediated by pannexin1 (Panx-1) channels on DDP-induced apoptosis and to reveal the potential mechanisms of DDP-resistance in testicular cancer. We found that the expression of Panx-1 in I-10/DDP cells (DDP-resistance) was decreased compared with parental I-10 cells determined by western blotting and immunofluorescence assay. To further clarify the role of Panx-1 in DDP resistance, Panx-1 function was modulated by overexpression and knockdown of Panx-1 expression. Panx-1 overexpression increased DDP-induced apoptosis, ATP release and IP3 levels. On the contrary, Panx-1 silencing decreased DDP-induced apoptosis, ATP release and IP3 levels. Apyrase (hydrolyzing extracellular ATP) or xestospongin C (antagonizing IP3 receptor) also decreased DDP-induced apoptosis. Our findings demonstrate that Panx-1 is involved in DDP-resistance and ATP/IP3 pathway mediated by Panx-1 channels participates in DDP-induced apoptosis in testicular cancer. Panx-1 modulation may be interesting to amplify the clinical effect of DDP and reverse the resistance of testicular cancer cells to DDP.
Collapse
|
44
|
Boyce AKJ, Epp AL, Nagarajan A, Swayne LA. Transcriptional and post-translational regulation of pannexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:72-82. [PMID: 28279657 DOI: 10.1016/j.bbamem.2017.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Pannexins are a 3-membered family of proteins that form large pore ion and metabolite channels in vertebrates. The impact of pannexins on vertebrate biology is intricately tied to where and when they are expressed, and how they are modified, once produced. The purpose of this review is therefore to outline our current understanding of transcriptional and post-translational regulation of pannexins. First, we briefly summarize their discovery and characteristics. Next, we describe several aspects of transcriptional regulation, including cell and tissue-specific expression, dynamic expression over development and disease, as well as new insights into the underlying molecular machinery involved. Following this, we delve into the role of post-translational modifications in the regulation of trafficking and channel properties, highlighting important work on glycosylation, phosphorylation, S-nitrosylation and proteolytic cleavage. Embedded throughout, we also highlight important knowledge gaps and avenues of future research. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Archana Nagarajan
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
45
|
Belousov AB, Fontes JD, Freitas-Andrade M, Naus CC. Gap junctions and hemichannels: communicating cell death in neurodevelopment and disease. BMC Cell Biol 2017; 18:4. [PMID: 28124625 PMCID: PMC5267333 DOI: 10.1186/s12860-016-0120-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gap junctions are unique membrane channels that play a significant role in intercellular communication in the developing and mature central nervous system (CNS). These channels are composed of connexin proteins that oligomerize into hexamers to form connexons or hemichannels. Many different connexins are expressed in the CNS, with some specificity with regard to the cell types in which distinct connexins are found, as well as the timepoints when they are expressed in the developing and mature CNS. Both the main neuronal Cx36 and glial Cx43 play critical roles in neurodevelopment. These connexins also mediate distinct aspects of the CNS response to pathological conditions. An imbalance in the expression, translation, trafficking and turnover of connexins, as well as mutations of connexins, can impact their function in the context of cell death in neurodevelopment and disease. With the ever-increasing understanding of connexins in the brain, therapeutic strategies could be developed to target these membrane channels in various neurological disorders.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Joseph D Fontes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Moises Freitas-Andrade
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
46
|
Esseltine JL, Laird DW. Next-Generation Connexin and Pannexin Cell Biology. Trends Cell Biol 2016; 26:944-955. [PMID: 27339936 DOI: 10.1016/j.tcb.2016.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/17/2023]
Abstract
Connexins and pannexins are two families of large-pore channel forming proteins that are capable of passing small signaling molecules. While connexins serve the seminal task of direct gap junctional intercellular communication, pannexins are far less understood but function primarily as single membrane channels in autocrine and paracrine signaling. Advancements in connexin and pannexin biology in recent years has revealed that in addition to well-described classical functions at the plasma membrane, exciting new evidence suggests that connexins and pannexins participate in alternative pathways involving multiple intracellular compartments. Here we briefly highlight classical functions of connexins and pannexins but focus our attention mostly on the transformative findings that suggest that these channel-forming proteins may serve roles far beyond our current understandings.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
47
|
Interdependence of ATP signalling and pannexin channels; the servant was really the master all along? Biochem J 2016; 472:e27-30. [PMID: 26613946 DOI: 10.1042/bj20151016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors.
Collapse
|
48
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
49
|
Sanchez-Arias JC, Wicki-Stordeur LE, Swayne LA. Perspectives on the role of Pannexin 1 in neural precursor cell biology. Neural Regen Res 2016; 11:1540-1544. [PMID: 27904473 PMCID: PMC5116821 DOI: 10.4103/1673-5374.193221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes.
Collapse
Affiliation(s)
- Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 2015; 72:2823-51. [PMID: 26118660 PMCID: PMC11113968 DOI: 10.1007/s00018-015-1962-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.
Collapse
Affiliation(s)
- Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France
- University Pierre et Marie
Curie, ED, N°158, 75005 Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| |
Collapse
|