1
|
Braun V. Substrate Uptake by TonB-Dependent Outer Membrane Transporters. Mol Microbiol 2024; 122:929-947. [PMID: 39626085 DOI: 10.1111/mmi.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024]
Abstract
TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm. TonB is also involved in the uptake of certain proteins, particularly toxins, through OM proteins that differ structurally from TBDTs. TonB binds to a sequence of five residues, designated as the TonB box, which is conserved in all TBDTs. Energy from the proton motive force (pmf) of the cytoplasmic membrane is transmitted to TonB by two proteins, ExbB and ExbD. These proteins form an energy-transmitting protein complex consisting of five ExbB proteins, forming a pore that encloses the ExbD dimer. This review discusses the structural changes that occur in TBDTs upon interaction with TonB, as well as the interaction of ExbB-ExbD with TonB, which is required to transmit the energy of the pmf and thereby open TBDT pores. TonB facilitates import of a wide range of substrates.
Collapse
|
2
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
3
|
Kumar A, Chakravorty S, Yang T, Russo TA, Newton SM, Klebba PE. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J Bacteriol 2024; 206:e0002424. [PMID: 38591913 PMCID: PMC11112993 DOI: 10.1128/jb.00024-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
- Department of Rare Blood and Musculoskeletal Disorders, Sanofi, Cambridge, Massachusetts, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
- Jacobs School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Thomas A. Russo
- Jacobs School of Medicine, University at Buffalo, Buffalo, New York, USA
- Veterans Administration, Western New York Healthcare System, Buffalo, New York, USA
| | - Salete M. Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E. Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
6
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
7
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Liang Y, Li B, Zhang Q, Zhang S, He X, Jiang L, Jin Y. Interaction analyses based on growth parameters of GWAS between Escherichia coli and Staphylococcus aureus. AMB Express 2021; 11:34. [PMID: 33646434 PMCID: PMC7921238 DOI: 10.1186/s13568-021-01192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
To accurately explore the interaction mechanism between Escherichia coli and Staphylococcus aureus, we designed an ecological experiment to monoculture and co-culture E. coli and S. aureus. We co-cultured 45 strains of E. coli and S. aureus, as well as each species individually to measure growth over 36 h. We implemented a genome wide association study (GWAS) based on growth parameters (λ, R, A and s) to identify significant single nucleotide polymorphisms (SNPs) of the bacteria. Three commonly used growth regression equations, Logistic, Gompertz, and Richards, were used to fit the bacteria growth data of each strain. Then each equation's Akaike's information criterion (AIC) value was calculated as a commonly used information criterion. We used the optimal growth equation to estimate the four parameters above for strains in co-culture. By plotting the estimates for each parameter across two strains, we can visualize how growth parameters respond ecologically to environment stimuli. We verified that different genotypes of bacteria had different growth trajectories, although they were the same species. We reported 85 and 52 significant SNPs that were associated with interaction in E. coli and S. aureus, respectively. Many significant genes might play key roles in interaction, such as yjjW, dnaK, aceE, tatD, ftsA, rclR, ftsK, fepA in E. coli, and scdA, trpD, sdrD, SAOUHSC_01219 in S. aureus. Our study illustrated that there were multiple genes working together to affect bacterial interaction, and laid a solid foundation for the later study of more complex inter-bacterial interaction mechanisms.
Collapse
|
9
|
Yu L, Wang H, Han X, Li W, Xue M, Qi K, Chen X, Ni J, Deng R, Shang F, Xue T. The two-component system, BasSR, is involved in the regulation of biofilm and virulence in avian pathogenic Escherichia coli. Avian Pathol 2020; 49:532-546. [PMID: 32894030 DOI: 10.1080/03079457.2020.1781791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is a subgroup of extra-intestinal pathogenic E. coli (ExPEC) strains that cause avian colibacillosis, resulting in significant economic losses to the poultry industry worldwide. It has been reported that a few two-component signal transduction systems (TCS) participate in the regulation of the virulence factors of APEC infection. In this study, a basSR-deficient mutant strain was constructed from its parent strain APECX40 (WT), and high-throughput sequencing (RNA-seq) was performed to analyse the transcriptional profile of WT and its mutant strain XY1. Results showed that the deletion of basSR down-regulated the transcript levels of a series of biofilm- and virulence-related genes. Results of biofilm formation assays and bird model experiments indicated that the deletion of basSR inhibited biofilm formation in vitro and decreased bacterial virulence and colonization in vivo. In addition, electrophoretic mobility shift assays confirmed that the BasR protein could bind to the promoter regions of several biofilm- and virulence-related genes, including ais, opgC and fepA. This study suggests that the BasSR TCS might be a global regulator in the pathogenesis of APEC infection. RESEARCH HIGHLIGHTS Transcriptional profiling showed that BasSR might be a global regulator in APEC. BasSR increases APEC pathogenicity in vivo. BasSR positively regulates biofilm- and the virulence-associated genes. BasSR can bind to the promoter regions of virulence-associated genes ais, opgC and fepA.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, People's Republic of China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, People's Republic of China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ruining Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
10
|
Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T, Scott DC, Long NJ, Newton SM, Klebba PE. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. J Biol Chem 2020; 295:4974-4984. [PMID: 32098871 DOI: 10.1074/jbc.ra119.011850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.
Collapse
Affiliation(s)
- Aritri Majumdar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Vy Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Kyle J Moore
- Department of Chemistry, Physics and Engineering, Cameron University, Lawton, Oklahoma 73505
| | | | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Daniel C Scott
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Noah J Long
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Salete M Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
11
|
Zuo J, Yin H, Hu J, Miao J, Chen Z, Qi K, Wang Z, Gong J, Phouthapane V, Jiang W, Mi R, Huang Y, Wang C, Han X. Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic Escherichia coli. Vet Res 2019; 50:109. [PMID: 31831050 PMCID: PMC6909531 DOI: 10.1186/s13567-019-0725-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
The function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC.
Collapse
Affiliation(s)
- Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huifang Yin
- College of Life Science, Longyan University, Longyan, 364000, People's Republic of China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, 22797, Lao PDR
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Yan Huang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China.
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
12
|
Chakravorty S, Shipelskiy Y, Kumar A, Majumdar A, Yang T, Nairn BL, Newton SM, Klebba PE. Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens. J Biol Chem 2019; 294:4682-4692. [PMID: 30679312 DOI: 10.1074/jbc.ra118.006921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Sensitive assays of biochemical specificity, affinity, and capacity are valuable both for basic research and drug discovery. We created fluorescent sensors that monitor high-affinity binding reactions and used them to study iron acquisition by ESKAPE bacteria, which are frequently responsible for antibiotic-resistant infections. By introducing site-directed Cys residues in bacterial iron transporters and modifying them with maleimide fluorophores, we generated living cells or purified proteins that bind but do not transport target compounds. These constructs sensitively detected ligand concentrations in solution, enabling accurate, real-time spectroscopic analysis of membrane transport by other cells. We assessed the efficacy of these "fluorescent decoy" (FD) sensors by characterizing active iron transport in the ESKAPE bacteria. The FD sensors monitored uptake of both ferric siderophores and hemin by the pathogens. An FD sensor for a particular ligand was universally effective in observing the uptake of that compound by all organisms we tested. We adapted the FD sensors to microtiter format, where they allow high-throughput screens for chemicals that block iron uptake, without genetic manipulations of the virulent target organisms. Hence, screening assays with FD sensors facilitate studies of mechanistic biochemistry, as well as discovery of chemicals that inhibit prokaryotic membrane transport. With appropriate design, FD sensors are potentially applicable to any pro- or eukaryotic high-affinity ligand transport process.
Collapse
Affiliation(s)
- Somnath Chakravorty
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Yan Shipelskiy
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Ashish Kumar
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Aritri Majumdar
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Taihao Yang
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Brittany L Nairn
- the Department of Biological Sciences, Bethel University, St. Paul, Minnesota 55112
| | - Salete M Newton
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Phillip E Klebba
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| |
Collapse
|
13
|
Nas MY, Cianciotto NP. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. MICROBIOLOGY-SGM 2017; 163:1590-1603. [PMID: 28984234 DOI: 10.1099/mic.0.000545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stenotrophomonas maltophilia, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of S. maltophilia iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of S. maltophilia secreted a siderophore-like activity when grown at 25-37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved S. maltophilia, documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes (entC) abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene (fepA) prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved S. maltophilia could not use purified enterobactin. Furthermore, the S. maltophilia siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that S. maltophilia secretes a novel catecholate siderophore.
Collapse
Affiliation(s)
- Megan Y Nas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Fluorescence High-Throughput Screening for Inhibitors of TonB Action. J Bacteriol 2017; 199:JB.00889-16. [PMID: 28242720 DOI: 10.1128/jb.00889-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria acquire ferric siderophores through TonB-dependent outer membrane transporters (TBDT). By fluorescence spectroscopic hgh-throughput screening (FLHTS), we identified inhibitors of TonB-dependent ferric enterobactin (FeEnt) uptake through Escherichia coli FepA (EcoFepA). Among 165 inhibitors found in a primary screen of 17,441 compounds, we evaluated 20 in secondary tests: TonB-dependent ferric siderophore uptake and colicin killing and proton motive force-dependent lactose transport. Six of 20 primary hits inhibited TonB-dependent activity in all tests. Comparison of their effects on [59Fe]Ent and [14C]lactose accumulation suggested several as proton ionophores, but two chemicals, ebselen and ST0082990, are likely not proton ionophores and may inhibit TonB-ExbBD. The facility of FLHTS against E. coli led us to adapt it to Acinetobacter baumannii We identified its FepA ortholog (AbaFepA), deleted and cloned its structural gene, genetically engineered 8 Cys substitutions in its surface loops, labeled them with fluorescein, and made fluorescence spectroscopic observations of FeEnt uptake in A. baumannii Several Cys substitutions in AbaFepA (S279C, T562C, and S665C) were readily fluoresceinated and then suitable as sensors of FeEnt transport. As in E. coli, the test monitored TonB-dependent FeEnt uptake by AbaFepA. In microtiter format with A. baumannii, FLHTS produced Z' factors 0.6 to 0.8. These data validated the FLHTS strategy against even distantly related Gram-negative bacterial pathogens. Overall, it discovered agents that block TonB-dependent transport and showed the potential to find compounds that act against Gram-negative CRE (carbapenem-resistant Enterobacteriaceae)/ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Our results suggest that hundreds of such chemicals may exist in larger compound libraries.IMPORTANCE Antibiotic resistance in Gram-negative bacteria has spurred efforts to find novel compounds against new targets. The CRE/ESKAPE pathogens are resistant bacteria that include Acinetobacter baumannii, a common cause of ventilator-associated pneumonia and sepsis. We performed fluorescence high-throughput screening (FLHTS) against Escherichia coli to find inhibitors of TonB-dependent iron transport, tested them against A. baumannii, and then adapted the FLHTS technology to allow direct screening against A. baumannii This methodology is expandable to other drug-resistant Gram-negative pathogens. Compounds that block TonB action may interfere with iron acquisition from eukaryotic hosts and thereby constitute bacteriostatic antibiotics that prevent microbial colonization of human and animals. The FLHTS method may identify both species-specific and broad-spectrum agents against Gram-negative bacteria.
Collapse
|
15
|
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat Commun 2017; 8:14804. [PMID: 28429713 PMCID: PMC5413942 DOI: 10.1038/ncomms14804] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.
Collapse
Affiliation(s)
- Samuel J Hickman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachael E M Cooper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro, 12-56127 Pisa, Italy
| | - Emanuele Paci
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
16
|
TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. J Bacteriol 2017; 199:JB.00723-16. [PMID: 28031282 DOI: 10.1128/jb.00723-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
Siderophore nutrition tests with Caulobacter crescentus strain NA1000 revealed that it utilized a variety of ferric hydroxamate siderophores, including asperchromes, ferrichromes, ferrichrome A, malonichrome, and ferric aerobactin, as well as hemin and hemoglobin. C. crescentus did not transport ferrioxamine B or ferric catecholates. Because it did not use ferric enterobactin, the catecholate aposiderophore was an effective agent for iron deprivation. We determined the kinetics and thermodynamics of [59Fe]apoferrichrome and 59Fe-citrate binding and transport by NA1000. Its affinity and uptake rate for ferrichrome (equilibrium dissociation constant [Kd ], 1 nM; Michaelis-Menten constant [KM ], 0.1 nM; Vmax, 19 pMol/109 cells/min) were similar to those of Escherichia coli FhuA. Transport properties for 59Fe-citrate were similar to those of E. coli FecA (KM , 5.3 nM; Vmax, 29 pMol/109 cells/min). Bioinformatic analyses implicated Fur-regulated loci 00028, 00138, 02277, and 03023 as TonB-dependent transporters (TBDT) that participate in iron acquisition. We resolved TBDT with elevated expression under high- or low-iron conditions by SDS-PAGE of sodium sarcosinate cell envelope extracts, excised bands of interest, and analyzed them by mass spectrometry. These data identified five TBDT: three were overexpressed during iron deficiency (00028, 02277, and 03023), and 2 were overexpressed during iron repletion (00210 and 01196). CLUSTALW analyses revealed homology of putative TBDT 02277 to Escherichia coli FepA and BtuB. A Δ02277 mutant did not transport hemin or hemoglobin in nutrition tests, leading us to designate the 02277 structural gene as hutA (for heme/hemoglobin utilization).IMPORTANCE The physiological roles of the 62 putative TBDT of C. crescentus are mostly unknown, as are their evolutionary relationships to TBDT of other bacteria. We biochemically studied the iron uptake systems of C. crescentus, identified potential iron transporters, and clarified the phylogenetic relationships among its numerous TBDT. Our findings identified the first outer membrane protein involved in iron acquisition by C. crescentus, its heme/hemoglobin transporter (HutA).
Collapse
|
17
|
Lill Y, Jordan LD, Smallwood CR, Newton SM, Lill MA, Klebba PE, Ritchie K. Confined Mobility of TonB and FepA in Escherichia coli Membranes. PLoS One 2016; 11:e0160862. [PMID: 27935943 PMCID: PMC5147803 DOI: 10.1371/journal.pone.0160862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023] Open
Abstract
The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region 0.180−0.007+0.006 μm in radius in the outer membrane and TonB confined to a region 0.266−0.009+0.007 μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be 21−5+9 μm2/s and 5.4−0.8+1.5 μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins.
Collapse
Affiliation(s)
- Yoriko Lill
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Lorne D. Jordan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuck R. Smallwood
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Salete M. Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (PEK); (KR)
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (PEK); (KR)
| |
Collapse
|
18
|
TonB-dependent ligand trapping in the BtuB transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3105-3112. [DOI: 10.1016/j.bbamem.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
19
|
Li B, Li N, Yue Y, Liu X, Huang Y, Gu L, Xu S. An unusual crystal structure of ferric-enterobactin bound FepB suggests novel functions of FepB in microbial iron uptake. Biochem Biophys Res Commun 2016; 478:1049-53. [PMID: 27539322 DOI: 10.1016/j.bbrc.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022]
Abstract
Iron acquisition by siderophores is critical for the survival of most bacteria. Enterobactin is a kind of catechol siderophore that exhibits the highest affinity to iron atoms secreted by E. coli and several other species of Enterobacteriaceae. The periplasmic binding protein (PBP) FepB can transport ferric-enterobactin (Fe-Ent) from the outer membrane to the membrane-associated ATP-binding cassette transport system in E. coli. To elucidate this process, we solved the crystal structure of FepB in complex with Fe-Ent at a resolution of 1.8 Å. Consistent with previously reported NMR results, our crystal structure shows that, similar to the other type III PBPs, the FepB structure was folded with separated globular N- and C-termini linked by a long α-helix. Additionally, the structure showed that the Fe-Ent bound to the cleft between the N- and C-terminal domains. Exceptionally, FepB differs from the other known siderophore binding PBPs in that it forms a trimer by capturing four Fe-Ents that can each contribute to FepB trimerization. Dynamic light-scattering experiments are consistent with the structural observations and indicate that FepB forms a trimer in a Fe-Ent-dependent manner.
Collapse
Affiliation(s)
- Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China; State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China.
| | - Ning Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xiuhua Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yan Huang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
20
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
21
|
Smallwood CR, Jordan L, Trinh V, Schuerch DW, Gala A, Hanson M, Hanson M, Shipelskiy Y, Majumdar A, Newton SMC, Klebba PE. Concerted loop motion triggers induced fit of FepA to ferric enterobactin. ACTA ACUST UNITED AC 2015; 144:71-80. [PMID: 24981231 PMCID: PMC4076525 DOI: 10.1085/jgp.201311159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The loops of the bacterial outer membrane iron transporter FepA move at different rates to adsorb and grasp the substrate ferric enterobactin before transporting it into the periplasm. Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles.
Collapse
Affiliation(s)
- Chuck R Smallwood
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Lorne Jordan
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Vy Trinh
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Daniel W Schuerch
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amparo Gala
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mathew Hanson
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | - Yan Shipelskiy
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Aritri Majumdar
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Salete M C Newton
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Phillip E Klebba
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
22
|
Pontel LB, Scampoli NL, Porwollik S, Checa SK, McClelland M, Soncini FC. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. MICROBIOLOGY-SGM 2014; 160:1659-1669. [PMID: 24858080 DOI: 10.1099/mic.0.080473-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper and zinc are essential metal ions, but toxic in excess. Bacteria have evolved different strategies to control their intracellular concentrations, ensuring proper supply while avoiding toxicity, including the induction of metal-specific as well as non-specific mechanisms. We compared the transcriptional profiles of Salmonella Typhimurium after exposure to either copper or zinc ions in both rich and minimal media. Besides metal-specific regulatory networks many global stress-response pathways react to an excess of either of these metal ions. Copper excess affects both zinc and iron homeostasis by inducing transcription of these metal-specific regulons. In addition to the control of zinc-specific regulons, zinc excess affects the Cpx regulon and the σ(E) envelope-stress responses. Finally, novel metal-specific upregulated genes were detected including a new copper-detoxification pathway that involves the siderophore enterobactin and the outer-membrane protein TolC. This work sheds light onto the transcriptional landscape of Salmonella after copper or zinc overload, and discloses a new mechanism of copper detoxification.
Collapse
Affiliation(s)
- Lucas B Pontel
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Nadia L Scampoli
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Steffen Porwollik
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| |
Collapse
|
23
|
Vega DE, Young KD. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol 2013; 91:508-21. [PMID: 24330203 DOI: 10.1111/mmi.12473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 01/01/2023]
Abstract
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram-negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild-type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9-glucose medium but that adding iron restores wild-type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron-dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC-directed export or efflux, to eliminate extraneous physiological effects.
Collapse
Affiliation(s)
- Daniel E Vega
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA
| | | |
Collapse
|
24
|
Hahn A, Stevanovic M, Mirus O, Lytvynenko I, Pos KM, Schleiff E. The outer membrane TolC-like channel HgdD is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the Cyanobacterium Anabaena sp. PCC7120. J Biol Chem 2013; 288:31192-205. [PMID: 24014018 DOI: 10.1074/jbc.m113.495598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- From the Department of Biosciences, Molecular Cell Biology of Plants
| | | | | | | | | | | |
Collapse
|
25
|
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. Proc Natl Acad Sci U S A 2013; 110:11553-8. [PMID: 23798405 DOI: 10.1073/pnas.1304243110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.
Collapse
|
26
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Hahn A, Stevanovic M, Mirus O, Schleiff E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J Biol Chem 2012; 287:41126-38. [PMID: 23071120 DOI: 10.1074/jbc.m112.396010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Biosciences, Center of Membrane Proteomics, Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
28
|
Klebba PE, Charbit A, Xiao Q, Jiang X, Newton SM. Mechanisms of iron and haem transport byListeria monocytogenes. Mol Membr Biol 2012; 29:69-86. [DOI: 10.3109/09687688.2012.694485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2:189. [PMID: 21954395 PMCID: PMC3174397 DOI: 10.3389/fmicb.2011.00189] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023] Open
Abstract
TolC is an archetypal member of the outer membrane efflux protein (OEP) family. These proteins are involved in export of small molecules and toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse environments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | | | | | | |
Collapse
|
30
|
Xiao Q, Jiang X, Moore KJ, Shao Y, Pi H, Dubail I, Charbit A, Newton SM, Klebba PE. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 2011; 80:1581-97. [PMID: 21545655 PMCID: PMC3115469 DOI: 10.1111/j.1365-2958.2011.07667.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59) Fe]-Hn transport, and purified Lmo2185 bound [(59) Fe]-Hn (K(D) = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a haemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [(59) Fe]-Hn transport at external concentrations less than 50 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (K(D) = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (K(D) = 123 nM). Deletions of Hup permease components hupD, hupG or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC(+) and hupG(+) alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [(59) Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall K(M) of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (V(max) = 23 pmol 10(9) cells(-1) min(-1)) to those of ferric siderophore transporters. In the ΔhupDGC strain uptake occurred at a threefold lower rate (V(max) = 7 pmol 10(9) cells(-1) min(-1)). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g. Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD(50) of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence.
Collapse
Affiliation(s)
- Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiaoxu Jiang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kyle J. Moore
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yi Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Hualiang Pi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Iharilalao Dubail
- Université Paris Descartes, Faculté de Médecine, Necker-Enfants Malades, Paris, FRANCE
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, FRANCE
| | - Alain Charbit
- Université Paris Descartes, Faculté de Médecine, Necker-Enfants Malades, Paris, FRANCE
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, FRANCE
| | - Salete M. Newton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Phillip E. Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|