1
|
Kim J, Muller RY, Bondra ER, Ingolia NT. CRISPRi with barcoded expression reporters dissects regulatory networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611573. [PMID: 39282439 PMCID: PMC11398470 DOI: 10.1101/2024.09.06.611573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Genome-wide CRISPR screens have emerged as powerful tools for uncovering the genetic underpinnings of diverse biological processes. Incisive screens often depend on directly measuring molecular phenotypes, such as regulated gene expression changes, provoked by CRISPR-mediated genetic perturbations. Here, we provide quantitative measurements of transcriptional responses in human cells across genome-scale perturbation libraries by coupling CRISPR interference (CRISPRi) with barcoded expression reporter sequencing (CiBER-seq). To enable CiBER-seq in mammalian cells, we optimize the integration of highly complex, barcoded sgRNA libraries into a defined genomic context. CiBER-seq profiling of a nuclear factor kappa B (NF-κB) reporter delineates the canonical signaling cascade linking the transmembrane TNF-alpha receptor to inflammatory gene activation and highlights cell-type-specific factors in this response. Importantly, CiBER-seq relies solely on bulk RNA sequencing to capture the regulatory circuit driving this rapid transcriptional response. Our work demonstrates the accuracy of CiBER-seq and its potential for dissecting genetic networks in mammalian cells with superior time resolution.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan Y. Muller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Pan H, Cheng X, Rodríguez PFG, Zhang X, Chung I, Jin VX, Li W, Hu Y, Li R. An essential signaling function of cytoplasmic NELFB is independent of RNA polymerase II pausing. J Biol Chem 2023; 299:105259. [PMID: 37717699 PMCID: PMC10591015 DOI: 10.1016/j.jbc.2023.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The four-subunit negative elongation factor (NELF) complex mediates RNA polymerase II (Pol II) pausing at promoter-proximal regions. Ablation of individual NELF subunits destabilizes the NELF complex and causes cell lethality, leading to the prevailing concept that NELF-mediated Pol II pausing is essential for cell proliferation. Using separation-of-function mutations, we show here that NELFB function in cell proliferation can be uncoupled from that in Pol II pausing. NELFB mutants sequestered in the cytoplasm and deprived of NELF nuclear function still support cell proliferation and part of the NELFB-dependent transcriptome. Mechanistically, cytoplasmic NELFB physically and functionally interacts with prosurvival signaling kinases, most notably phosphatidylinositol-3-kinase/AKT. Ectopic expression of membrane-tethered phosphatidylinositol-3-kinase/AKT partially bypasses the role of NELFB in cell proliferation, but not Pol II occupancy. Together, these data expand the current understanding of the physiological impact of Pol II pausing and underscore the multiplicity of the biological functions of individual NELF subunits.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| | - Xiaolong Cheng
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Pedro Felipe Gardeazábal Rodríguez
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Inhee Chung
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Victor X Jin
- Institute of Health Equity and Cancer Center, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wei Li
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
3
|
DeBerardine M, Booth GT, Versluis PP, Lis JT. The NELF pausing checkpoint mediates the functional divergence of Cdk9. Nat Commun 2023; 14:2762. [PMID: 37179384 PMCID: PMC10182999 DOI: 10.1038/s41467-023-38359-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Promoter-proximal pausing by RNA Pol II is a rate-determining step in gene transcription that is hypothesized to be a prominent point at which regulatory factors act. The pausing factor NELF is known to induce and stabilize pausing, but not all kinds of pausing are NELF-mediated. Here, we find that NELF-depleted Drosophila melanogaster cells functionally recapitulate the NELF-independent pausing we previously observed in fission yeast (which lack NELF). Critically, only NELF-mediated pausing establishes a strict requirement for Cdk9 kinase activity for the release of paused Pol II into productive elongation. Upon inhibition of Cdk9, cells with NELF efficiently shutdown gene transcription, while in NELF-depleted cells, defective, non-productive transcription continues unabated. By introducing a strict checkpoint for Cdk9, the evolution of NELF was likely critical to enable increased regulation of Cdk9 in higher eukaryotes, as Cdk9 availability can be restricted to limit gene transcription without inducing wasteful, non-productive transcription.
Collapse
Affiliation(s)
- Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Monmouth Junction, NJ, USA
| | - Philip P Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
5
|
Abe K, Schauer T, Torres-Padilla ME. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep 2022; 41:111865. [PMID: 36577375 DOI: 10.1016/j.celrep.2022.111865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022] Open
Abstract
How transcription is regulated as development commences is fundamental to understand how the transcriptionally silent mature gametes are reprogrammed. The embryonic genome is activated for the first time during zygotic genome activation (ZGA). How RNA polymerase II (Pol II) and productive elongation are regulated during this process remains elusive. Here, we generate genome-wide maps of Serine 5 and Serine 2-phosphorylated Pol II during and after ZGA in mouse embryos. We find that both phosphorylated Pol II forms display similar distributions across genes during ZGA, with typical elongation enrichment of Pol II emerging after ZGA. Serine 2-phosphorylated Pol II occurs at genes prior to their activation, suggesting that Serine 2 phosphorylation may prime gene expression. Functional perturbations demonstrate that CDK9 and SPT5 are major ZGA regulators and that SPT5 prevents precocious activation of some genes. Overall, our work sheds molecular insights into transcriptional regulation at the beginning of mammalian development.
Collapse
Affiliation(s)
- Kenichiro Abe
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
6
|
Ghouraba MH, Masad RJ, Mpingirika EZ, Abdelraheem OM, Zeghlache R, Alserw AM, Amleh A. Role of NELF-B in supporting epithelial-mesenchymal transition and cell proliferation during hepatocellular carcinoma progression. Oncol Lett 2021; 22:761. [PMID: 34539865 PMCID: PMC8436359 DOI: 10.3892/ol.2021.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor-B (NELF-B), also known as cofactor of BRCA1 (COBRA1), is one of the four subunits of the NELF complex. It interacts with BRCA1, in addition to other transcription complexes in various tissues. The NELF complex represses the transcription of several genes by stalling RNA polymerase II during the early phase of transcription elongation. The role of NELF-B in liver cancer and hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, remains to be elucidated. It has been previously demonstrated that silencing of NELF-B inhibits the proliferation and migration of HepG2 cells. The present study aimed to investigate the consequences of ectopic expression and silencing of NELF-B in liver cancer HepG2 and SNU449 cell lines. Functional assays were performed to examine the effects on gene and protein expression, viability, migration and invasion of cells. Overexpression of NELF-B did not alter the proliferation and migration of HepG2 cells, or the expression of tested genes, indicating that overexpression alone may not be sufficient for altering these features in HepG2 cells. By contrast, knockdown of NELF-B in SNU449 cells resulted in decreased cell proliferation, together with induction of apoptosis and decreased expression levels of Ki-67 and survivin, which are markers of proliferation and inhibition of apoptosis, respectively. Additionally, silencing of NELF-B resulted in a significant decrease in the hallmarks of epithelial-mesenchymal transition (EMT), including cell migration and invasion, and decreased the expression levels of EMT markers, such as N-cadherin, vimentin and β-catenin. Decreased expression levels of forkhead box F2 transcription factor and increased mRNA levels of trefoil factor 1, a putative tumor suppressor, were also detected following the silencing of NELF-B. The current results demonstrated that NELF-B enhanced the manifestation of most hallmarks of cancer, including cell proliferation, migration, invasion and inhibition of apoptosis, indicating its critical role in the progression of HCC.
Collapse
Affiliation(s)
- Mennatallah Hani Ghouraba
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Razan Jamil Masad
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Eric Zadok Mpingirika
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Omnia Mahmoud Abdelraheem
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Rached Zeghlache
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Aya M Alserw
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Asma Amleh
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
7
|
Monteverde T, Sahoo S, La Montagna M, Magee P, Shi L, Lee D, Sellers R, Baker AR, Leong HS, Fassan M, Garofalo M. CKAP2L Promotes Non-Small Cell Lung Cancer Progression through Regulation of Transcription Elongation. Cancer Res 2021; 81:1719-1731. [PMID: 33472893 DOI: 10.1158/0008-5472.can-20-1968] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022]
Abstract
Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC. SIGNIFICANCE: These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.
Collapse
Affiliation(s)
- Tiziana Monteverde
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, United Kingdom
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, United Kingdom
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, United Kingdom
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, United Kingdom
| | - Dave Lee
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Robert Sellers
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Alexander R Baker
- Visualisation, Irradiation & Analysis, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Hui Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom.
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, United Kingdom
| |
Collapse
|
8
|
Rjiba K, Ayech H, Kraiem O, Slimani W, Jelloul A, Ben Hadj Hmida I, Mahdhaoui N, Saad A, Mougou-Zerelli S. Disorders of sex development in Wolf-Hirschhorn syndrome: a genotype-phenotype correlation and MSX1 as candidate gene. Mol Cytogenet 2021; 14:12. [PMID: 33627176 PMCID: PMC7905666 DOI: 10.1186/s13039-021-00531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Wolf-Hirschhorn (WHS) is a set of congenital physical anomalies and mental retardation associated with a partial deletion of the short arm of chromosome 4. To establish a genotype-phenotype correlation; we carried out a molecular cytogenetic analysis on two Tunisian WHS patients. Patient 1 was a boy of 1-year-old, presented a typical WHS phenotype while patient 2, is a boy of 2 days presented an hypospadias, a micropenis and a cryptorchidie in addition to the typical WHS phenotype. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used. RESULTS Results of the analysis showed that patient 2 had a greater deletion size (4.8 Mb) of chromosome 4 than patient 1 (3.4 Mb). Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. If we analyze the uncommon deleted region between patient1 and patient 2 we found that the Muscle Segment Homeobox (MSX1) gene is included in this region. MSX1 is a critical transcriptional repressor factor, expressed in the ventral side of the developing anterior pituitary and implicated in gonadotrope differentiation. Msx1 acts as a negative regulatory pituitary development by repressing the gonadotropin releasing hormone (GnRH) genes during embryogenesis. We hypothesized that the deletion of MSX1 in our patient may deregulate the androgen synthesis. CONCLUSION Based on the MSX1 gene function, its absence might be indirectly responsible for the hypospadias phenotype by contributing to the spatiotemporal regulation of GnRH transcription during development.
Collapse
Affiliation(s)
- Khouloud Rjiba
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hédia Ayech
- Pediatric Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Olfa Kraiem
- Pediatric Department, Regional Hospital, Kairouan, Tunisia
| | - Wafa Slimani
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Afef Jelloul
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Imen Ben Hadj Hmida
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Nabiha Mahdhaoui
- Pediatric Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Soumaya Mougou-Zerelli
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia. .,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.
| |
Collapse
|
9
|
Mazina MY, Kovalenko EV, Vorobyeva NE. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes. Sci Rep 2021; 11:172. [PMID: 33420323 PMCID: PMC7794308 DOI: 10.1038/s41598-020-80650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
10
|
Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA, Woodfin AR, Chen FX, Shiekhattar R, Shilatifard A. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Mol Cell 2020; 78:261-274.e5. [PMID: 32155413 PMCID: PMC7402197 DOI: 10.1016/j.molcel.2020.02.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fei X Chen
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Alikunju S, Severinova E, Yang Z, Ivessa A, Sayed D. Acute NelfA knockdown restricts compensatory gene expression and precipitates ventricular dysfunction during cardiac hypertrophy. J Mol Cell Cardiol 2020; 142:93-104. [PMID: 32278832 DOI: 10.1016/j.yjmcc.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Coordinated functional balance of negative and positive transcription complexes maintain and accommodate gene expression in hearts during quiescent and hypertrophic conditions, respectively. Negative elongation factor (Nelf) complex has been implicated in RNA polymerase II (pol II) pausing, a widespread regulatory transcriptional phenomenon observed across the cardiac genome. Here, we examine the role of NelfA aka, Wolf-Hirschhorn syndrome candidate 2 (Whsc2), a critical component of the negative elongation complex in hearts undergoing pressure-overload induced hypertrophy. Alignment of high-resolution genome-wide occupancy data of NelfA, Pol II, TFIIB and H3k9ac from control and hypertrophied hearts reveal that NelfA associates with active gene promoters. High NelfA occupancy is seen at promoters of essential and cardiac-enriched genes, expressed under both quiescent and hypertrophic conditions. Conversely, de novo NelfA recruitment is observed at inducible gene promoters with pressure overload, accompanied by significant increase in expression of these genes with hypertrophy. Interestingly, change in promoter NelfA levels correlates with the transcript output in hypertrophied hearts compared to Sham, suggesting NelfA might be playing a critical role in the regulation of gene transcription during cardiac hypertrophy. In vivo knockdown of NelfA (siNelfA) in hearts subjected to pressure-overload results in early ventricular dilatation and dysfunction, associated with decrease in expression of inducible and cardiac-enriched genes in siNelfA hypertrophied compared to control hypertrophied hearts. In accordance, in vitro knockdown of NelfA in cardiomyocytes showed no change in promoter pol II, however significant decrease in in-gene and downstream pol II occupancy was observed. These data suggest an inhibited pol II progression in transcribing and inducible genes, which reflects as a decrease in transcript abundance of these genes. These results indicate that promoter NelfA occupancy is essential for pol II -dependent transcription. Therefore, we conclude that NelfA is required for active transcription and gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Saleena Alikunju
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Elena Severinova
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Danish Sayed
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America.
| |
Collapse
|
12
|
Lasser M, Pratt B, Monahan C, Kim SW, Lowery LA. The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome. Front Physiol 2019; 10:817. [PMID: 31297068 PMCID: PMC6607408 DOI: 10.3389/fphys.2019.00817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
Wolf–Hirschhorn syndrome (WHS) is a rare developmental disorder characterized by intellectual disability and various physical malformations including craniofacial, skeletal, and cardiac defects. These phenotypes, as they involve structures that are derived from the cranial neural crest, suggest that WHS may be associated with abnormalities in neural crest cell (NCC) migration. This syndrome is linked with assorted mutations on the short arm of chromosome 4, most notably the microdeletion of a critical genomic region containing several candidate genes. However, the function of these genes during embryonic development, as well as the cellular and molecular mechanisms underlying the disorder, are still unknown. The model organism Xenopus laevis offers a number of advantages for studying WHS. With the Xenopus genome sequenced, genetic manipulation strategies can be readily designed in order to alter the dosage of the WHS candidate genes. Moreover, a variety of assays are available for use in Xenopus to examine how manipulation of WHS genes leads to changes in the development of tissue and organ systems affected in WHS. In this review article, we highlight the benefits of using X. laevis as a model system for studying human genetic disorders of development, with a focus on WHS.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Benjamin Pratt
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
13
|
Hewitt SC, Li R, Adams N, Winuthayanon W, Hamilton KJ, Donoghue LJ, Lierz SL, Garcia M, Lydon JP, DeMayo FJ, Adelman K, Korach KS. Negative elongation factor is essential for endometrial function. FASEB J 2019; 33:3010-3023. [PMID: 30332301 PMCID: PMC6338652 DOI: 10.1096/fj.201801752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Pausing of RNA polymerase II (Pol II) during early transcription, mediated by the negative elongation factor (NELF) complex, allows cells to coordinate and appropriately respond to signals by modulating the rate of transcriptional pause release. Promoter proximal enrichment of Pol II occurs at uterine genes relevant to reproductive biology; thus, we hypothesized that pausing might impact endometrial response by coordinating hormonal signals involved in establishing and maintaining pregnancy. We deleted the NELF-B subunit in the mouse uterus using PgrCre (NELF-B UtcKO). Resulting females were infertile. Uterine response to the initial decidual stimulus of NELF-B UtcKO was similar to that of control mice; however, subsequent full decidual response was not observed. Cultured NELF-B UtcKO stromal cells exhibited perturbances in extracellular matrix components and also expressed elevated levels of the decidual prolactin Prl8a2, as well as altered levels of transcripts encoding enzymes involved in prostaglandin synthesis and metabolism. Because endometrial stromal cell decidualization is also critical to human reproductive health and fertility, we used small interfering to suppress NELF-B or NELF-E subunits in cultured human endometrial stromal cells, which inhibited decidualization, as reflected by the impaired induction of decidual markers PRL and IGFBP1. Overall, our study indicates NELF-mediated pausing is essential to coordinate endometrial responses and that disruption impairs uterine decidual development during pregnancy.-Hewitt, S. C., Li, R., Adams, N., Winuthayanon, W., Hamilton, K. J., Donoghue, L. J., Lierz, S. L., Garcia, M., Lydon, J. P., DeMayo, F. J., Adelman, K., Korach, K. S. Negative elongation factor is essential for endometrial function.
Collapse
Affiliation(s)
- Sylvia C. Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rong Li
- Pregnancy and Female Reproduction Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Nyssa Adams
- Pregnancy and Female Reproduction Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Wipawee Winuthayanon
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Katherine J. Hamilton
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lauren J. Donoghue
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sydney L. Lierz
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Marleny Garcia
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Francesco J. DeMayo
- Pregnancy and Female Reproduction Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Corrêa T, Mergener R, Leite JCL, Galera MF, Moreira LMDA, Vargas JE, Riegel M. Cytogenomic Integrative Network Analysis of the Critical Region Associated with Wolf-Hirschhorn Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5436187. [PMID: 29721507 PMCID: PMC5867687 DOI: 10.1155/2018/5436187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
Deletions in the 4p16.3 region are associated with Wolf-Hirschhorn syndrome (WHS), a contiguous gene deletion syndrome involving variable size deletions. In this study, we perform a cytogenomic integrative analysis combining classical cytogenetic methods, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and systems biology strategies, to establish the cytogenomic profile involving the 4p16.3 critical region and suggest WHS-related intracellular cell signaling cascades. The cytogenetic and clinical patient profiles were evaluated. We characterized 12 terminal deletions, one interstitial deletion, two ring chromosomes, and one classical translocation 4;8. CMA allowed delineation of the deletions, which ranged from 3.7 to 25.6 Mb with breakpoints from 4p16.3 to 4p15.33. Furthermore, the smallest region of overlapping (SRO) encompassed seven genes in a terminal region of 330 kb in the 4p16.3 region, suggesting a region of susceptibility to convulsions and microcephaly. Therefore, molecular interaction networks and topological analysis were performed to understand these WHS-related symptoms. Our results suggest that specific cell signaling pathways including dopamine receptor, NAD+ nucleosidase activity, and fibroblast growth factor-activated receptor activity are associated with the diverse pathological WHS phenotypes and their symptoms. Additionally, we identified 29 hub-bottlenecks (H-B) nodes with a major role in WHS.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Júlio César Loguercio Leite
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Marcial Francis Galera
- Department of Pediatrics, Universidade Federal do Mato Grosso (UFMT), 78600-000 Cuiabá, MT, Brazil
| | - Lilia Maria de Azevedo Moreira
- Post-Graduate Program in Genetics and Biodiversity, Universidade Federal da Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017; 46:72-80. [PMID: 28363125 DOI: 10.1016/j.ceb.2017.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
Collapse
|
16
|
El Zeneini E, Kamel S, El-Meteini M, Amleh A. Knockdown of COBRA1 decreases the proliferation and migration of hepatocellular carcinoma cells. Oncol Rep 2017; 37:1896-1906. [PMID: 28112367 DOI: 10.3892/or.2017.5390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Cofactor of BRCA1 (COBRA1) is one of the four subunits that make up the negative elongation factor (NELF) complex that is involved in the stalling of RNA polymerase II early during transcription elongation. As such, it regulates the expression of a substantial number of genes involved in cell cycle control, cellular metabolism and DNA repair. With no DNA binding domain, its capacity to modulate gene expression occurs via its ability to interact with different transcription factors. In the field of cancer, its role is not yet fully understood. In this study, we demonstrate the frequent overexpression of COBRA1 along with the remaining NELF subunits in hepatocellular carcinoma (HCC) tissues relative to non-cancerous liver tissues. To elucidate its biological significance in HCC, RNA interference was utilized to silence COBRA1 expression in the HCC cell line, HepG2. Interestingly, COBRA1 knockdown resulted in a significant decrease in cell proliferation and migration, accompanied by a concomitant reduction in the expression of the proliferation marker, Ki-67. Survivin, a proto-oncogene that is commonly upregulated in almost all human malignancies including HCC, was also significantly downregulated following COBRA1 silencing. This suggests that it might be one of the mechanisms by which COBRA1 mediates its role in HCC. Taken together, our data findings collectively highlight an important role for COBRA1 in supporting HCC proliferation and migration.
Collapse
Affiliation(s)
- Eman El Zeneini
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Sarah Kamel
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud El-Meteini
- HPB and Liver Transplant Surgical Department, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt
| | - Asma Amleh
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
17
|
Nair SJ, Zhang X, Chiang HC, Jahid MJ, Wang Y, Garza P, April C, Salathia N, Banerjee T, Alenazi FS, Ruan J, Fan JB, Parvin JD, Jin VX, Hu Y, Li R. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun 2016; 7:10913. [PMID: 26941120 PMCID: PMC4785232 DOI: 10.1038/ncomms10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development. COBRA1 is a BRCA1-binding protein and, as part of the negative elongation factor, regulates RNA polymerase II pausing and transcription elongation. Here, the authors show that tissue-specific deletion of mouse Cobra1 inhibits postnatal mammary gland development and that the mammary defects can be rescued by additional deletion of Brca1 in a DNA repair-independent manner.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Md Jamiul Jahid
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yao Wang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Paula Garza
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Craig April
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Neeraj Salathia
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fahad S Alenazi
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jian-Bing Fan
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
18
|
Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Rep 2015; 13:1444-1455. [PMID: 26549458 DOI: 10.1016/j.celrep.2015.10.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/26/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation regulates the expression of many genes, including oncogenes. Histone deacetylase (HDAC) inhibitors (HDACIs) block elongation, suggesting that HDACs are involved in gene activation. To understand this, we analyzed nascent transcription and elongation factor binding genome-wide after perturbation of elongation with small molecule inhibitors. We found that HDACI-mediated repression requires heat shock protein 90 (HSP90) activity. HDACIs promote the association of RNA polymerase II (RNAP2) and negative elongation factor (NELF), a complex stabilized by HSP90, at the same genomic sites. Additionally, HDACIs redistribute bromodomain-containing protein 4 (BRD4), a key elongation factor involved in enhancer activity. BRD4 binds to newly acetylated sites, and its occupancy at promoters and enhancers is reduced. Furthermore, HDACIs reduce enhancer activity, as measured by enhancer RNA production. Therefore, HDACs are required for limiting acetylation in gene bodies and intergenic regions. This facilitates the binding of elongation factors to properly acetylated promoters and enhancers for efficient elongation.
Collapse
Affiliation(s)
- Celeste B Greer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peng Xie
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - In-Hyun Park
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
19
|
Laitem C, Zaborowska J, Tellier M, Yamaguchi Y, Cao Q, Egloff S, Handa H, Murphy S. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Transcription 2015; 6:79-90. [PMID: 26399478 PMCID: PMC4802788 DOI: 10.1080/21541264.2015.1095269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.
Collapse
Affiliation(s)
- Clélia Laitem
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK.,e Current address: Immunocore Limited; Milton Park , Abingdon , Oxon , UK
| | - Justyna Zaborowska
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Michael Tellier
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Yuki Yamaguchi
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Qingfu Cao
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Sylvain Egloff
- c Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote ; Toulouse , France
| | - Hiroshi Handa
- d Department of Nanoparticle Translational Research ; Tokyo Medical University ; Tokyo , Japan
| | - Shona Murphy
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| |
Collapse
|
20
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
21
|
de Cubas AA, Korpershoek E, Inglada-Pérez L, Letouzé E, Currás-Freixes M, Fernández AF, Comino-Méndez I, Schiavi F, Mancikova V, Eisenhofer G, Mannelli M, Opocher G, Timmers H, Beuschlein F, de Krijger R, Cascon A, Rodríguez-Antona C, Fraga MF, Favier J, Gimenez-Roqueplo AP, Robledo M. DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clin Cancer Res 2015; 21:3020-30. [DOI: 10.1158/1078-0432.ccr-14-2804] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/14/2015] [Indexed: 11/16/2022]
|
22
|
Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, Birrane G, Ebmeier CC, Levine S, Fargo D, Hu G, Taatjes DJ, Calderwood SK. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 2014; 21:876-83. [PMID: 25173174 PMCID: PMC4189995 DOI: 10.1038/nsmb.2878] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/30/2014] [Indexed: 01/19/2023]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a major checkpoint in transcription. An unbiased search for new human proteins that could regulate paused Pol II at the HSPA1B gene identified TRIM28. In vitro analyses indicated HSF1-dependent attenuation of Pol II pausing upon TRIM28 depletion, whereas in vivo data revealed de novo expression of HSPA1B and other known genes regulated by paused Pol II upon TRIM28 knockdown. These results were supported by genome-wide ChIP-sequencing analyses of Pol II occupancy that revealed a global role for TRIM28 in regulating Pol II pausing and pause release. Furthermore, in vivo and in vitro mechanistic studies suggest that transcription-coupled phosphorylation regulates Pol II pause release by TRIM28. Collectively, our findings identify TRIM28 as a new factor that modulates Pol II pausing and transcriptional elongation at a large number of mammalian genes.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Xiaofeng Zheng
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27705, USA
| | - Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27705, USA
| | - Simon T. Dillon
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Shmulik Motola
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gabriel Birrane
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Stuart Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27705, USA
| | - Guang Hu
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27705, USA
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
23
|
Renieri A, Mencarelli MA, Cetta F, Baldassarri M, Mari F, Furini S, Piu P, Ariani F, Dragani TA, Frullanti E. Oligogenic germline mutations identified in early non-smokers lung adenocarcinoma patients. Lung Cancer 2014; 85:168-74. [PMID: 24954872 DOI: 10.1016/j.lungcan.2014.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/28/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVES A polygenic model is commonly assumed for the predisposition to common cancers. With respect to lung cancer, Genome Wide Association Studies (GWAS) have identified three loci at 15q25, 5p15.33, and 6p21. However, the relative risks associated with alleles at these loci are low; in addition, the data are limited to smokers, and have not been quite reproducible. MATERIALS AND METHODS In order to investigate genetic susceptibility we have adopted an entirely novel patient selection strategy. First, we have selected for adenocarcinoma (ADCA) histology only; second, we have selected non-smokers; third we have selected patients who developed ADCA of lung before the age of 60 and who had an older unaffected sib: we have identified 31 such sib-pairs. Among them, we selected two patients with very early age at disease onset (37- and 49-years old), and having a healthy sibling available for genome comparison older than at least 7 years. RESULTS On germline DNA samples of four subjects of two such pairs we have carried out whole exome sequencing. Truncating mutations were detected in 8 'cancer genes' in one affected, and in 5 cancer genes in the other affected subject: but none in the two healthy sibs (p=0.0026). Some of these mutant genes (such as BAG6, SPEN and WISP3) are recognized as major cancer players in lung tumors; others have been previously identified in other human cancers (JAK2, TCEB3C, NELFE, TAF1B, EBLN2), in mouse models (GON4L, NOP58, and RBMX) or in genome-wide association studies (KIAA2018, ZNF311). CONCLUSIONS This study identifies for the first time in non-smokers with lung adenocarcinoma specific sets of germline mutations that, together, may predispose to this tumor.
Collapse
Affiliation(s)
- Alessandra Renieri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Istituto Toscano Tumori, Florence, Italy.
| | | | | | - Margherita Baldassarri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Mari
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Simone Furini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Pietro Piu
- Department of Medicine, Surgery & Neuroscience, University of Siena, Siena, Italy
| | | | | | - Elisa Frullanti
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
24
|
Pan H, Qin K, Guo Z, Ma Y, April C, Gao X, Andrews TG, Bokov A, Zhang J, Chen Y, Weintraub ST, Fan JB, Wang D, Hu Y, Aune GJ, Lindsey ML, Li R. Negative elongation factor controls energy homeostasis in cardiomyocytes. Cell Rep 2014; 7:79-85. [PMID: 24656816 PMCID: PMC4277258 DOI: 10.1016/j.celrep.2014.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 02/19/2014] [Indexed: 01/10/2023] Open
Abstract
Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhanyong Guo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yonggang Ma
- Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Xiaoli Gao
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas G Andrews
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Alex Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jianhua Zhang
- Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Degeng Wang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gregory J Aune
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Merry L Lindsey
- Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Ghosh S, Ashcraft K, Jahid MJ, April C, Ghajar CM, Ruan J, Wang H, Foster M, Hughes DC, Ramirez AG, Huang T, Fan JB, Hu Y, Li R. Regulation of adipose oestrogen output by mechanical stress. Nat Commun 2013; 4:1821. [PMID: 23652009 DOI: 10.1038/ncomms2794] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/22/2013] [Indexed: 01/24/2023] Open
Abstract
Adipose stromal cells are the primary source of local oestrogens in adipose tissue, aberrant production of which promotes oestrogen receptor-positive breast cancer. Here we show that extracellular matrix compliance and cell contractility are two opposing determinants for oestrogen output of adipose stromal cells. Using synthetic extracellular matrix and elastomeric micropost arrays with tunable rigidity, we find that increasing matrix compliance induces transcription of aromatase, a rate-limiting enzyme in oestrogen biosynthesis. This mechanical cue is transduced sequentially by discoidin domain receptor 1, c-Jun N-terminal kinase 1, and phosphorylated JunB, which binds to and activates two breast cancer-associated aromatase promoters. In contrast, elevated cell contractility due to actin stress fibre formation dampens aromatase transcription. Mechanically stimulated stromal oestrogen production enhances oestrogen-dependent transcription in oestrogen receptor-positive tumour cells and promotes their growth. This novel mechanotransduction pathway underlies communications between extracellular matrix, stromal hormone output, and cancer cell growth within the same microenvironment.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Luo M, Lu X, Zhu R, Zhang Z, Chow CC, Li R, Simons SS. A conserved protein motif is required for full modulatory activity of negative elongation factor subunits NELF-A and NELF-B in modifying glucocorticoid receptor-regulated gene induction properties. J Biol Chem 2013; 288:34055-34072. [PMID: 24097989 DOI: 10.1074/jbc.m113.512426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NELF-B is a BRCA1-interacting protein and subunit (with NELF-A, -C/D, and -E) of the human negative elongation factor (NELF) complex, which participates in RNA polymerase II pausing shortly after transcription initiation, especially for synchronized gene expression. We now report new activities of NELF-B and other NELF complex subunits, which are to attenuate glucocorticoid receptor (GR)-mediated gene induction, reduce the partial agonist activity of an antagonist, and increase the EC50 of an agonist during nonsynchronized expression of exogenous and endogenous reporters. Stable knockdown of endogenous NELF-B has the opposite effects on an exogenous gene. The GR ligand-binding domain suffices for these biological responses. ChIP assays reveal that NELF-B diminishes GR recruitment to promoter regions of two endogenous genes. Using a new competition assay, NELF-A and NELF-B are each shown to act independently as competitive decelerators at two steps after the site of GR action and before or at the site of reporter gene activity. A common motif in each NELF was identified that is required for full activity of both NELF-A and NELF-B. These studies allow us to position the actions of two new modulators of GR-regulated transactivation, NELF-A and NELF-B, relative to other factors in the overall gene induction sequence.
Collapse
Affiliation(s)
- Min Luo
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Rong Zhu
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Zhenhuan Zhang
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Carson C Chow
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Rong Li
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas 78229
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
27
|
Andersen EF, Carey JC, Earl DL, Corzo D, Suttie M, Hammond P, South ST. Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome. Eur J Hum Genet 2013; 22:464-70. [PMID: 23963300 DOI: 10.1038/ejhg.2013.192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/18/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a complex genetic disorder caused by the loss of genomic material from the short arm of chromosome 4. Genotype-phenotype correlation studies indicated that the loss of genes within 4p16.3 is necessary for expression of the core features of the phenotype. Within this region, haploinsufficiency of the genes WHSC1 and LETM1 is thought to be a major contributor to the pathogenesis of WHS. We present clinical findings for three patients with relatively small (<400 kb) de novo interstitial deletions that overlap WHSC1 and LETM1. 3D facial analysis was performed for two of these patients. Based on our findings, we propose that hemizygosity of WHSC1 and LETM1 is associated with a clinical phenotype characterized by growth deficiency, feeding difficulties, and motor and speech delays. The deletion of additional genes nearby WHSC1 and LETM1 does not result in a marked increase in the severity of clinical features, arguing against their haploinsufficiency. The absence of seizures and typical WHS craniofacial findings in our cohort suggest that deletion of distinct or additional 4p16.3 genes is necessary for expression of these features. Altogether, these results show that although loss-of-function for WHSC1 and/or LETM1 contributes to some of the features of WHS, deletion of additional genes is required for the full expression of the phenotype, providing further support that WHS is a contiguous gene deletion disorder.
Collapse
Affiliation(s)
- Erica F Andersen
- 1] Cytogenetics Department, ARUP Laboratories, Salt Lake City, UT, USA [2] Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John C Carey
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Dawn L Earl
- Department of Genetic Medicine, Division of Medical Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Deyanira Corzo
- Division of Clinical Genetics, Boston Children's Hospital, Boston, MA, USA
| | - Michael Suttie
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK
| | - Peter Hammond
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK
| | - Sarah T South
- 1] Cytogenetics Department, ARUP Laboratories, Salt Lake City, UT, USA [2] Department of Pathology, University of Utah, Salt Lake City, UT, USA [3] Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
28
|
BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol Cell Biol 2013; 33:2497-507. [PMID: 23589332 DOI: 10.1128/mcb.01180-12] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase II (Pol II) and the pausing complex, NELF and DSIF, are detected near the transcription start site (TSS) of many active and silent genes. Active transcription starts when the pause release factor P-TEFb is recruited to initiate productive elongation. However, the mechanism of P-TEFb recruitment and regulation of NELF/DSIF during transcription is not fully understood. We investigated this question in interferon (IFN)-stimulated transcription, focusing on BRD4, a BET family protein that interacts with P-TEFb. Besides P-TEFb, BRD4 binds to acetylated histones through the bromodomain. We found that BRD4 and P-TEFb, although not present prior to IFN treatment, were robustly recruited to IFN-stimulated genes (ISGs) after stimulation. Likewise, NELF and DSIF prior to stimulation were hardly detectable on ISGs, which were strongly recruited after IFN treatment. A shRNA-based knockdown assay of NELF revealed that it negatively regulates the passage of Pol II and DSIF across the ISGs during elongation, reducing total ISG transcript output. Analyses with a BRD4 small-molecule inhibitor showed that IFN-induced recruitment of P-TEFb and NELF/DSIF was under the control of BRD4. We suggest a model where BRD4 coordinates both positive and negative regulation of ISG elongation.
Collapse
|
29
|
Xu J, Grant G, Sabin LR, Gordesky-Gold B, Yasunaga A, Tudor M, Cherry S. Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila. Cell Host Microbe 2013; 12:531-43. [PMID: 23084920 DOI: 10.1016/j.chom.2012.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 08/31/2012] [Indexed: 12/21/2022]
Abstract
Innate immune responses are characterized by precise gene expression whereby gene subsets are temporally induced to limit infection, although the mechanisms involved are incompletely understood. We show that antiviral immunity in Drosophila requires the transcriptional pausing pathway, including negative elongation factor (NELF) that pauses RNA polymerase II (Pol II) and positive elongation factor b (P-TEFb), which releases paused Pol II to produce full-length transcripts. We identify a set of genes that is rapidly transcribed upon arbovirus infection, including components of antiviral pathways (RNA silencing, autophagy, JAK/STAT, Toll, and Imd) and various Toll receptors. Many of these genes require P-TEFb for expression and exhibit pausing-associated chromatin features. Furthermore, transcriptional pausing is critical for antiviral immunity in insects because NELF and P-TEFb are required to restrict viral replication in adult flies and vector mosquito cells. Thus, transcriptional pausing primes virally induced genes to facilitate rapid gene induction and robust antiviral responses.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Müller Glia Cells Activation in Rat Retina After Optic Nerve Injury: Spatiotemporal Correlation with Transcription Initiation Factor IIB. J Mol Neurosci 2013; 51:37-46. [DOI: 10.1007/s12031-012-9941-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
|
31
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
32
|
Lloret-Llinares M, Pérez-Lluch S, Rossell D, Morán T, Ponsa-Cobas J, Auer H, Corominas M, Azorín F. dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes. Nucleic Acids Res 2012; 40:9493-505. [PMID: 22904080 PMCID: PMC3479210 DOI: 10.1093/nar/gks773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.
Collapse
Affiliation(s)
- Marta Lloret-Llinares
- Institute of Molecular Biology of Barcelona, CSIC and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Muramatsu T. Basigin: a multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin Ther Targets 2012; 16:999-1011. [PMID: 22880881 DOI: 10.1517/14728222.2012.711818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria is one of the most serious infectious diseases at the beginning of the twenty-first century. Various membrane proteins are present in Plasmodium falciparum, the principal malaria pathogen. Among them, P. falciparum reticulocyte-binding protein homolog 5 (PfRh5) is indispensable for erythrocyte invasion, and has become a promising vaccine target. Basigin (CD147, EMMPRIN) has been identified as the erythrocyte receptor of PfRh5, and shown to be essential for the invasion of multiple strains of the pathogen. AREAS COVERED Fundamental information on basigin is fully described, including structure as a member of the immunoglobulin superfamily and function based on its interactions with external molecules and with proteins within the same membrane. The involvement of basigin in many diseases such as cancer and inflammatory diseases is also described, the implication being that anti-basigin therapy might be helpful to treat certain illnesses. Finally, PfRh5 as a vaccine candidate is covered, and its interaction with basigin is evaluated. EXPERT OPINION The identification of basigin, a well-characterized membrane protein, as a receptor essential for malaria infection will contribute significantly to prevention and treatment of malaria. As an example, anti-basigin therapy can be considered an alternative approach to the treatment of drug-resistant malaria.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Aichi Gakuin University, Faculty of Psychological and Physical Science, Department of Health Science, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan.
| |
Collapse
|
34
|
Gilchrist DA, Fromm G, dos Santos G, Pham LN, McDaniel IE, Burkholder A, Fargo DC, Adelman K. Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev 2012; 26:933-44. [PMID: 22549956 DOI: 10.1101/gad.187781.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of many metazoan genes is regulated through controlled release of RNA polymerase II (Pol II) that has paused during early transcription elongation. Pausing is highly enriched at genes in stimulus-responsive pathways, where it has been proposed to poise downstream targets for rapid gene activation. However, whether this represents the major function of pausing in these pathways remains to be determined. To address this question, we analyzed pausing within several stimulus-responsive networks in Drosophila and discovered that paused Pol II is much more prevalent at genes encoding components and regulators of signal transduction cascades than at inducible downstream targets. Within immune-responsive pathways, we found that pausing maintains basal expression of critical network hubs, including the key NF-κB transcription factor that triggers gene activation. Accordingly, loss of pausing through knockdown of the pause-inducing factor NELF leads to broadly attenuated immune gene activation. Investigation of murine embryonic stem cells revealed that pausing is similarly widespread at genes encoding signaling components that regulate self-renewal, particularly within the MAPK/ERK pathway. We conclude that the role of pausing goes well beyond poising-inducible genes for activation and propose that the primary function of paused Pol II is to establish basal activity of signal-responsive networks.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu S, Tao Y. Interplay between chromatin modifications and paused RNA polymerase II in dynamic transition between stalled and activated genes. Biol Rev Camb Philos Soc 2012; 88:40-8. [PMID: 22765520 DOI: 10.1111/j.1469-185x.2012.00237.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dynamic interplay between chromatin modification (e.g. DNA methylation) and RNA polymerase II (Pol II) plays a critical role in gene transcription during stem cell development, establishment, and maintenance and in the cellular response to extracellular stimuli such as those that cause DNA damage. Pol II is recruited to the promoter-proximal regions of numerous inactive genes at high conentrations in a process called Pol II stalling. This is a key process prior to gene activation and it involves many interacting factors. Chromatin modification including nucleosome position is dependent on chromatin structure. Stalled genes create a particular structural conformation of chromatin, which acts as a target for chromatin modification. In this way, Pol II stalling may be regarded as a type of signal for chromatin modification in these regions during the dynamic transition between stalled and activated genes.
Collapse
Affiliation(s)
- Shuang Liu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | | |
Collapse
|
36
|
Zhang Z, Ma X, Zhang MQ. Bivalent-like chromatin markers are predictive for transcription start site distribution in human. PLoS One 2012; 7:e38112. [PMID: 22768038 PMCID: PMC3387189 DOI: 10.1371/journal.pone.0038112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/01/2012] [Indexed: 11/24/2022] Open
Abstract
Deep sequencing of 5′ capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome organization, and histone modifications, to predict the distribution of transcription start sites (TSS). Importantly, models including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found to be much more predictive than models with only single-type histone modification markers, indicating the possibility of “bivalent-like” epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader application range.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Molecular Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- Center for Computational Biology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Laboratory of Disease Genomics and Personalized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaotu Ma
- Department of Molecular Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Michael Q. Zhang
- Department of Molecular Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Kerzendorfer C, Hannes F, Colnaghi R, Abramowicz I, Carpenter G, Vermeesch JR, O'Driscoll M. Characterizing the functional consequences of haploinsufficiency of NELF-A (WHSC2) and SLBP identifies novel cellular phenotypes in Wolf-Hirschhorn syndrome. Hum Mol Genet 2012; 21:2181-93. [PMID: 22328085 DOI: 10.1093/hmg/dds033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion disorder associated with the distal part of the short arm of chromosome 4 (4p16.3). Employing a unique panel of patient-derived cell lines with differing-sized 4p deletions, we provide evidence that haploinsufficiency of SLBP and/or WHSC2 (NELF-A) contributes to several novel cellular phenotypes of WHS, including delayed progression from S-phase into M-phase, reduced DNA replication in asynchronous culture and altered higher order chromatin assembly. The latter is evidenced by reduced histone-chromatin association, elevated levels of soluble chaperone-bound histone H3 and increased sensitivity to micrococcal nuclease digestion in WHS patient-derived cells. We also observed increased camptothecin-induced inhibition of DNA replication and hypersensitivity to killing. Our work provides a novel pathogenomic insight into the aetiology of WHS by describing it, for the first time, as a disorder of impaired chromatin reorganization. Delayed cell-cycle progression and impaired DNA replication likely underlie or contribute to microcephaly, pre- and postnatal growth retardation, which constitute the core clinical features of WHS.
Collapse
Affiliation(s)
- Claudia Kerzendorfer
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
ELL facilitates RNA polymerase II pause site entry and release. Nat Commun 2012; 3:633. [PMID: 22252557 PMCID: PMC3272570 DOI: 10.1038/ncomms1652] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/16/2011] [Indexed: 01/08/2023] Open
Abstract
Transcription is a multi-stage process that coordinates several steps within the transcription cycle including chromatin reorganization, RNA polymerase II recruitment, initiation, promoter clearance and elongation. Recent advances have identified the super elongation complex, containing the eleven-nineteen lysine-rich leukaemia (ELL) protein, as a key regulator of transcriptional elongation. Here we show that ELL has a diverse and kinetically distinct role before its assembly into the super elongation complex by stabilizing Pol II recruitment/initiation and entry into the pause site. Loss of ELL destabilizes the pre-initiation complexes and results in disruption of early elongation and promoter proximal chromatin structure before recruitment of AFF4 and other super elongation complex components. These changes result in significantly reduced transcriptional activation of rapidly induced genes. Thus, ELL has an early and essential role during rapid high-amplitude gene expression that is required for both Pol II pause site entry and release.
Collapse
|
39
|
Sun J, Pan H, Lei C, Yuan B, Nair SJ, April C, Parameswaran B, Klotzle B, Fan JB, Ruan J, Li R. Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth. J Biol Chem 2011; 286:36248-57. [PMID: 21865163 DOI: 10.1074/jbc.m111.269167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Many mammalian genes are occupied by paused RNA polymerase II (pol II) in the promoter-proximal region on both sides of the transcription start site. However, the impact of pol II pausing on gene expression and cell biology is not fully understood. In this study, we used a Cre-Lox system to conditionally knock out the b subunit of mouse negative elongation factor (Nelf-b), a key pol II-pausing factor, in mouse embryonic fibroblasts. We found that Nelf-b was associated with the promoter-proximal region of the majority of expressed genes, yet genetic ablation of Nelf-b only affected the steady-state mRNA levels of a small percentage of the Nelf-b-associated genes. Interestingly, Nelf-b deletion also increased levels of transcription start site upstream transcripts at multiple negative elongation factor-associated genes. The direct target genes of Nelf-b were highly enriched with those involved in the control of cell growth and cell death. Correspondingly, Nelf-b knock-out mouse embryonic fibroblasts exhibited slower progression from quiescence to proliferation, as well as in a cycling cell population. Furthermore, Nelf-b deletion also resulted in increased apoptosis. Thus, the genetic and genomic studies provide new physiological and molecular insight into Nelf-mediated pol II pausing.
Collapse
Affiliation(s)
- Jianlong Sun
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miller HB, Robinson TJ, Gordân R, Hartemink AJ, Garcia-Blanco MA. Identification of Tat-SF1 cellular targets by exon array analysis reveals dual roles in transcription and splicing. RNA (NEW YORK, N.Y.) 2011; 17:665-674. [PMID: 21282347 PMCID: PMC3062177 DOI: 10.1261/rna.2462011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
Tat specific factor 1 (Tat-SF1) interacts with components of both the transcription and splicing machineries and has been classified as a transcription-splicing factor. Although its function as an HIV-1 dependency factor has been investigated, relatively little is known about the cellular functions of Tat-SF1. To identify target genes of Tat-SF1, we utilized a combination of RNAi and exon-specific microarrays. These arrays, which survey genome-wide changes in transcript and individual exon levels, revealed 450 genes with transcript level changes upon Tat-SF1 depletion. Strikingly, 98% of these target genes were down-regulated upon depletion, indicating that Tat-SF1 generally activates gene expression. We also identified 89 genes that showed differential exon level changes after Tat-SF1 depletion. The 89 genes showed evidence of many different types of alternative exon use consistent with the regulation of transcription initiation sites and RNA processing. Minimal overlap between genes with transcript-level and exon-level changes suggests that Tat-SF1 does not functionally couple transcription and splicing. Biological processes significantly enriched with transcript- and exon-level targets include the cell cycle and nucleic acid metabolism; the insulin signaling pathway was enriched with Tat-SF1 transcript-level targets but not exon-level targets. Additionally, a hexamer, ATGCCG, was over-represented in the promoter region of genes showing changes in transcription initiation upon Tat-SF1 depletion. This may represent a novel motif that Tat-SF1 recognizes during transcription. Together, these findings suggest that Tat-SF1 functions independently in transcription and splicing of cellular genes.
Collapse
Affiliation(s)
- Heather B Miller
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
41
|
SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol Cell Biol 2011; 31:1594-609. [PMID: 21321083 DOI: 10.1128/mcb.00524-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many human genes exhibit evidence of initiated RNA polymerase II (Pol II) at their promoters, despite a lack of significant full-length transcript. Such genes exhibit promoter-proximal "pausing," wherein initiated Pol II accumulates just downstream of the transcription start site due to a rate-limiting step mediating the transition to elongation. The mechanisms that regulate the escape of Pol II from pausing and the relationship to chromatin structure remain incompletely understood. Recently, we showed that CpG island hypermethylation and epigenetic silencing of TMS1/ASC in human breast cancers are accompanied by a local shift from histone H4 lysine 16 acetylation (H4K16Ac) to H4 lysine 20 trimethylation (H4K20me3). Here, we show that hMOF-mediated H4K16Ac and SUV420H2-mediated H4K20me3 play opposing roles in the regulation of Pol II pausing. We found that H4K16Ac promoted the release of Pol II from pausing through the recruitment of BRD4 and pTEFb. Aberrant methylation of CpG island DNA blocked Pol II recruitment to gene promoters. Whereas the inhibition of DNA methylation allowed for the reassociation and initiation of Pol II at the TMS1 promoter, Pol II remained paused in the presence of H4K20me3. Combined inhibition of H4K20me3 and DNA methylation resulted in the rerecruitment of hMOF and subsequent H4K16Ac, release of Pol II into active elongation, and synergistic reactivation of TMS1 expression. Marking by H4K20me3 was not restricted to TMS1 but also occurred at other genes independently of DNA methylation, where it similarly imposed a block to Pol II promoter escape through a mechanism that involved the local inhibition of H4K16Ac. These data indicate that H4K20me3 invokes gene repression by antagonizing hMOF-mediated H4K16Ac and suggest that overcoming Pol II pausing might be a rate-limiting step in achieving tumor suppressor gene reactivation in cancer therapy.
Collapse
|
42
|
Li J, Gilmour DS. Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 2011; 21:231-5. [PMID: 21324670 DOI: 10.1016/j.gde.2011.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/18/2011] [Indexed: 12/18/2022]
Abstract
The advent of methods for mapping the location of specific proteins across genomes is substantially enlightening our understanding of gene regulation. One recent discovery is that Pol II is concentrated at the 5' end of thousands of genes in mammalian and Drosophila cells. Before this, much research had focused on understanding how sequence-specific, DNA-binding proteins orchestrate the actions of regulators of chromatin structure and the general transcriptional machinery to control transcription initiation. The concentration of Pol II at the 5' ends of genes indicates that key steps regulating transcription occur after Pol II has associated with a gene's promoter.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | | |
Collapse
|