1
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Daly C, Plouffe B. Gα q signalling from endosomes: A new conundrum. Br J Pharmacol 2023. [PMID: 37740273 DOI: 10.1111/bph.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Golatkar V, Bhatt LK. mAKAPβ signalosome: A potential target for cardiac hypertrophy. Drug Dev Res 2023; 84:1072-1084. [PMID: 37203301 DOI: 10.1002/ddr.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPβ is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPβ near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPβ improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPβ is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPβ is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPβ signalosome as a potential target for cardiac hypertrophy intervention.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
4
|
Seidita I, Tusa I, Prisinzano M, Menconi A, Cencetti F, Vannuccini S, Castiglione F, Bruni P, Petraglia F, Bernacchioni C, Rovida E, Donati C. Sphingosine 1-phosphate elicits a ROS-mediated proinflammatory response in human endometrial stromal cells via ERK5 activation. FASEB J 2023; 37:e23061. [PMID: 37389926 DOI: 10.1096/fj.202300323r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
5
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
6
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
7
|
Devost D, Zingg HH, Hébert TE. The MAP kinase ERK5/MAPK7 is a downstream effector of oxytocin signaling in myometrial cells. Cell Signal 2021; 90:110211. [PMID: 34902542 DOI: 10.1016/j.cellsig.2021.110211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
The hormone oxytocin (OT) has pleiotropic activities both in the central nervous system as well as in peripheral tissues, including uterotonic effects on the myometrium during parturition. OT effects are mediated by a single transmembrane receptor, belonging to the GPCR (G protein-coupled receptor) superfamily and coupled primarily to Gq- and Gi-containing heterotrimeric G proteins. Upon receptor stimulation, one well-studied downstream effect is activation of the ERK1/2 MAP (mitogen-activated protein) kinase, and studies have shown that induction of COX-2 by OT in the myometrium required ERK1/2 activity. Many studies investigating the role of ERK1/2 in myometrial tissue were based on the use of chemical inhibitors that, to varying degrees, also inhibited ERK5/MAPK7. Here we report that OT activates ERK5 in a human myometrial cell line in a dose- and time-dependent manner through the activation of Gi/o heterotrimers. Using complementary approaches, we demonstrate that OT-induced COX-2 induction and the concomitant release of PGF2α into the media are primarily ERK5-dependent and to a much lesser extent ERK1/2-dependent. Moreover, in contrast to ERK1/2 activation, ERK5 activation is downstream of Gi/o activation. Here, we also found that ERK5 impacted both basal and to a lesser extent, OT-mediated myometrial cell contraction in vitro. Finally, tracking both ERK1/2 and ERK5 activity during different stages of gestation in rat myometrium, we showed that they followed distinct patterns starting at the onset of labor corresponding to the highest COX-2 expression levels. Overall, our results reveal an important, hitherto unrecognized role for ERK5 in myometrial cell contraction involving induction of COX-2. This novel pathway is likely to play an important role in supporting uterine contractions during parturition.
Collapse
Affiliation(s)
- Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| | - Hans H Zingg
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| |
Collapse
|
8
|
Voss JH, Nagel J, Rafehi M, Guixà-González R, Malfacini D, Patt J, Kehraus S, Inoue A, König GM, Kostenis E, Deupi X, Namasivayam V, Müller CE. Unraveling binding mechanism and kinetics of macrocyclic Gα q protein inhibitors. Pharmacol Res 2021; 173:105880. [PMID: 34506902 DOI: 10.1016/j.phrs.2021.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.
Collapse
Affiliation(s)
- Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Davide Malfacini
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578 Japan
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Xavier Deupi
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
9
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
10
|
CCL20 triggered by chemotherapy hinders the therapeutic efficacy of breast cancer. PLoS Biol 2018; 16:e2005869. [PMID: 30052635 PMCID: PMC6082578 DOI: 10.1371/journal.pbio.2005869] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/08/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapeutic resistance in triple-negative breast cancer (TNBC) has brought great challenges to the improvement of patient survival. The mechanisms of taxane chemoresistance in TNBC have not been well investigated. Our results illustrated C-C motif chemokine ligand 20 (CCL20) was significantly elevated during taxane-containing chemotherapy in breast cancer patients with nonpathologic complete response. Furthermore, CCL20 promoted the self-renewal and maintenance of breast cancer stem cells (BCSCs) or breast cancer stem-like cells through protein kinase Cζ (PKCζ) or p38 mitogen-activated protein kinase (MAPK)-mediated activation of p65 nuclear factor kappa B (NF-κB) pathway, significantly increasing the frequency and taxane resistance of BCSCs. Moreover, CCL20-promoted NF-κB activation increased ATP-binding cassette subfamily B member 1 (ABCB1)/multidrug resistance 1 (MDR1) expression, leading to the extracellular efflux of taxane. These results suggested that chemotherapy-induced CCL20 mediated chemoresistance via up-regulating ABCB1. In addition, NF-κB activation increased CCL20 expression, forming a positive feedback loop between NF-κB and CCL20 pathways, which provides sustained impetus for chemoresistance in breast cancer cells. Our results suggest that CCL20 can be a novel predictive marker for taxane response, and the blockade of CCL20 or its downstream pathway might reverse the taxane resistance in breast cancer patients.
Collapse
|
11
|
Kapfhamer J, Waite C, Ascoli M. The Gα q/11-provoked induction of Akr1c18 in murine luteal cells is mediated by phospholipase C. Mol Cell Endocrinol 2018; 470:179-187. [PMID: 29107092 DOI: 10.1016/j.mce.2017.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
Abstract
Towards the end of gestation prostaglandin F2α (PGF2α) stimulates the expression of Akr1c18 in the murine corpus luteum. Akr1c18 codes for 20α-hydroxysteroid dehydrogenase, an enzyme that precipitates parturition by catabolizing progesterone. Previous results from our laboratory have shown that this effect of PGF2α is mediated by the activation of Gαq/11, but the downstream effector(s) of Gαq/11 that elicit the increase in Akr1c18 expression have not been identified. The physiological effects of Gαq/11 are mediated by its ability to interact with phospholipase Cβ, p63RhoGEF, and PKCζ. In the experiments described herein we used biochemical and pharmacological approaches, as well as adenoviral-mediated expression of a constitutively active form of Gαq and mutants thereof, to examine the role of each of these effectors as potential mediators of the increased expression of luteal Akr1c18. By measuring the effects of PGF2α on the activation of RhoA (activated by p63RhoGEF) and the effects of activators and inhibitors of RhoA on the PGF2α-induced expression of luteal Akr1c18, we determined that RhoA is neither activated by PGF2α or involved in the PGF2α-induced expression of luteal Akr1c18. The potential involvement of PKCζ was ruled out by the inability of a mutant of a constitutively active Gαq that prevents PKCζ binding to block the increased expression of Akr1c18. Furthermore, PGF2α does not increase the phosphorylation of ERK-5, the only known downstream target of PKCζ. On the other hand, three different mutants of a constitutively active Gαq that prevent phospholipase C activation blocked the induction of luteal Akr1c18. We conclude that the induction of luteal Akr1c18 by Gαq/11 is mediated by the activation of phospholipase C.
Collapse
Affiliation(s)
- Joshua Kapfhamer
- Department of Obstetrics and Gynecology, The University of Iowa College of Medicine, Iowa City, IA 52246, United States
| | - Courtney Waite
- Department of Obstetrics and Gynecology, The University of Iowa College of Medicine, Iowa City, IA 52246, United States; Department of Pharmacology, The University of Iowa College of Medicine, Iowa City, IA 52246, United States
| | - Mario Ascoli
- Department of Obstetrics and Gynecology, The University of Iowa College of Medicine, Iowa City, IA 52246, United States; Department of Pharmacology, The University of Iowa College of Medicine, Iowa City, IA 52246, United States.
| |
Collapse
|
12
|
The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2017; 7:2979-2989. [PMID: 28696924 PMCID: PMC5592925 DOI: 10.1534/g3.117.043273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gq is a heterotrimeric G protein that is widely expressed in neurons and regulates neuronal activity. To identify pathways regulating neuronal Gq signaling, we performed a forward genetic screen in Caenorhabditis elegans for suppressors of activated Gq. One of the suppressors is an allele of sek-1, which encodes a mitogen-activated protein kinase kinase (MAPKK) in the p38 MAPK pathway. Here, we show that sek-1 mutants have a slow locomotion rate and that sek-1 acts in acetylcholine neurons to modulate both locomotion rate and Gq signaling. Furthermore, we find that sek-1 acts in mature neurons to modulate locomotion. Using genetic and behavioral approaches, we demonstrate that other components of the p38 MAPK pathway also play a positive role in modulating locomotion and Gq signaling. Finally, we find that mutants in the SEK-1 p38 MAPK pathway partially suppress an activated mutant of the sodium leak channel, NCA-1/NALCN, a downstream target of Gq signaling. Our results suggest that the SEK-1 p38 pathway may modulate the output of Gq signaling through NCA-1(unc-77).
Collapse
|
13
|
Namba Y, Togo S, Tulafu M, Kadoya K, Nagahama KY, Taka H, Kaga N, Orimo A, Liu X, Takahashi K. Combination of glycopyrronium and indacaterol inhibits carbachol-induced ERK5 signal in fibrotic processes. Respir Res 2017; 18:46. [PMID: 28284212 PMCID: PMC5346259 DOI: 10.1186/s12931-017-0529-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 12/03/2022] Open
Abstract
Background Airway fibrosis is one of the pathological features of chronic obstructive pulmonary disease (COPD), and recent studies revealed that acetylcholine plays an important role in the development of airway remodeling by stimulating proliferation and collagen synthesis of lung fibroblasts. This study was designed to examine the effects of a long-acting muscarinic receptor antagonist (LAMA) glycopyrronium and a long-acting β2 adrenergic receptor agonist (LABA) indacaterol on acetylcholine-mediated fibrotic responses in lung fibroblasts. Methods After carbachol (CCh) or transforming growth factor-β1 (TGF-β1) exposure, the response to glycopyrronium and indacaterol was determined in vitro in fibroblasts isolated from mild-to-moderate COPD lung tissue. The ability of fibroblasts to mediate the contraction of collagen gels was assessed. The expression of α-smooth muscle actin (α-SMA) and the phosphorylation of extracellular-signal-regulated kinase 5 (ERK5) were determined by immunoblot. TGF-β1 was quantified by ELISA and acetylcholine was quantified by liquid chromatography tandem-mass spectrometry. Results CCh stimulated fibroblast-mediated collagen gel contraction and α-SMA expression and TGF-β1 release by fibroblasts. Blockade of autocrine TGF-β1 attenuated CCh-mediated fibrotic responses, while TGF-β1 did not stimulate acetylcholine release. Glycopyrronium plus indacaterol significantly attenuated CCh- and TGF-β1-mediated fibrotic responses through inhibition of ERK5 phosphorylation. Notably, the magnitudes of CCh- and TGF-β1-stimulated gel contraction, CCh-induced TGF-β1 release, and ERK5 phosphorylation were greater in fibroblasts isolated from COPD subjects than in those from non-smokers. Conclusions CCh induced TGF-β1 self-sustaining signaling loops by potentiating ERK5 signaling and promoted myofibroblast activity. This autocrine signaling mechanism may be an attractive therapeutic target to block the fibrotic response, which was modulated by the combination of glycopyrronium and indacaterol.
Collapse
Affiliation(s)
- Yukiko Namba
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Miniwan Tulafu
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kotaro Kadoya
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kumi Yoneda Nagahama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Xiangde Liu
- Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
14
|
Tsioumpekou M, Papadopoulos N, Burovic F, Heldin CH, Lennartsson J. Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling. Cell Signal 2016; 28:1422-1431. [PMID: 27339033 DOI: 10.1016/j.cellsig.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 02/09/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) binds to its tyrosine kinase receptors (PDGFRs) and stimulates mitogenicity and survival of cells of mesenchymal origin. Activation of PDGFRs initiates a number of downstream signaling pathways, including phosphatidyl 3'-inositol kinase (PI3-kinase), phospholipase Cγ and MAP kinase pathways. In this report, we show that Erk5 MAP kinase is activated in response to PDGF-BB in the smooth muscle cell line MOVAS in a manner dependent on Mekk2, Mek1/2, Mek5, PI3-kinase and protein kinase C (PKC). The co-operation of Mek1/2 and Mekk2 in the activation of Erk5, suggests a close co-regulation between the Erk1/2 and Erk5 MAP kinase pathways. Furthermore, we found that classical PKCs are important for Erk5 activation. In addition, we found that PKCζ interacts with Erk5 and may exert a negative feed-back effect. We observed no nuclear accumulation of Erk5 in response to PDGF-BB stimulation, however, we identified a mechanism by which cytoplasmic Erk5 influences gene expression; Erk5 was essential for PDGF-BB-mediated Smad1/5/8 signaling by stimulating release and/or activation of bone morphogenetic protein(s) (BMPs). Thus, PDGF-BB-induced Erk5 activation involves parallel stimulatory and inhibitory pathways and promotes Smad1/5/8 signaling.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Natalia Papadopoulos
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Fatima Burovic
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Johan Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
15
|
Sánchez-Fernández G, Cabezudo S, Caballero Á, García-Hoz C, Tall GG, Klett J, Michnick SW, Mayor F, Ribas C. Protein Kinase C ζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector. J Biol Chem 2016; 291:9513-25. [PMID: 26887939 DOI: 10.1074/jbc.m115.684308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gαq and protein kinase C ζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCβ. We report herein that the activation-dependent Gαq/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gαq different from the classical effector-binding site. Point mutations in this Gαq region completely abrogate ERK5 phosphorylation, indicating that Gαq/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gαq and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gαq modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gαq/PKCζ complexes link Gαq to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gαq and the effector PKCζ is a key event in Gαq signaling.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain, Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sofía Cabezudo
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Álvaro Caballero
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Carlota García-Hoz
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Gregory G Tall
- Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Javier Klett
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7 Canada
| | - Federico Mayor
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| | - Catalina Ribas
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| |
Collapse
|
16
|
Cameron SJ, Ture SK, Mickelsen D, Chakrabarti E, Modjeski KL, McNitt S, Seaberry M, Field DJ, Le NT, Abe JI, Morrell CN. Platelet Extracellular Regulated Protein Kinase 5 Is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion. Circulation 2015; 132:47-58. [PMID: 25934838 DOI: 10.1161/circulationaha.115.015656] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes. In comparison with platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species-rich environments may not be the same as in normal healthy conditions. Extracellular regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase family member activated in hypoxic, reactive oxygen species-rich environments and in response to receptor-signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells after ischemia. We present evidence that platelets express ERK5 and that platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent reactive oxygen species-mediated mechanisms in ischemic myocardium. METHODS AND RESULTS Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and that platelet-specific ERK5(-/-) mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5-regulated proteins is reduced in ERK5(-/-) platelets post-MI. CONCLUSIONS ERK5 functions as a platelet activator in ischemic conditions, and platelet ERK5 maintains the expression of some platelet proteins after MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment.
Collapse
Affiliation(s)
- Scott J Cameron
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Sara K Ture
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Deanne Mickelsen
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Enakshi Chakrabarti
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Kristina L Modjeski
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Scott McNitt
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Michael Seaberry
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - David J Field
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Nhat-Tu Le
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Jun-Ichi Abe
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Craig N Morrell
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.).
| |
Collapse
|
17
|
Wu Y, Chakrabarti S. ERK5 Mediated Signalling in Diabetic Retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2015; 4:17-26. [PMID: 25861671 PMCID: PMC4389294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic retinopathy is the lead among causes of blindness in North America. Glucose-induced endothelial injury is the most important cause of diabetic retinopathy and other vascular complications. Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (BMK1), is a member of mitogen-activated protein kinases (MAPK) family. Physiologically, it is critical for cardiovascular development and maintenance of the endothelial cell integrity. Extracellular signal-regulated kinase 5 is protective for endothelial cells under stimulation and stress. Decreased activation of ERK5 results in increased endothelial cell death. Extracellular signal-regulated kinase 5 signaling may be subject to alteration by hyperglycemia, while signaling pathway including ERK5 may be subject to alteration during pathogenesis of diabetic complications. In this review, the role of ERK5 in diabetic macro- and microvascular complications with a focus on diabetic retinopathy are summarized and discussed.
Collapse
|
18
|
A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics. Cell Signal 2014; 26:1135-46. [PMID: 24444709 DOI: 10.1016/j.cellsig.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.
Collapse
|
19
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
20
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Tobin AB, Mayor Jr F, Ribas C. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment. PLoS One 2013; 8:e84174. [PMID: 24358341 PMCID: PMC3866124 DOI: 10.1371/journal.pone.0084174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/20/2013] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Andrew B. Tobin
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Federico Mayor Jr
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
21
|
Obara Y. [Roles of ERK5 in neuronal cells]. Nihon Yakurigaku Zasshi 2013; 141:251-5. [PMID: 23665555 DOI: 10.1254/fpj.141.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Wu K, Tian S, Zhou H, Wu Y. Statins protect human endothelial cells from TNF-induced inflammation via ERK5 activation. Biochem Pharmacol 2013; 85:1753-60. [PMID: 23608189 DOI: 10.1016/j.bcp.2013.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) exert pleiotropic effects on the cardiovascular system, in part through a decrease in reactive oxygen species (ROS) formation and reduction of vascular inflammation. To elucidate the molecular mechanisms involved in these effects, we investigated the effect of statins on TNF-α-induced ROS production, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in human aortic endothelial cells (HAECs). Exposure of HAECs to TNF-α caused production of ROS via Rac-1 membrane translocation and activation. The Rac-1 activation and ROS liberation mediated TNF-stimulated NF-κB activation and the subsequent VCAM-1 and ICAM-1 expression. Extracellular-signal-regulated kinase 5 (ERK5) plays a central role in inhibiting endothelial inflammation. Immune complex kinase assay of protein extracts from HAECs treated with atorvastatin revealed increased ERK5 activity in a time- and dose-dependent manner. In addition, pretreatment with atorvastatin inhibited TNF-α-induced ROS production and VCAM-1 and ICAM-1 expression. Chemical or genetic inhibition of ERK5 ablated the statins inhibition of Rac-1 activation, ROS formation, NF-κB, VCAM-1 and ICAM-1 expression induced by TNF-α. Taken together, statins, via ERK5 activation, suppress TNF-stimulated Rac-1 activation, ROS generation, NF-κB activation and VCAM-1 and ICAM-1 expression in human ECs, which provides a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system.
Collapse
Affiliation(s)
- Ke Wu
- Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei 430071, China
| | | | | | | |
Collapse
|
23
|
Identification of novel signalling roles and targets for G(α) and G(βγ) downstream of the insulin-like growth factor 1 receptor in vascular smooth muscle cells. Biochem J 2013. [PMID: 23186281 DOI: 10.1042/bj20112158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular dysfunction is the underlying cause of nearly 80% of heart disease cases, and its initiation and progression can be exacerbated by circulating factors, such as IGF-1 (insulin-like growth factor 1). IGF-1, which is highly homologous with insulin, elicits a response via a classical tyrosine kinase receptor, the IGF-1R (IGF-1 receptor). However, it has been suggested that the IGF-1R may also be coupled to a heterotrimeric G-protein and can thus modulate cellular processes via this alternate pathway. The objective of the present study was to investigate the structural aspects of IGF-1R coupling to a heterotrimeric G-protein in VSMCs [vascular SMCs (smooth muscle cells)], as well as examine the contribution of this pathway to cellular responses that are related to vascular disease. We found that the intracellular subunit of the IGF-1R precipitates with two G-protein subunits. The G(βγ)-mediated pathway contributes to both proliferation and migration. We also show that IGF-1 specifically activates G(αi) and can directly interact with both G(αi1) and G(αi2). A phospho-screen using a novel specific G(αi)-peptide inhibitor reveals a number of potential downstream effectors of this pathway, although our results show that it is not essential for SMC proliferation or migration.
Collapse
|
24
|
García-Hoz C, Sánchez-Fernández G, García-Escudero R, Fernández-Velasco M, Palacios-García J, Ruiz-Meana M, Díaz-Meco MT, Leitges M, Moscat J, García-Dorado D, Boscá L, Mayor F, Ribas C. Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts. J Biol Chem 2012; 287:7792-7802. [PMID: 22232556 PMCID: PMC3293562 DOI: 10.1074/jbc.m111.282210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/20/2011] [Indexed: 02/05/2023] Open
Abstract
Gq-coupled G protein-coupled receptors (GPCRs) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gα(q)-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gα(q) acts as an adaptor protein that facilitates PKCζ-mediated activation of ERK5 in epithelial cells. Because the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in cardiovascular Gq-dependent signaling using both cultured cardiac cell types and chronic administration of angiotensin II in mice. We find that PKCζ is required for the activation of the ERK5 pathway by Gq-coupled GPCR in neonatal and adult murine cardiomyocyte cultures and in cardiac fibroblasts. Stimulation of ERK5 by angiotensin II is blocked upon pharmacological inhibition or siRNA-mediated silencing of PKCζ in primary cultures of cardiac cells and in neonatal cardiomyocytes isolated from PKCζ-deficient mice. Moreover, upon chronic challenge with angiotensin II, these mice fail to promote the changes in the ERK5 pathway, in gene expression patterns, and in hypertrophic markers observed in wild-type animals. Taken together, our results show that PKCζ is essential for Gq-dependent ERK5 activation in cardiomyocytes and cardiac fibroblasts and indicate a key cardiac physiological role for the Gα(q)/PKCζ/ERK5 signaling axis.
Collapse
Affiliation(s)
- Carlota García-Hoz
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Guzmán Sánchez-Fernández
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Ramón García-Escudero
- the Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | | | - Julia Palacios-García
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Marisol Ruiz-Meana
- the Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Maria Teresa Díaz-Meco
- the Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway, and
| | - Jorge Moscat
- the Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - David García-Dorado
- the Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Lisardo Boscá
- the Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Federico Mayor
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Catalina Ribas
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| |
Collapse
|
25
|
del Puerto A, Díaz-Hernández JI, Tapia M, Gomez-Villafuertes R, Benitez MJ, Zhang J, Miras-Portugal MT, Wandosell F, Díaz-Hernández M, Garrido JJ. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J Cell Sci 2012; 125:176-88. [PMID: 22250198 DOI: 10.1242/jcs.091736] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1-GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K-Akt-GSK3 pathway.
Collapse
Affiliation(s)
- Ana del Puerto
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aisiku OR, Runnels LW, Scarlata S. Identification of a novel binding partner of phospholipase cβ1: translin-associated factor X. PLoS One 2010; 5:e15001. [PMID: 21124736 PMCID: PMC2993962 DOI: 10.1371/journal.pone.0015001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022] Open
Abstract
Mammalian phospholipase Cβ1 (PLCβ1) is activated by the ubiquitous Gαq family of G proteins on the surface of the inner leaflet of plasma membrane where it catalyzes the hydrolysis of phosphatidylinositol 4,5 bisphosphate. In general, PLCβ1 is mainly localized on the cytosolic plasma membrane surface, although a substantial fraction is also found in the cytosol and, under some conditions, in the nucleus. The factors that localize PLCβ1in these other compartments are unknown. Here, we identified a novel binding partner, translin-associated factor X (TRAX). TRAX is a cytosolic protein that can transit into the nucleus. In purified form, PLCβ1 binds strongly to TRAX with an affinity that is only ten-fold weaker than its affinity for its functional partner, Gαq. In solution, TRAX has little effect on the membrane association or the catalytic activity of PLCβ1. However, TRAX directly competes with Gαq for PLCβ1 binding, and excess TRAX reverses Gαq activation of PLCβ1. In C6 glia cells, endogenous PLCβ1 and TRAX colocalize in the cytosol and the nucleus, but not on the plasma membrane where TRAX is absent. In Neuro2A cells expressing enhanced yellow and cyano fluorescent proteins (i.e., eYFP- PLCβ1 and eCFP-TRAX), Förster resonance energy transfer (FRET) is observed mostly in the cytosol and a small amount is seen in the nucleus. FRET does not occur at the plasma membrane where TRAX is not found. Our studies show that TRAX, localized in the cytosol and nucleus, competes with plasma-membrane bound Gαq for PLCβ1 binding thus stabilizing PLCβ1 in other cellular compartments.
Collapse
Affiliation(s)
- Omozuanvbo R. Aisiku
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States of America
| | - Loren W. Runnels
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Suzanne Scarlata
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Yu W, Ritchie BJ, Su X, Zhou J, Meigs TE, Denker BM. Identification of polycystin-1 and Gα12 binding regions necessary for regulation of apoptosis. Cell Signal 2010; 23:213-21. [PMID: 20837139 DOI: 10.1016/j.cellsig.2010.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
Abstract
Most patients with autosomal dominant polycystic kidney disease (ADPKD) harbor mutations in PKD1, the gene for polycystin-1 (PC1), a transmembrane protein with a cytoplasmic C-terminus that interacts with numerous signaling molecules, including Gα12. The functions of PC1 and the mechanisms of cyst development leading to renal failure are complex. Recently, we reported that PC1 expression levels modulate activity of Gα12-stimulated apoptosis (Yu et al., J. Biol. Chem. 2010 285(14):10243-51). Herein, a mutational analysis of Gα12 and PC1 was undertaken to identify regions required for their interaction and ability to modulate apoptosis. A set of Gα12 mutations with systematic replacement of six amino acids with NAAIRS was tested for binding to the PC1 C-terminus in GST pulldowns. Additionally, a series of deletions within the PC1 C-terminus was examined for binding to Gα12. We identified 3 NAAIRS substitutions in Gα12 that completely abrogated binding, and identified a previously described 74 amino acid Gαi/o binding domain in the PC1 C-terminus as necessary for Gα12 interaction. The functional consequences of uncoupling PC1/Gα12 binding were studied in apoptosis assays utilizing HEK293 cells with inducible PC1 overexpression. Gα12 mutants deficient in PC1 binding were refractory to PC1 inhibition of Gα12-stimulated apoptosis. Likewise, deletion of the Gα12-interacting sequence from the PC1 cytoplasmic domain abrogated its inhibition of Gα12-stimulated apoptosis. Based on the crystal structure of Gα12, the PC1 interaction sites are likely to reside on exposed regions within the G protein helical domain. These structural details should facilitate the design of reagents to uncouple PC1/Gα12 signaling in ADPKD.
Collapse
Affiliation(s)
- Wanfeng Yu
- Renal Division Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yao Z, Yoon S, Kalie E, Raviv Z, Seger R. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction. PLoS One 2010; 5:e12627. [PMID: 20830310 PMCID: PMC2935384 DOI: 10.1371/journal.pone.0012627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/13/2010] [Indexed: 12/17/2022] Open
Abstract
The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.
Collapse
Affiliation(s)
- Zhong Yao
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Seunghee Yoon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Kalie
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Raviv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|