1
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
2
|
Doğru EK, Sakallı T, Liu G, Sayers Z, Surmeli NB. Small angle X-ray scattering analysis of thermophilic cytochrome P450 CYP119 and the effects of the N-terminal histidine tag. Int J Biol Macromol 2024; 265:131026. [PMID: 38522710 DOI: 10.1016/j.ijbiomac.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.
Collapse
Affiliation(s)
- Ekin Kestevur Doğru
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Tuğçe Sakallı
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Goksin Liu
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Zehra Sayers
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Nur Basak Surmeli
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye.
| |
Collapse
|
3
|
Rational design of thermophilic CYP119 for progesterone hydroxylation by in silico mutagenesis and docking screening. J Mol Graph Model 2023; 118:108323. [PMID: 36137435 DOI: 10.1016/j.jmgm.2022.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Steroid-based chemicals can affect the metabolism, immune functions, and development of sexual characteristics. Because of these effects, steroid derivatives are widely used in the pharmaceutical industry. Progesterone is a steroid-based hormone that mainly controls the ovulation period of women but is also a precursor molecule for the synthesis of important hormones like testosterone and cortisone. Cytochrome P450 (CYP) enzymes are important for the production of hydroxyprogesterones in the industry since they can catalyze regio- and enantioselective hydroxylation reactions. Although human CYP enzymes can catalyze hydroxyprogesterone synthesis with high selectivity, these enzymes are membrane bound, which limits their application for industrial production. CYP119 is a soluble and thermophilic enzyme from the archaea Sulfolobus acidocaldarius. Even though the native substrate of the enzyme is not known, CYP119 can catalyze styrene epoxidation, lauric acid hydroxylation, and Amplex®Red peroxidation. In this work, an in silico mutagenesis approach was used to design CYP119 mutants with high progesterone affinity. Energy scores of progesterone docking simulations were used for the design and elimination of single, double, and triple mutants of CYP119. Among designed 674 mutants, five of them match the criteria for progesterone hydroxylation. The most common mutation of these five mutants, L69G mutant was analyzed using independent molecular dynamics (MD) simulations in comparison with the wild-type (WT) enzyme. L69G CYP119, was expressed and isolated from Escherichia coli; it showed 800-fold higher affinity for progesterone compared to WT CYP119. L69G CYP119 also catalyzed progesterone hydroxylation. The novel designed enzyme L69G CYP119 is a potential versatile biocatalyst for progesterone hydroxylation that is expected to be stable under industrial production conditions.
Collapse
|
4
|
Campomizzi CS, Ghanatios GE, Estrada DF. 19F-NMR reveals substrate specificity of CYP121A1 in Mycobacterium tuberculosis. J Biol Chem 2021; 297:101287. [PMID: 34634307 PMCID: PMC8571521 DOI: 10.1016/j.jbc.2021.101287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochromes P450 are versatile enzymes that function in endobiotic and xenobiotic metabolism and undergo meaningful structural changes that relate to their function. However, the way in which conformational changes inform the specific recognition of the substrate is often unknown. Here, we demonstrate the utility of fluorine (19F)-NMR spectroscopy to monitor structural changes in CYP121A1, an essential enzyme from Mycobacterium tuberculosis. CYP121A1 forms functional dimers that catalyze the phenol-coupling reaction of the dipeptide dicyclotyrosine. The thiol-reactive compound 3-bromo-1,1,1-trifluoroacetone was used to label an S171C mutation of the enzyme FG loop, which is located adjacent to the homodimer interface. Substrate titrations and inhibitor-bound 19F-NMR spectra indicate that ligand binding reduces conformational heterogeneity at the FG loop in both the dimer and in an engineered monomer of CYP121A1. However, only the dimer was found to promote a substrate-bound conformation that was preexisting in the substrate-free spectra, thus confirming a role for the dimer interface in dicyclotyrosine recognition. Moreover, 19F-NMR spectra in the presence of substrate analogs indicate the hydrogen-bonding feature of the dipeptide aromatic side chain as a dicyclotyrosine specificity criterion. This study demonstrates the utility of 19F-NMR as applied to a multimeric cytochrome P450, while also revealing mechanistic insights for an essential M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - George E Ghanatios
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
5
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
6
|
Shi X, Chuo SW, Liou SH, Goodin DB. Double Electron–Electron Resonance Shows That the Substrate but Not the Inhibitors Causes Disorder in the F/G Loop of CYP119 in Solution. Biochemistry 2020; 59:1823-1831. [DOI: 10.1021/acs.biochem.0c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoxiao Shi
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Shih-Wei Chuo
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Shu-Hao Liou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David B. Goodin
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Quiroga I, Scior T. Induced fit for cytochrome P450 3A4 based on molecular dynamics. ADMET AND DMPK 2019; 7:252-266. [PMID: 35359616 PMCID: PMC8963583 DOI: 10.5599/admet.729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
The present study aims at numerically describing to what extent substrate - enzyme complexes in solution may change over time as a natural process of conformational changes for a liganded enzyme in comparison to those movements which occur independently from substrate interaction, i.e. without a ligand. To this end, we selected structurally known pairs of liganded / unliganded CYP450 3A4 enzymes with different geometries hinting at induced fit events. We carried out molecular dynamics simulations (MD) comparing the trajectories in a "cross-over" protocol: (i) we added the ligand to the unliganded crystal form which should adopt geometries similar to the known geometry of the liganded crystal structure during MD, and - conversely - (ii) we removed the bound ligand form the known liganded complex to test if a geometry similar to the known unliganded (apo-) form can be adopted during MD. To compare continues changes we measured root means square deviations and frequencies. Results for case (i) hint at larger conformational changes required for accepting the substrate during its approach to final position - in contrast to case (ii) when mobility is fairly reduced by ligand binding (strain energy). In conclusion, a larger conformational sampling prior to ligand binding and the freezing-in (rigidity) of conformations for bound ligands can be interpreted as two conditions linked to induced-fit.
Collapse
Affiliation(s)
- Israel Quiroga
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Thomas Scior
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| |
Collapse
|
8
|
|
9
|
Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat Commun 2019; 10:2222. [PMID: 31110237 PMCID: PMC6527550 DOI: 10.1038/s41467-019-09691-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/08/2022] Open
Abstract
Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. Enzyme substrates and products often diffuse too rapidly to assess the catalytic implications of these movements. Here, the authors characterise the structural basis of product and substrate diffusion for an exo-hydrolase and discover a substrate-product assisted processive catalytic mechanism.
Collapse
|
10
|
Ariza Márquez YV, Briceño I, Aristizábal F, Niño LF, Yosa Reyes J. Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen. Sci Rep 2019; 9:2521. [PMID: 30792473 PMCID: PMC6385267 DOI: 10.1038/s41598-018-38340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could alter enzyme activity. We evaluated SNPs in patients from Colombia in South America who were receiving tamoxifen treatment for breast cancer. Allelic diversity in the CYP2D6 gene was found in the studied population, with two patients displaying the poor-metaboliser phenotype. Molecular dynamics and trajectory analyses were performed for CYP2D6 from these two patients, comparing it with the common allelic form (CYP2D6*1). Although we found no significant structural change in the protein, its dynamics differ significantly from those of CYP2D6*1, the effect of such differential dynamics resulting in an inefficient enzyme with serious implications for tamoxifen-treated patients, increasing the risk of disease relapse and ineffective treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal/drug therapy
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/pathology
- Chemotherapy, Adjuvant
- Cytochrome P-450 CYP2D6/genetics
- Cytochrome P-450 CYP2D6/metabolism
- Female
- Genotype
- Humans
- Inactivation, Metabolic/genetics
- Middle Aged
- Pharmacogenomic Variants/genetics
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Tamoxifen/administration & dosage
- Tamoxifen/adverse effects
- Tamoxifen/metabolism
Collapse
Affiliation(s)
- Yeimy Viviana Ariza Márquez
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Ignacio Briceño
- Universidad de la Sabana, Facultad de Medicina, Bogota, 140013, Colombia
- Pontificia Universidad Javeriana, Facultad de Medicina, Instituto de Genética Humana IGH, Bogota, 110231, Colombia
| | - Fabio Aristizábal
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Luis Fernando Niño
- Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial, Bogota, 111321, Colombia
| | - Juvenal Yosa Reyes
- Universidad Simón Bolivar, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Barranquilla, 080002, Colombia.
| |
Collapse
|
11
|
Parisi G, Montemiglio LC, Giuffrè A, Macone A, Scaglione A, Cerutti G, Exertier C, Savino C, Vallone B. Substrate-induced conformational change in cytochrome P450 OleP. FASEB J 2018; 33:1787-1800. [PMID: 30207799 DOI: 10.1096/fj.201800450rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regulation of cytochrome P450 activity is often achieved by structural transitions induced by substrate binding. We describe the conformational transition experienced upon binding by the P450 OleP, an epoxygenase involved in oleandomycin biosynthesis. OleP bound to the substrate analog 6DEB crystallized in 2 forms: one with an ensemble of open and closed conformations in the asymmetric unit and another with only the closed conformation. Characterization of OleP-6DEB binding kinetics, also using the P450 inhibitor clotrimazole, unveiled a complex binding mechanism that involves slow conformational rearrangement with the accumulation of a spectroscopically detectable intermediate where 6DEB is bound to open OleP. Data reported herein provide structural snapshots of key precatalytic steps in the OleP reaction and explain how structural rearrangements induced by substrate binding regulate activity.-Parisi, G., Montemiglio, L. C., Giuffrè, A., Macone, A., Scaglione, A., Cerutti, G., Exertier, C., Savino, C., Vallone, B. Substrate-induced conformational change in cytochrome P450 OleP.
Collapse
Affiliation(s)
- Giacomo Parisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Linda Celeste Montemiglio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Alberto Macone
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Antonella Scaglione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Gabriele Cerutti
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Beatrice Vallone
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
12
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
13
|
Lampe JN. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Front Pharmacol 2017; 8:521. [PMID: 28848438 PMCID: PMC5550701 DOI: 10.3389/fphar.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450's (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.
Collapse
Affiliation(s)
- Jed N Lampe
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical CenterKansas City, MO, United States
| |
Collapse
|
14
|
Dorner ME, McMunn RD, Bartholow TG, Calhoon BE, Conlon MR, Dulli JM, Fehling SC, Fisher CR, Hodgson SW, Keenan SW, Kruger AN, Mabin JW, Mazula DL, Monte CA, Olthafer A, Sexton AE, Soderholm BR, Strom AM, Hati S. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis. Protein Sci 2015; 24:1495-507. [PMID: 26130403 DOI: 10.1002/pro.2737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/18/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.
Collapse
Affiliation(s)
- Mariah E Dorner
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ryan D McMunn
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Thomas G Bartholow
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Brecken E Calhoon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Michelle R Conlon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Jessica M Dulli
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Samuel C Fehling
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Cody R Fisher
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shane W Hodgson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shawn W Keenan
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alyssa N Kruger
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Justin W Mabin
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Daniel L Mazula
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Christopher A Monte
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Augustus Olthafer
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ashley E Sexton
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Beatrice R Soderholm
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alexander M Strom
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| |
Collapse
|
15
|
Basudhar D, Madrona Y, Kandel S, Lampe JN, Nishida CR, de Montellano PRO. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography. J Biol Chem 2015; 290:10000-17. [PMID: 25670859 DOI: 10.1074/jbc.m114.627935] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 01/04/2023] Open
Abstract
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.
Collapse
Affiliation(s)
- Debashree Basudhar
- From the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | - Yarrow Madrona
- From the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | | | - Jed N Lampe
- the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Clinton R Nishida
- From the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | - Paul R Ortiz de Montellano
- From the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158,
| |
Collapse
|
16
|
de Waal PW, Sunden KF, Furge LL. Molecular dynamics of CYP2D6 polymorphisms in the absence and presence of a mechanism-based inactivator reveals changes in local flexibility and dominant substrate access channels. PLoS One 2014; 9:e108607. [PMID: 25286176 PMCID: PMC4186923 DOI: 10.1371/journal.pone.0108607] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼ 15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities.
Collapse
Affiliation(s)
- Parker W. de Waal
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
| | - Kyle F. Sunden
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
| | - Laura Lowe Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kolev JN, Zaengle JM, Ravikumar R, Fasan R. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis. Chembiochem 2014; 15:1001-10. [PMID: 24692265 DOI: 10.1002/cbic.201400060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Indexed: 01/28/2023]
Abstract
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts.
Collapse
Affiliation(s)
- Joshua N Kolev
- Department of Chemistry, University of Rochester, Hutchison Hall, Rochester, NY 14620 (USA)
| | | | | | | |
Collapse
|
18
|
Estrada DF, Skinner AL, Laurence JS, Scott EE. Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. J Biol Chem 2014; 289:14310-20. [PMID: 24671419 DOI: 10.1074/jbc.m114.560144] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Crystallographic studies of different membrane cytochrome P450 enzymes have provided examples of distinct structural conformations, suggesting protein flexibility. It has been speculated that conformational selection is an integral component of substrate recognition and access, but direct evidence of such substate interconversion has thus far remained elusive. In the current study, solution NMR revealed multiple and exchanging backbone conformations for certain structural features of the human steroidogenic cytochrome P450 17A1 (CYP17A1). This bifunctional enzyme is responsible for pregnenolone C17 hydroxylation, followed by a 17,20-lyase reaction to produce dehydroepiandrosterone, the key intermediate in human synthesis of androgen and estrogen sex steroids. The distribution of CYP17A1 conformational states was influenced by temperature, binding of these two substrates, and binding of the soluble domain of cytochrome b5 (b5). Notably, titration of b5 to CYP17A1·pregnenolone induced a set of conformational states closely resembling those of CYP17A1·17α-hydroxypregnenolone without b5, providing structural evidence consistent with the reported ability of b5 to selectively enhance 17,20-lyase activity. Solution NMR thus revealed a set of conformations likely to modulate human steroidogenesis by CYP17A1, demonstrating that this approach has the potential to make similar contributions to understanding the functions of other membrane P450 enzymes involved in drug metabolism and disease states.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Andria L Skinner
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
19
|
Abstract
Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals (C. elegans and D. melanogaster) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl-transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom;
| |
Collapse
|
20
|
Di Nardo G, Breitner M, Sadeghi SJ, Castrignanò S, Mei G, Di Venere A, Nicolai E, Allegra P, Gilardi G. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy. PLoS One 2013; 8:e82118. [PMID: 24349198 PMCID: PMC3859599 DOI: 10.1371/journal.pone.0082118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/21/2013] [Indexed: 12/29/2022] Open
Abstract
Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for β-sheets from 0.22±0.06 min−1 for the inhibitor-bound enzyme to 0.12±0.02 min−1 for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor-bound forms.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Maximilian Breitner
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Sheila J. Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Silvia Castrignanò
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Giampiero Mei
- Department of Experimental Medicine and Surgery, University of Rome ‘Tor Vergata’, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome ‘Tor Vergata’, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome ‘Tor Vergata’, Italy
| | - Paola Allegra
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
21
|
Vohra S, Musgaard M, Bell SG, Wong LL, Zhou W, Biggin PC. The dynamics of camphor in the cytochrome P450 CYP101D2. Protein Sci 2013; 22:1218-29. [PMID: 23832606 DOI: 10.1002/pro.2309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/09/2023]
Abstract
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate-free) and camphor-soaked forms have open conformations. Furthermore, two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure, one being located in the access channel and the other in a cavity on the surface near the F-helix side of the F-G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor-bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor-bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.
Collapse
Affiliation(s)
- Shabana Vohra
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Ma B, Nussinov R. Selective molecular recognition in amyloid growth and transmission and cross-species barriers. J Mol Biol 2012; 421:172-84. [PMID: 22119878 PMCID: PMC6407624 DOI: 10.1016/j.jmb.2011.11.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
Mutual conformational selection and population shift followed by minor induced-fit optimization is the key mechanism in biomolecular recognition, and monomers and small oligomers binding to amyloid seeds in fibril growth is a molecular recognition event. Here, we describe amyloid aggregation, preferred species, cross-species barriers and transmission within the broad framework of molecular recognition. Cross-seeding of amyloid species is governed by conformational selection of compatible (complementary) states. If the dominant conformations of two species are similar, they can cross-seed each other; on the other hand, if they are sufficiently different, they will grow into different fibrils, reflecting species barriers. Such a scenario has recently been observed for the tau protein, which has four repeats. While a construct consisting of repeats 1, 3 and 4 can serve as a seed for the entire four-repeat tau segment, the inverse does not hold. On the other hand, the tau protein repeats with the characteristic U-turn shape can cross-seed Alzheimer's amyloid β and, similarly, the islet amyloid polypeptide. Within this framework, we suggest that the so-called "central dogma" of amyloid formation, where aggregation takes place through nonspecific backbone hydrogen bonding interactions, which are common to all peptides and proteins, is a simple reflection of the heterogeneous, polymorphic free-energy landscape of amyloid species. Here, we review available data and make some propositions addressing this key problem. In particular, we argue that recent theoretical and experimental observations support the key role of selective molecular recognition in amyloidosis and in determining cross-species barriers and transmission.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Bell SG, Yang W, Tan ABH, Zhou R, Johnson EOD, Zhang A, Zhou W, Rao Z, Wong LL. The crystal structures of 4-methoxybenzoate bound CYP199A2 and CYP199A4: structural changes on substrate binding and the identification of an anion binding site. Dalton Trans 2012; 41:8703-14. [PMID: 22695988 DOI: 10.1039/c2dt30783a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structures of the 4-methoxybenzoate bound forms of cytochrome P450 enzymes CYP199A2 and CYP199A4 from the Rhodopseudomonas palustris strains CGA009 and HaA2 have been solved. The structures of these two enzymes, which share 86% sequence identity, are very similar though some differences are found on the proximal surface. In these structures the enzymes have a closed conformation, in contrast to the substrate-free form of CYP199A2 where an obvious substrate access channel is observed. The switch from an open to a closed conformation arises from pronounced residue side-chain movements and alterations of ion pair and hydrogen bonding interactions at the entrance of the access channel. A chloride ion bound just inside the protein surface caps the entrance to the active site and protects the substrate and the heme from the external solvent. In both structures the substrate is held in place via hydrophobic and hydrogen bond interactions. The methoxy group is located over the heme iron, accounting for the high activity and selectivity of these enzymes for oxidative demethylation of the substrate. Mutagenesis studies on CYP199A4 highlight the involvement of hydrophobic (Phe185) and hydrophilic (Arg92, Ser95 and Arg243) amino acid residues in the binding of para-substituted benzoates by these enzymes.
Collapse
Affiliation(s)
- Stephen G Bell
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Venditti V, Fawzi NL, Clore GM. An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media. JOURNAL OF BIOMOLECULAR NMR 2012; 52:191-5. [PMID: 22350951 PMCID: PMC3321831 DOI: 10.1007/s10858-012-9606-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/15/2012] [Indexed: 05/28/2023]
Abstract
The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR field. Here, we describe a novel protocol for incorporating unnatural amino acids into fully deuterated proteins using glucose-based media (which are relevant to the production, for example, of amino acid-specific methyl-labeled proteins used in the study of large molecular weight systems). The method consists of pre-induction of the pEVOL plasmid encoding the tRNA/aminoacyl-tRNA synthetase pair in a rich, H(2)O-based medium prior to exchanging the culture into a D(2)O-based medium. Our protocol results in high level of isotopic incorporation (~95%) and retains the high expression level of the target protein observed in Luria-Bertani medium.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Nicolas L. Fawzi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
25
|
Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 2012; 52:617-48. [PMID: 22339582 PMCID: PMC3317594 DOI: 10.1021/ci200542m] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Metabolism of xenobiotics remains a central challenge
for the discovery
and development of drugs, cosmetics, nutritional supplements, and
agrochemicals. Metabolic transformations are frequently related to
the incidence of toxic effects that may result from the emergence
of reactive species, the systemic accumulation of metabolites, or
by induction of metabolic pathways. Experimental investigation of
the metabolism of small organic molecules is particularly resource
demanding; hence, computational methods are of considerable interest
to complement experimental approaches. This review provides a broad
overview of structure- and ligand-based computational methods for
the prediction of xenobiotic metabolism. Current computational approaches
to address xenobiotic metabolism are discussed from three major perspectives:
(i) prediction of sites of metabolism (SOMs), (ii) elucidation of
potential metabolites and their chemical structures, and (iii) prediction
of direct and indirect effects of xenobiotics on metabolizing enzymes,
where the focus is on the cytochrome P450 (CYP) superfamily of enzymes,
the cardinal xenobiotics metabolizing enzymes. For each of these domains,
a variety of approaches and their applications are systematically
reviewed, including expert systems, data mining approaches, quantitative
structure–activity relationships (QSARs), and machine learning-based
methods, pharmacophore-based algorithms, shape-focused techniques,
molecular interaction fields (MIFs), reactivity-focused techniques,
protein–ligand docking, molecular dynamics (MD) simulations,
and combinations of methods. Predictive metabolism is a developing
area, and there is still enormous potential for improvement. However,
it is clear that the combination of rapidly increasing amounts of
available ligand- and structure-related experimental data (in particular,
quantitative data) with novel and diverse simulation and modeling
approaches is accelerating the development of effective tools for
prediction of in vivo metabolism, which is reflected by the diverse
and comprehensive data sources and methods for metabolism prediction
reviewed here. This review attempts to survey the range and scope
of computational methods applied to metabolism prediction and also
to compare and contrast their applicability and performance.
Collapse
Affiliation(s)
- Johannes Kirchmair
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 2012; 13:168-82. [DOI: 10.1038/nrm3286] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Su Z, Chen X, Horner JH, Newcomb M. Rate-Controlling Isomerizations in Fatty Acid Oxidations by a Cytochrome P450 Compound I. Chemistry 2012; 18:2472-6. [DOI: 10.1002/chem.201103170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/14/2011] [Indexed: 11/11/2022]
|
28
|
Abstract
Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).
Collapse
|
29
|
Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR. Future Med Chem 2011; 2:1451-68. [PMID: 21103389 DOI: 10.4155/fmc.10.229] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of pharmaceuticals by P450s is a major concern during the design of new drug candidates. Determining the interactions between P450s and compounds of very diverse structures is complicated by the variability in P450-ligand interactions. Understanding the protein structural elements and the chemical attributes of ligands that dictate their orientation in the P450 active site will aid in the development of effective and safe therapeutic agents. The goal of this review is to describe P450-ligand interactions from two perspectives. The first is the various structural elements that microsomal P450s have at their disposal to assume the different conformations observed in X-ray crystal structures. The second is P450-ligand dynamics analyzed by NMR relaxation studies.
Collapse
|
30
|
Atkins WM, Qian H. Stochastic ensembles, conformationally adaptive teamwork, and enzymatic detoxification. Biochemistry 2011; 50:3866-72. [PMID: 21473615 DOI: 10.1021/bi200275r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been appreciated for a long time that enzymes exist as conformational ensembles throughout multiple stages of the reactions they catalyze, but there is renewed interest in the functional implications. The energy landscape that results from conformationlly diverse poteins is a complex surface with an energetic topography in multiple dimensions, even at the transition state(s) leading to product formation, and this represents a new paradigm. At the same time there has been renewed interest in conformational ensembles, a new paradigm concerning enzyme function has emerged, wherein catalytic promiscuity has clear biological advantages in some cases. "Useful", or biologically functional, promiscuity or the related behavior of "multifunctionality" can be found in the immune system, enzymatic detoxification, signal transduction, and the evolution of new function from an existing pool of folded protein scaffolds. Experimental evidence supports the widely held assumption that conformational heterogeneity promotes functional promiscuity. The common link between these coevolving paradigms is the inherent structural plasticity and conformational dynamics of proteins that, on one hand, lead to complex but evolutionarily selected energy landscapes and, on the other hand, promote functional promiscuity. Here we consider a logical extension of the overlap between these two nascent paradigms: functionally promiscuous and multifunctional enzymes such as detoxification enzymes are expected to have an ensemble landscape with more states accessible on multiple time scales than substrate specific enzymes. Two attributes of detoxification enzymes become important in the context of conformational ensembles: these enzymes metabolize multiple substrates, often in substrate mixtures, and they can form multiple products from a single substrate. These properties, combined with complex conformational landscapes, lead to the possibility of interesting time-dependent, or emergent, properties. Here we demonstrate these properties with kinetic simulations of nonequilibrium steady state (NESS) behavior resulting from energy landscapes expected for detoxification enzymes. Analogous scenarios with other promiscuous enzymes may be worthy of consideration.
Collapse
Affiliation(s)
- William M Atkins
- Department of Medicinal Chemistry and Department of Applied Mathematics, University of Washington, Seattle, Washington 98190, United States.
| | | |
Collapse
|
31
|
Ma M, Bell SG, Yang W, Hao Y, Rees NH, Bartlam M, Zhou W, Wong LL, Rao Z. Structural Analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. Chembiochem 2011; 12:88-99. [PMID: 21154803 DOI: 10.1002/cbic.201000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CYP101C1 from Novosphingobium aromaticivorans DSM12444 is a homologue of CYP101D1 and CYP101D2 enzymes from the same bacterium and CYP101A1 from Pseudomonas putida. CYP101C1 does not bind camphor but is capable of binding and hydroxylating ionone derivatives including α- and β-ionone and β-damascone. The activity of CYP101C1 was highest with β-damascone (k(cat)=86 s(-1)) but α-ionone oxidation was the most regioselective (98 % at C3). The crystal structures of hexane-2,5-diol- and β-ionone-bound CYP101C1 have been solved; both have open conformations and the hexanediol-bound form has a clear access channel from the heme to the bulk solvent. The entrance of this channel is blocked when β-ionone binds to the enzyme. The heme moiety of CYP101C1 is in a significantly different environment compared to the other structurally characterised CYP101 enzymes. The likely ferredoxin binding site on the proximal face of CYP101C1 has a different topology but a similar overall positive charge compared to CYP101D1 and CYP101D2, all of which accept electrons from the ArR/Arx class I electron transfer system.
Collapse
Affiliation(s)
- Ming Ma
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Conner KP, Woods C, Atkins WM. Interactions of cytochrome P450s with their ligands. Arch Biochem Biophys 2011; 507:56-65. [PMID: 20939998 PMCID: PMC3041843 DOI: 10.1016/j.abb.2010.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome P450s (CYPs) are heme-containing monooxygenases that contribute to an enormous range of enzymatic function including biosynthetic and detoxification roles. This review summarizes recent studies concerning interactions of CYPs with ligands including substrates, inhibitors, and diatomic heme-ligating molecules. These studies highlight the complexity in the relationship between the heme spin state and active site occupancy, the roles of water in directing protein-ligand and ligand-heme interactions, and the details of interactions between heme and gaseous diatomic CYP ligands. Both kinetic and thermodynamic aspects of ligand binding are considered.
Collapse
Affiliation(s)
- Kip P. Conner
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - Caleb Woods
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - William M. Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| |
Collapse
|
33
|
Brandman R, Lampe JN, Brandman Y, de Montellano PRO. Active-site residues move independently from the rest of the protein in a 200 ns molecular dynamics simulation of cytochrome P450 CYP119. Arch Biochem Biophys 2011; 509:127-32. [PMID: 21356195 DOI: 10.1016/j.abb.2011.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/19/2011] [Accepted: 02/20/2011] [Indexed: 12/11/2022]
Abstract
The conformational dynamics of cytochrome P450 enzymes are critical to their catalytic activity. In this study, the correlated motion between residues in a 200 ns molecular dynamics trajectory of the thermophilic CYP119 was analyzed to parse out conformational relationships. Residues that are structurally related, for example residues within a helix, generally have highly correlated motion. In addition, clusters of non-adjacent residues that show correlated motion ("hot spots") are seen in various regions, including at the base of the F and G helices that make up the most dynamic region of the enzyme. A modified k-means algorithm that clusters residues based on their correlated motion indicates that functionally related residues are in the same cluster (e.g., the catalytic threonines and the heme). Tightly coupled clusters form a solvent-exposed "shell" around the enzyme, whereas less coupling between clusters is seen in regions that are critical to ligand interactions, redox partner interactions, and catalysis. Most notably, we find that residues in the active site move independently from the rest of the enzyme, effectively insulating the catalytic machinery from other regions of the protein.
Collapse
Affiliation(s)
- Relly Brandman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
34
|
The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochem J 2011; 433:85-93. [PMID: 20950270 DOI: 10.1042/bj20101017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochrome P450 CYP101D2 from Novosphingobium aromaticivorans DSM12444 is closely related to CYP101D1 from the same bacterium and to P450cam (CYP101A1) from Pseudomonas putida. All three are capable of oxidizing camphor stereoselectively to 5-exo-hydroxycamphor. The crystal structure of CYP101D2 revealed that the likely ferredoxin-binding site on the proximal face is largely positively charged, similar to that of CYP101D1. However, both the native and camphor-soaked forms of CYP101D2 had open conformations with an access channel. In the active site of the camphor-soaked form, the camphor carbonyl interacted with the haem-iron-bound water. Two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure: one located in the access channel, flanked by the B/C and F/G loops and the I helix, and the other in a cavity on the surface of the enzyme near the F helix side of the F/G loop. The observed open structures may be conformers of the CYP101D2 enzyme that enable the substrate to enter the buried active site via a conformational selection mechanism. The second and third binding sites may be intermediate locations of substrate entry and translocation into the active site, and provide insight into a multi-step substrate-binding mechanism.
Collapse
|
35
|
Lee YT, Glazer EC, Wilson RF, Stout CD, Goodin DB. Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel. Biochemistry 2011; 50:693-703. [PMID: 21171581 DOI: 10.1021/bi101726d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational changes in the substrate access channel have been observed for several forms of cytochrome P450, but the extent of conformational plasticity exhibited by a given isozyme has not been completely characterized. Here we present crystal structures of P450cam bound to a library of 12 active site probes containing a substrate analogue tethered to a variable linker. The structures provide a unique view of the range of protein conformations accessible during substrate binding. Principal component analysis of a total of 30 structures reveals three discrete clusters of conformations: closed (P450cam-C), intermediate (P450cam-I), and fully open (P450cam-O). Relative to P450cam-C, the P450cam-I state results predominantly from a retraction of helix F, while both helices F and G move in concert to reach the fully open P450cam-O state. Both P450cam-C and P450cam-I are well-defined states, while P450cam-O shows evidence of a somewhat broader distribution of conformations and includes the open form recently seen in the absence of substrate. The observed clustering of protein conformations over a wide range of ligand variants suggests a multistep closure of the enzyme around the substrate that begins by conformational selection from an ensemble of open conformations and proceeds through a well-defined intermediate, P450cam-I, before full closure to the P450cam-C state in the presence of small substrates. This multistep pathway may have significant implications for a full understanding of substrate specificity, kinetics, and coupling of substrate binding to P450 function.
Collapse
Affiliation(s)
- Young-Tae Lee
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
36
|
Montemiglio LC, Gianni S, Vallone B, Savino C. Azole Drugs Trap Cytochrome P450 EryK in Alternative Conformational States,. Biochemistry 2010; 49:9199-206. [DOI: 10.1021/bi101062v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Celeste Montemiglio
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Stefano Gianni
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
37
|
Ma B, Nussinov R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr Opin Chem Biol 2010; 14:652-9. [PMID: 20822947 PMCID: PMC6407632 DOI: 10.1016/j.cbpa.2010.08.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 12/13/2022]
Abstract
Recent data increasingly reveal that conformational dynamics are indispensable to enzyme function throughout the catalytic cycle, in substrate recruiting, chemical transformation, and product release. Conformational transitions may involve conformational selection and induced fit, which can be viewed as a special case in the catalytic network. NMR, X-ray crystallography, single-molecule FRET, and simulations clearly demonstrate that the free enzyme dynamics already encompass all the conformations necessary for substrate binding, preorganization, transition-state stabilization, and product release. Conformational selection and substate population shift at each step of the catalytic turnover can accommodate enzyme specificity and efficiency. Within such a framework, entropy can have a larger role in conformational dynamics than in direct energy transfer in dynamically promoted catalysis.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
38
|
Wilderman PR, Shah MB, Liu T, Li S, Hsu S, Roberts AG, Goodlett DR, Zhang Q, Woods VL, Stout CD, Halpert JR. Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. J Biol Chem 2010; 285:38602-11. [PMID: 20880847 DOI: 10.1074/jbc.m110.180646] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Crystal structures of the xenobiotic metabolizing cytochrome P450 2B4 have demonstrated markedly different conformations in the presence of imidazole inhibitors or in the absence of ligand. However, knowledge of the plasticity of the enzyme in solution has remained scant. Thus, hydrogen-deuterium exchange mass spectrometry (DXMS) was utilized to probe the conformations of ligand-free P450 2B4 and the complex with 4-(4-chlorophenyl)imidazole (4-CPI) or 1-biphenyl-4-methyl-1H-imidazole (1-PBI). The results of DXMS indicate that the binding of 4-CPI slowed the hydrogen-deuterium exchange rate over the B'- and C-helices and portions of the F-G-helix cassette compared with P450 2B4 in the absence of ligands. In contrast, there was little difference between the ligand-free and 1-PBI-bound exchange sets. In addition, DXMS suggests that the ligand-free P450 2B4 is predominantly open in solution. Interestingly, a new high resolution structure of ligand-free P450 2B4 was obtained in a closed conformation very similar to the 4-CPI complex. Molecular dynamics simulations performed with the closed ligand-free structure as the starting point were used to probe the energetically accessible conformations of P450 2B4. The simulations were found to equilibrate to a conformation resembling the 1-PBI-bound P450 2B4 crystal structure. The results indicate that conformational changes observed in available crystal structures of the promiscuous xenobiotic metabolizing cytochrome P450 2B4 are consistent with its solution structural behavior.
Collapse
Affiliation(s)
- P Ross Wilderman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meharenna YT, Poulos TL. Using molecular dynamics to probe the structural basis for enhanced stability in thermal stable cytochromes P450. Biochemistry 2010; 49:6680-6. [PMID: 20593793 DOI: 10.1021/bi100929x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-temperature molecular dynamics (MD) has been used to assess if MD can be employed as a useful tool for probing the structural basis for enhanced stability in thermal stable cytochromes P450. CYP119, the most thermal stable P450 known, unfolds more slowly during 500 K MD simulations than P450s that melt at lower temperatures, P450cam and P450cin. A comparison of the 500 K MD trajectories shows that the Cys ligand loop, a critically important structural feature just under the heme, in both P450cin and P450cam completely unfolds while this region is quite stable in CYP119. In CYP119, this region is stabilized by tight nonpolar interactions involving Tyr26 and Leu308. The corresponding residues in P450cam are Gly and Thr, respectively. The in silico generated Y26A/L308A CYP119 double mutant is substantially less stable than wild-type CYP119, and the Cys ligand loop unfolds in a manner similar to that of P450cam. The MD thus has identified a potential "hot spot" important for stability. As an experimental test of the MD results, the Y26A/L308A double mutant was prepared, and thermal melting curves show that the double mutant exhibits a melting temperature (T(m)) 16 degrees C lower than that of wild-type CYP119. Control mutations that were predicted by MD not to destabilize the protein were also generated, and the experimental melting temperature was not significantly different from that of the wild-type enzyme. Therefore, high-temperature MD is a useful tool in predicting the structural underpinnings of thermal stability in P450s.
Collapse
Affiliation(s)
- Yergalem T Meharenna
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
40
|
Lee YT, Wilson RF, Rupniewski I, Goodin DB. P450cam visits an open conformation in the absence of substrate. Biochemistry 2010; 49:3412-9. [PMID: 20297780 DOI: 10.1021/bi100183g] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P450cam from Pseudomonas putida is the best characterized member of the vast family of cytochrome P450s, and it has long been believed to have a more rigid and closed active site relative to other P450s. Here we report X-ray structures of P450cam crystallized in the absence of substrate and at high and low [K(+)]. The camphor-free structures are observed in a distinct open conformation characterized by a water-filled channel created by the retraction of the F and G helices, disorder of the B' helix, and loss of the K(+) binding site. Crystallization in the presence of K(+) alone does not alter the open conformation, while crystallization with camphor alone is sufficient for closure of the channel. Soaking crystals of the open conformation in excess camphor does not promote camphor binding or closure, suggesting resistance to conformational change by the crystal lattice. This open conformation is remarkably similar to that seen upon binding large tethered substrates, showing that it is not the result of a perturbation by the ligand. Redissolved crystals of the open conformation are observed as a mixture of P420 and P450 forms, which is converted to the P450 form upon addition of camphor and K(+). These data reveal that P450cam can dynamically visit an open conformation that allows access to the deeply buried active site without being induced by substrate or ligand.
Collapse
Affiliation(s)
- Young-Tae Lee
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|