1
|
Wiese W, Galita G, Siwecka N, Rozpędek-Kamińska W, Slupianek A, Majsterek I. Endoplasmic Reticulum Stress in Acute Myeloid Leukemia: Pathogenesis, Prognostic Implications, and Therapeutic Strategies. Int J Mol Sci 2025; 26:3092. [PMID: 40243748 PMCID: PMC11988921 DOI: 10.3390/ijms26073092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that poses a significant therapeutic challenge due to its high recurrence rate and demanding treatment regimens. Increasing evidence suggests that endoplasmic reticulum (ER) stress and downstream activation of the unfolded protein response (UPR) pathway play a key role in the pathogenesis of AML. ER stress is triggered by the accumulation of misfolded or unfolded proteins within the ER. This causes activation of the UPR to restore cellular homeostasis. However, the UPR can shift from promoting survival to inducing apoptosis under prolonged or excessive stress conditions. AML cells can manipulate the UPR pathway to evade apoptosis, promoting tumor progression and resistance against various therapeutic strategies. This review provides the current knowledge on ER stress in AML and its prognostic and therapeutic implications.
Collapse
MESH Headings
- Humans
- Endoplasmic Reticulum Stress
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/diagnosis
- Unfolded Protein Response
- Prognosis
- Apoptosis
- Animals
- Signal Transduction
Collapse
Affiliation(s)
- Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (G.G.); (N.S.); (W.R.-K.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (G.G.); (N.S.); (W.R.-K.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (G.G.); (N.S.); (W.R.-K.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (G.G.); (N.S.); (W.R.-K.)
| | - Artur Slupianek
- Office of the Vice President for Research, Temple University, Philadelphia, PA 19140, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (G.G.); (N.S.); (W.R.-K.)
| |
Collapse
|
2
|
Yu X, Zhou Y, Ma X, Zhang W, Li F, Jiang F, Wang Y, Zhang Q, Liu W. Erlotinib-Gold(I) Complex Induces Leukemia Cell DC Differentiation and Remodels the Immunosuppressive Microenvironment. J Med Chem 2024; 67:21795-21810. [PMID: 39656062 DOI: 10.1021/acs.jmedchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Inducing differentiation of leukemia cells into dendritic cells (DC) is pivotal to reshaping the immunosuppressive microenvironment. Here, we report the synthesis of EG2, an erlotinib-gold(I) complex, which directly prompts the differentiation of acute myeloid leukemia (AML) cells into DCs. A patient-derived xenograft (PDX) model underscores the potent anti-AML activity of EG2. Mechanistic studies reveal that EG2 initiates the activation of the PPARγ/RXRα heterodimer by targeting thioredoxin reductase (TrxR) and the epidermal growth factor receptor (EGFR). This activation culminates in the expression of genes associated with the differentiation of the AML cells into DCs as well as pyroptosis, effectively reshaping the immune microenvironment both in vitro and in vivo. Overall, this study marks the first instance of a gold-based small molecule inducing the direct differentiation of tumor cells into immune cells and offers a promising and innovative strategy for the design of AML immunotherapies.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Rd, Nanjing 210023, P. R. China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Fuwei Li
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, 9 Keji Rd, Huai'an 223005, P.R. China
| | - Fengyu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Giannini A, Massimello F, Caretto M, Cosimi G, Mannella P, Luisi S, Gadducci A, Simoncini T. Factors in malignant transformation of ovarian endometriosis: A narrative review. Gynecol Endocrinol 2024; 40:2409911. [PMID: 39445672 DOI: 10.1080/09513590.2024.2409911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Endometriosis is a common estrogen-dependent inflammatory disease with a chronic course and a tendency to recur. The association between endometriosis and cancer has been studied for several years. Numerous reports have demonstrated a strong association between specific ovarian malignancies and endometriotic lesions. Atypical endometriosis has been widely described as a malignant precursor to ovarian epithelial tumors, particularly clear cell carcinomas and endometrioid carcinomas. These histological types associated with endometriosis develop predominantly in the ovary rather than in extragonadal sites. The detailed molecular mechanism of etiology remains unclear. Recent studies have analyzed the genetic and molecular mechanisms involved in endometriosis-associated ovarian cancer. A critical role appears to be played by a carcinogenic model based on iron-induced oxidative stress, which is typical of the endometriosis microenvironment. It has been hypothesized that trans-tubal reflux of blood, endometrial cells and associated iron-induced oxidative stress underlie the development of endometriosis-associated ovarian cancer. However, the multifactorial mechanisms of this malignant transformation are not fully understood. The aim of this review is to summaries the current epidemiological, histopathological, genetic and molecular findings in the progression of endometriosis-associated ovarian cancer.
Collapse
Affiliation(s)
- Andrea Giannini
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Francesca Massimello
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Marta Caretto
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Giulia Cosimi
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Stefano Luisi
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Napiórkowska-Mastalerz M, Wybranowski T, Bosek M, Kruszewski S, Rhone P, Ruszkowska-Ciastek B. A Preliminary Evaluation of Advanced Oxidation Protein Products (AOPPs) as a Potential Approach to Evaluating Prognosis in Early-Stage Breast Cancer Patients and Its Implication in Tumour Angiogenesis: A 7-Year Single-Centre Study. Cancers (Basel) 2024; 16:1068. [PMID: 38473424 DOI: 10.3390/cancers16051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BrC) is a highly prevalent tumour among women. The high incidence and mortality rate of BrC prompts researchers to search for new markers that will provide information on the possible impact of the therapy on the risk of cancer-related events. This study aimed to investigate whether the level of advanced oxidation protein products (AOPPs) may have a potential impact on disease-free (DFS) and overall survival (OS) in BrC patients with early-stage cancer. Additionally, we tried to assess the relationship between AOPPs and angiogenic parameters. In this study, the pre- and post-treatment AOPP levels were examined in the serum of 70 newly diagnosed BrC women. The receiver operating characteristic curve identified pre- and post-treatment AOPPs to be above 9.37 μM and 10.39 μM, respectively, as the best cut-off values to predict the risk of cancer relapse. Additionally, Kaplan-Meier survival analysis indicated that pre- and post-treatment AOPPs above 9.37 μM and 10.39 μM were associated with significantly poorer OS. The uni- and multivariate Cox regression analysis highlighted that lower levels of pre- and post-treatment AOPPs were associated with a longer duration without relapse or cancer-related death. A positive correlation between concentrations of pre-treatment AOPPs and vascular endothelial growth factor A, and negative correlations with levels of soluble forms of vascular endothelial growth factor receptor type 1 and 2, were found. In conclusion, AOPPs appear to have an important role in predicting cancer-related events and may potentially serve as a simple prognostic marker in clinical practice.
Collapse
Affiliation(s)
- Marta Napiórkowska-Mastalerz
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Tomasz Wybranowski
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Maciej Bosek
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Stefan Kruszewski
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
6
|
Khorashad JS, Rizzo S, Tonks A. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:5. [PMID: 38434766 PMCID: PMC10905166 DOI: 10.20517/cdr.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.
Collapse
Affiliation(s)
- Jamshid Sorouri Khorashad
- Department of Immunology and inflammation, Imperial College London, London, W12 0NN, UK
- Department of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5PT, UK
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Rizzo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
7
|
Gaur T, Ali A, Sharma D, Gupta SK, Gota V, Bagal B, Platzbeckar U, Mishra R, Dutt A, Khattry N, Mills K, Hassan MI, Sandur S, Hasan SK. Mitocurcumin utilizes oxidative stress to upregulate JNK/p38 signaling and overcomes Cytarabine resistance in acute myeloid leukemia. Cell Signal 2024; 114:111004. [PMID: 38048856 DOI: 10.1016/j.cellsig.2023.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to Cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome Cytarabine resistance via ROS/p21/CHK1 axis.
Collapse
Affiliation(s)
- Tarang Gaur
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Deepak Sharma
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Saurabh Kumar Gupta
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Vikram Gota
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Bhausaheb Bagal
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400014, India
| | - Uwe Platzbeckar
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Johannisallee 32, D-04103 Leipzig, Germany
| | - Rohit Mishra
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Amit Dutt
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400014, India
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Santosh Sandur
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Syed K Hasan
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Harifi-Mood MS, Daroudi M, Darroudi M, Naseri K, Samarghandian S, Farkhondeh T. Targeting the NF-E2-related factor 2 pathway for overcoming leukemia. Int J Biol Macromol 2023; 253:127594. [PMID: 37890739 DOI: 10.1016/j.ijbiomac.2023.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Leukemia is cancer of the body's blood-forming tissues, including the bone marrow and the lymphatic system. There are many types of leukemia that some of them occur in children and the others are more common in adults. Currently, there are many different chemotherapy agents for leukemia while chemoresistance increases the survival of the leukemic cells. One of the main reasons of chemoresistance, is a transcription factor called Nuclear factor erythroid 2-Related Factor 2 (NRF2). An increase in NRF2 expression in leukemic cells which are being treated with chemotherapy agents, can increase the survival of these cells in the presence of therapeutics. Accordingly, the inhibition of NRF2 by different methods as a cotreatment with classical chemotherapy agents, can be a promising procedure in leukemia treatment. In this study we focus on the association of NRF2 and leukemia and targeting it as a new therapeutic method in leukemia treatment.
Collapse
Affiliation(s)
| | - Mahtab Daroudi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
9
|
Silva-Carvalho AÉ, Oliveira NND, Machado JVL, Moreira DC, Brand GD, Leite JRSA, Plácido A, Eaton P, Saldanha-Araujo F. The Peptide Salamandrin-I Modulates Components Involved in Pyroptosis and Induces Cell Death in Human Leukemia Cell Line HL-60. Pharmaceutics 2023; 15:1864. [PMID: 37514049 PMCID: PMC10384876 DOI: 10.3390/pharmaceutics15071864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Amphibian secretions have been extensively investigated for the production of bioactive molecules. Salamandrin-I is an antioxidant peptide, isolated from the skin secretion of the fire salamander, that has induced no toxicity in microglia or erythrocytes. Importantly, the administration of antioxidants may constitute an adequate therapeutic approach to cancer treatment. Here, with the purpose of better characterizing the therapeutic potential of salamandrin-I, we investigated whether this antioxidant peptide also exerts anticancer activity, using the human leukemia cell line HL-60 as a cancer model. Salamandrin-I treatment induced a significant reduction in HL-60 proliferation, which was accompanied by cell cycle arrest. Furthermore, the peptide-induced cell death showed a significant increase in the LDH release in HL-60 cells. The cellular toxicity exerted by salamandrin-I is possibly related to pyroptosis, since the HL-60 cells showed loss of mitochondrial membrane potential and hyperexpression of inflammasome components following the peptide treatment. This is the first demonstration of the anticancer potential of the salamandrin-I peptide. Such results are important, as they offer relevant insights into the field of cancer therapy and allow the design of future bioactive molecules using salamandrin-I as a template.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - Nakaly Natiely de Oliveira
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - Julia Viana Lafetá Machado
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - Daniel Carneiro Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - Guilherme Dotto Brand
- Institute of Chemistry, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - José Roberto S A Leite
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Peter Eaton
- The Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, UK
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro SN, Brasilia 70910-900, Brazil
| |
Collapse
|
10
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
11
|
Chang VC, Andreotti G, Ospina M, Parks CG, Liu D, Shearer JJ, Rothman N, Silverman DT, Sandler DP, Calafat AM, Beane Freeman LE, Hofmann JN. Glyphosate exposure and urinary oxidative stress biomarkers in the Agricultural Health Study. J Natl Cancer Inst 2023; 115:394-404. [PMID: 36629488 PMCID: PMC10086635 DOI: 10.1093/jnci/djac242] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Glyphosate is the most widely applied herbicide worldwide, and its use has been associated with increased risks of certain hematopoietic cancers in epidemiologic studies. Animal and in vitro experiments suggest that glyphosate may induce oxidative stress, a key characteristic of carcinogens; however, evidence in human populations remains scarce. We investigated associations between glyphosate exposure and urinary oxidative stress biomarkers in the Biomarkers of Exposure and Effect in Agriculture study, a molecular epidemiologic subcohort in the Agricultural Health Study. METHODS This analysis included 268 male farmers selected based on self-reported recent and lifetime occupational glyphosate use and 100 age- and geography-matched male nonfarmers. Concentrations of glyphosate and oxidative stress biomarkers (8-hydroxy-2'-deoxyguanosine [8-OHdG], 8-iso-prostaglandin-F2α, and malondialdehyde [MDA]) were quantified in first-morning-void urine. We performed multivariable linear regression to evaluate associations of urinary glyphosate and self-reported glyphosate use with each oxidative stress biomarker. RESULTS Urinary glyphosate concentrations were positively associated with levels of 8-OHdG (highest vs lowest glyphosate quartile; geometric mean ratio = 1.15, 95% confidence interval = 1.03 to 1.28; Ptrend = .02) and MDA (geometric mean ratio = 1.20, 95% confidence interval = 1.03 to 1.40; Ptrend = .06) overall. Among farmers reporting recent glyphosate use (last 7 days), use in the previous day was also associated with statistically significantly increased 8-OHdG and MDA levels. Compared with nonfarmers, we observed elevated 8-iso-prostaglandin-F2α levels among farmers with recent, high past 12-month, or high lifetime glyphosate use. CONCLUSIONS Our findings contribute to the weight of evidence supporting an association between glyphosate exposure and oxidative stress in humans and may inform evaluations of the carcinogenic potential of this herbicide.
Collapse
Affiliation(s)
- Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Danping Liu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph J Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep 2022; 49:3321-3331. [PMID: 35028852 DOI: 10.1007/s11033-021-07073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.
Collapse
|
13
|
Chen Z, Song J, Wang W, Bai J, Zhang Y, Shi J, Bai J, Zhou Y. A novel 4-mRNA signature predicts the overall survival in acute myeloid leukemia. Am J Hematol 2021; 96:1385-1395. [PMID: 34339537 DOI: 10.1002/ajh.26309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer of myeloid cells with high levels of heterogeneity and great variability in prognostic behaviors. Cytogenetic abnormalities and genetic mutations have been widely used in the prognostic stratification of AML to assign patients into different risk categories. Nevertheless, nearly half of AML patients assigned to intermediate risk need more precise prognostic schemes. Here, 336 differentially expressed genes (DEGs) between AML and control samples and 206 genes representing the intratumor heterogeneity of AML were identified. By applying a LASSO Cox regression model, we generated a 4-mRNA prognostic signature comprising KLF9, ENPP4, TUBA4A and CD247. Higher risk scores were significantly associated with shorter overall survival, complex karyotype, and adverse mutations. We then validated the prognostic value of this 4-mRNA signature in two independent cohorts. We also proved that incorporation of the 4-mRNA-based signature in the 2017 European LeukemiaNet (ELN) risk classification could enhance the predictive accuracy of survival in patients with AML. Univariate and multivariate analyses showed that this signature was independent of traditional prognostic factors such as age, WBC count, and unfavorable cytogenetics. Finally, the molecular mechanisms underlying disparate outcomes in high-risk and low-risk AML patients were explored. Therefore, our findings suggest that the 4-mRNA signature refines the risk stratification and prognostic prediction of AML patients.
Collapse
Affiliation(s)
- Zizhen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Wenjun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jiaojiao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Yuhui Zhang
- Department of Hematology The Second Affiliated Hospital of Tianjin Medical University Tianjin China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jie Bai
- Department of Hematology The Second Affiliated Hospital of Tianjin Medical University Tianjin China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
14
|
Dong C, Zhang N, Zhang L. The Multi-Omic Prognostic Model of Oxidative Stress-Related Genes in Acute Myeloid Leukemia. Front Genet 2021; 12:722064. [PMID: 34659343 PMCID: PMC8514868 DOI: 10.3389/fgene.2021.722064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is one of the most common cancers in the world, and oxidative stress is closely related to leukemia. A lot of effort has been made to improve the prognosis of AML. However, the situation remains serious. Hence, we focused on the study of prognostic genes in AML. Materials and Methods: Prognostic oxidative stress genes were screened out. The gene expression profile of AML patients was downloaded from the The Cancer Genome Atlas (TCGA) database. The oxidative stress-related model was constructed, by which the prognosis of AML patients was predicted using the two GEO GSE23143 datasets and the stability of the GSE71014 authentication model. Results: The prognostic oxidative stress genes were screened out in AML, and the prognostic genes were significantly enriched in a large number of pathways based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. There was a complex interaction between prognostic genes and transcription factors. After constructing the prediction model, the clinical predictive value of the model was discussed in a multi-omic study. We investigated the sensitivity of risk score to common chemotherapeutic agents, the influence of signaling pathways on the prognosis of AML patients, and the correlation of multiple genes with immune score and immune dysfunction. Conclusions: A highly effective prognostic risk model for AML patients was established and validated. The association of prognostic oxidative stress genes with drug sensitivity, signaling pathways, and immune infiltration was explored. The results suggested that oxidative stress genes promised to be potential prognostic biomarkers for AML, which may provide a new basis for disease management.
Collapse
Affiliation(s)
- Chao Dong
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijun Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther 2021; 21:225. [PMID: 34481509 PMCID: PMC8417970 DOI: 10.1186/s12906-021-03398-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cisplatin is an outstanding anticancer drug, but its use has been decreased remarkably due to sever nephrotoxicity. R. vesicarius L. is a leafy vegetable that is evident with anti-angeogenic, anti-inflammatory, anti-proliferative, hepatoprotective, and nephroprotective potential. Therefore, this study was designed to inspect its methanol extract (RVE) for possible nephroprotective effect. METHODS Primarily, in vitro antioxidant activity of RVE was confirmed based on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging aptitude. Thereafter, Swiss Albino male mice were treated with cisplatin (2.5 mg/kg) for 5 successive days to induce nephrotoxicity. Recovery from nephrotoxicity was scrutinized by treating the animals with RVE (25, 50, and 100 mg/kg) intraperitoneally (i.p.) for the next 5 consecutive days. After completion of treatment, mice were sacrificed and kidneys were collected. Part of it was homogenized in sodium phosphate buffer for evaluating malondialdehyde (MDA) level, another part was used to evaluate gene (NQO1, p53, and Bcl-2) expression. Moreover, the hydrogen peroxide (H2O2) neutralizing capacity of RVE was evaluated in HK-2 cells in vitro. Finally, bioactive phytochemicals in RVE were determined using gas chromatography-mass spectrometry (GC-MS). RESULTS RVE showed in vitro antioxidant activity in a dose-dependent fashion with 37.39 ± 1.89 μg/mL IC50 value. Treatment with RVE remarkably (p < 0.05) decreased MDA content in kidney tissue. Besides, the expression of NQO, p53, and Bcl-2 genes was significantly (p < 0.05) mitigated in a dose-dependent manner due to the administration of RVE. RVE significantly (p < 0.05) reversed the H2O2 level in HK-2 cells to almost normal. From GC-MS, ten compounds including three known antioxidants "4H-Pyran-4-one, 2, 3-dihydro-3,5-dihydroxy-6-methyl-", "Hexadecanoic acid", and "Squalene" were detected. The extract was rich with an alkaloid "13-Docosenamide". CONCLUSION Overall, RVE possesses a protective effect against cisplatin-induced kidney damage.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Most Sayla Tasmin
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ariful Haque
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
16
|
Abstract
Oxidative stress is caused by the imbalance between the generation of free radicals/reactive oxygen species (ROS) and the antioxidant defense systems, which can activate various transcription factors and affect their transcriptional pathways. Oxidative stress plays an important role in the occurrence and development of leukemia and is closely related to the treatment and prognosis of leukemia. The standard chemotherapy strategies for the pre-treatment of leukemia have many drawbacks. Hence, the usage of antioxidants and oxidants in the treatment of leukemia is being explored and has been preliminarily applied. This article reviews the research progress of oxidative stress and leukemia. In addition, the application of antioxidants treatment in leukemia has been summarized.
Collapse
|
17
|
Lin CH, Vu JP, Yang CY, Sirisawad M, Chen CT, Dao H, Liu J, Ma X, Pan C, Cefalu J, Tse C, Jackson E, Kuo HP. Glutamate-cysteine ligase catalytic subunit as a therapeutic target in acute myeloid leukemia and solid tumors. Am J Cancer Res 2021; 11:2911-2927. [PMID: 34249435 PMCID: PMC8263632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogenous and aggressive disease with a poor prognosis, necessitating further improvements in treatment therapies. Recently, several targeted therapies have become available for specific AML populations. To identify potential new therapeutic targets for AML, we analyzed published genome wide CRISPR-based screens to generate a gene essentiality dataset across a panel of 14 human AML cell lines while eliminating common essential genes through integration analysis with core fitness genes among 324 human cancer cell lines and DepMap databases. The key glutathione metabolic enzyme, glutamate-cysteine ligase catalytic subunit (GCLC), met the selection threshold. Using CRISPR knockout, GCLC was confirmed to be essential for the cell growth, survival, clonogenicity, and leukemogenesis in AML cells but was comparatively dispensable for normal hematopoietic stem and progenitor cells (HSPCs), indicating that GCLC is a potential therapeutic target for AML. In addition, we evaluated the essentiality of GCLC in solid tumors and demonstrated that GCLC represents a synthetic lethal target for ARID1A-deficient ovarian and gastric cancers.
Collapse
Affiliation(s)
| | - John P Vu
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | | | | | - Chun-Te Chen
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | - Hung Dao
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | - Jing Liu
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | - Xuan Ma
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | - Chin Pan
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| | | | - Chris Tse
- AbbVie Oncology DiscoveryNorth Chicago, IL 60064, USA
| | | | - Hsu-Ping Kuo
- AbbVie Oncology DiscoverySunnyvale, CA 94085, USA
| |
Collapse
|
18
|
Robinson AJ, Darley RL, Tonks A. Reactive oxygen species in leukemias: maintaining cancer cell proliferation via redox signaling and changing metabolic homeostasis. Oncotarget 2021; 12:952-954. [PMID: 34012508 PMCID: PMC8121615 DOI: 10.18632/oncotarget.27913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Alex Tonks
- Correspondence to:Alex Tonks, Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, UK emailemail
| |
Collapse
|
19
|
Mello LD. Potential contribution of ELISA and LFI assays to assessment of the oxidative stress condition based on 8-oxodG biomarker. Anal Biochem 2021; 628:114215. [PMID: 33957135 DOI: 10.1016/j.ab.2021.114215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023]
Abstract
Immunoassays have been extensively applied in the medical diagnostic field. Enzyme-Linked Immunosorbent Assay (ELISA) and Lateral Flow Immunochemical Assay (LFIA) are methods that have been well established to analysis of clinical substances such as protein, hormones, drugs, identification of antibodies and in the quantification of antigen. Over the past years, the application of these methods has been extended to assess the clinical oxidative stress condition based on monitoring of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) biomarker levels. The present manuscript provides an overview of the current immunoassays based on ELISA and LFIA technologies applied for a quantitative analysis of the 8-oxodG. The discussion focuses on the principles of development, improvement and analytical performance of these assays. The relationship of the molecule 8-oxodG as a clinical biomarker of the assessment of the oxidative stress condition is also discussed. Commercially available products to 8-oxodG analysis are also presented.
Collapse
|
20
|
Robinson AJ, Davies S, Darley RL, Tonks A. Reactive Oxygen Species Rewires Metabolic Activity in Acute Myeloid Leukemia. Front Oncol 2021; 11:632623. [PMID: 33777786 PMCID: PMC7993200 DOI: 10.3389/fonc.2021.632623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in over-production of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have also shown that increased ROS production promotes increased glucose uptake and proliferation in AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and protein metabolisms are all intricately interconnected, we aimed to examine the effect of cellular ROS levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease.
Collapse
Affiliation(s)
| | | | | | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Wells G, Kennedy PT, Dahal LN. Investigating the Role of Indoleamine 2,3-Dioxygenase in Acute Myeloid Leukemia: A Systematic Review. Front Immunol 2021; 12:651687. [PMID: 33777052 PMCID: PMC7988196 DOI: 10.3389/fimmu.2021.651687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Background: The immunomodulatory enzyme, indoleamine 2,3-dioxygenase (IDO) facilitates tryptophan catabolism at the rate-limiting step of the kynurenine (Kyn) pathway. IDO expression and elevations in Kyn metabolites are associated with immunosuppressive tumor microenvironment including T cell proliferative arrest and generation of regulatory T cells (Tregs) which can favor tumor progression. However, the extent of the role of IDO in acute myeloid leukemia (AML) is currently ill-defined. This study reviews the role of IDO-driven Treg function in AML and evaluates the current body of evidence implicating IDO in AML pathogenesis. Method: Studies related to IDO in AML were identified through a systematic review of PubMed and Scopus. Data extracted described sample analysis, IDO expression, IDO in prognosis, techniques used in Treg phenotypic studies, and the effect of IDO inhibitors. Results: Twenty studies were included in the systematic review. Expression of IDO was identified in a range of cells in AML, both inducible and constitutive. Seven studies indicated an association between elevated expression and poor clinical prognosis. Six studies suggested a positive correlation between IDO expression and Treg induction, with FoxP3 being the prominent Treg phenotypic marker. Of eight studies investigating IDO inhibition, some reported reductions in Treg frequency and enhanced effector T cell proliferation. Conclusion: This review highlights that IDO expression in AML is associated with poor prognosis and measurement of IDO and its Kyn metabolites may offer utility as prospective prognostic markers. Pharmacological inhibition of IDO using novel drugs may hold promise for the treatment of AML.
Collapse
Affiliation(s)
- Georgia Wells
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul T Kennedy
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
23
|
Azelaic Acid Exerts Antileukemia Effects against Acute Myeloid Leukemia by Regulating the Prdxs/ROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1295984. [PMID: 33425206 PMCID: PMC7775164 DOI: 10.1155/2020/1295984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a poor prognosis attributed to elevated reactive oxygen species (ROS) levels. Thus, agents that inhibit ROS generation in AML should be exploited. Azelaic acid (AZA), a small molecular compound, can scavenge ROS and other free radicals, exerting antitumor effects on various tumor cells. Herein, this study evaluated the antileukemic activity of AZA against AML via regulation of the ROS signaling pathway. We found that AZA reduced intracellular ROS levels and increased total antioxidant capacity in AML cell lines and AML patient cells. AZA suppressed the proliferation of AML cell lines and AML patient cells, expending minimal cytotoxicity on healthy cells. Laser confocal microscopy showed that AZA-treated AML cells surged and ruptured gradually on microfluidic chips. Additionally, AZA promoted AML cell apoptosis and arrested the cell cycle at the G1 phase. Further analysis demonstrated that peroxiredoxin (Prdx) 2 and Prdx3 were upregulated in AZA-treated AML cells. In vivo, AZA prolonged survival and attenuated AML by decreasing CD33+ immunophenotyping in the bone marrow of a patient-derived xenograft AML model. Furthermore, mice in the AZA-treated group had an increased antioxidant capacity and Prdx2/Prdx3 upregulation. The findings indicate that AZA may be a potential agent against AML by regulating the Prdxs/ROS signaling pathway.
Collapse
|
24
|
Allegra AG, Mannino F, Innao V, Musolino C, Allegra A. Radioprotective Agents and Enhancers Factors. Preventive and Therapeutic Strategies for Oxidative Induced Radiotherapy Damages in Hematological Malignancies. Antioxidants (Basel) 2020; 9:antiox9111116. [PMID: 33198328 PMCID: PMC7696711 DOI: 10.3390/antiox9111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a critical role in the management of a wide range of hematologic malignancies. It is well known that the post-irradiation damages both in the bone marrow and in other organs are the main causes of post-irradiation morbidity and mortality. Tumor control without producing extensive damage to the surrounding normal cells, through the use of radioprotectors, is of special clinical relevance in radiotherapy. An increasing amount of data is helping to clarify the role of oxidative stress in toxicity and therapy response. Radioprotective agents are substances that moderate the oxidative effects of radiation on healthy normal tissues while preserving the sensitivity to radiation damage in tumor cells. As well as the substances capable of carrying out a protective action against the oxidative damage caused by radiotherapy, other substances have been identified as possible enhancers of the radiotherapy and cytotoxic activity via an oxidative effect. The purpose of this review was to examine the data in the literature on the possible use of old and new substances to increase the efficacy of radiation treatment in hematological diseases and to reduce the harmful effects of the treatment.
Collapse
Affiliation(s)
- Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
- Correspondence: ; Tel.: +39-090-221-2364
| |
Collapse
|
25
|
Kaweme NM, Zhou S, Changwe GJ, Zhou F. The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications. Biomark Res 2020; 8:63. [PMID: 33292641 PMCID: PMC7661181 DOI: 10.1186/s40364-020-00242-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Excessive generation of reactive oxygen species (ROS) in the presence of a defective antioxidant system can induce cellular damage and disrupt normal physiological functions. Several studies have revealed the unfavorable role of ROS in promoting the growth, proliferation, migration, and survival of leukemia cells. In this review study, we summarize the mechanisms of ROS production and its role in leukemogenesis, counteractive effects of antioxidants, and implicate the current ROS-dependent anticancer therapies in acute myeloid leukemia. BODY: The dysregulation of the redox system is known to play a significant role in the pathogenesis of leukemia. Leukemia cells generate high levels of ROS, which further increases the levels through extra pathways, including mitochondrial deoxyribonucleic mutation, leukemic oncogene activation, increased nicotinamide adenine phosphate hydrogen (NADPH), and cytochrome P450 activities. Aforementioned pathways once activated have shown to promote genomic instability, induce drug resistance to leukemia medical therapy, disease relapse and reduce survival period. The current standard of treatment with chemotherapy employs the pro-oxidant approach to induce apoptosis and promote tumor regression. However, this approach retains several deleterious effects on the subject resulting in degradation of the quality of life. Nevertheless, the addition of an antioxidant as an adjuvant drug to chemotherapy alleviates treatment-related toxicity, increases chemotherapeutic efficacy, and improves survival rates of a patient. CONCLUSION Acute myeloid leukemia remains a daunting challenge to clinicians. The desire to achieve the maximum benefit of chemotherapy but also improve patient outcomes is investigated. ROS generated through several pathways promotes leukemogenesis, drug resistance, and disease relapse. Chemotherapy, the mainstay of treatment, further upregulates ROS levels. Therefore, the addition of an antioxidant to leukemia medical therapy alleviates toxicity and improves patient outcomes.
Collapse
Affiliation(s)
- Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Shu Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Geoffrey Joseph Changwe
- School of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan, 250012, P.R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China.
| |
Collapse
|
26
|
Ge J, Yang H, Lu X, Wang S, Zhao Y, Huang J, Xi Z, Zhang L, Li R. Combined exposure to formaldehyde and PM 2.5: Hematopoietic toxicity and molecular mechanism in mice. ENVIRONMENT INTERNATIONAL 2020; 144:106050. [PMID: 32861163 PMCID: PMC7839661 DOI: 10.1016/j.envint.2020.106050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/24/2023]
Abstract
PM2.5 and formaldehyde (FA) are major outdoor and indoor air pollutants in China, respectively, and both are known to be harmful to human health and to be carcinogenic. Of all the known chronic health effects, leukaemia is one of the most serious health risks associated with these two pollutants. To explore the influence and underlying mechanisms of exposure to formaldehyde and PM2.5 on hematopoietic toxicity, we systematically studied the toxicity induced in hematopoietic organs: bone marrow (BM); spleen; and myeloid progenitor cells (MPCs). Male Balb/c mice were exposed to: PM2.5 (20, 160 μg/kg·d) at a dose of 40 μL per mouse or formaldehyde (0.5, 3.0 mg/m3) for 8 h per day for 2 weeks or co-exposed to formaldehyde and PM2.5 (20 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 20 μg/kg·d PM2.5 + 3 mg/m3 FA, 160 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 160 μg/kg·d PM2.5 + 3 mg/m3 FA) for 2 weeks. Similar toxic effects were found in the formaldehyde-only and PM2.5-only groups, including significant decrease of blood cells and MPCs, along with decreased expression of hematopoietic growth factors. In addition, individual exposure of formaldehyde or PM2.5 increased oxidative stress, DNA damage and immune system disorder by destroying the balance of Th1/Th2, and Treg/Th17. DNA repair was markedly inhibited by deregulating the mammalian target of rapamycin (mTOR) pathway. Combined exposure to PM2.5 and formaldehyde led to more severe effects. Administration of Vitamin E (VE) was shown to attenuate these effects. In conclusion, our findings suggested that PM2.5 and formaldehyde may induce hematopoietic toxicity by reducing the expression of hematopoietic growth factors, increasing oxidative stress and DNA damage, activating the 'immune imbalance' pathway and suppressing the DNA-repair related mTOR pathway. The hematopoietic toxicity induced by combined exposure of PM2.5 and formaldehyde might provide further insights into the increased incidence of hematological diseases, including human myeloid leukaemia.
Collapse
Affiliation(s)
- Jing Ge
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
27
|
Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, Trx and GSH Antioxidant Systems in Leukemia Cells. Antioxidants (Basel) 2020; 9:antiox9070633. [PMID: 32709140 PMCID: PMC7402140 DOI: 10.3390/antiox9070633] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signal transduction pathways have been implicated in the pathogenesis of leukemia. The aim of this study was to investigate the effect of the combination of ERK1/2 inhibitor AZD0364 and PI3K inhibitor ZSTK474 on acute lymphoblastic leukemia (ALL) REH, MOLT-4, acute myeloid leukemia (AML) MOLM-14, and chronic myeloid leukemia (CML) K562 cell lines. To evaluate the interactions of the drugs, cells were treated for 48 h with AZD0364 or ZSTK474 alone and in combination at fixed ratios. The combinatorial effects of both inhibitors were synergistic over a wide range of concentrations in REH, MOLT-4, and MOLM-14 cell lines. However, in K562 cells, the effects were found to be antagonistic. Furthermore, AZD0364 and ZSTK474 significantly decreased both ERK1/2 and AKT activation in REH, MOLT-4, and MOLM-14 cells. The results showed that incubation with both AZD0364 and ZSTK474 inhibited cell viability, increased reactive oxygen species (ROS) production, and induced apoptosis in leukemia cells. We observed that combined treatment with AZD0364 and ZSTK474 affected nuclear factor-κB (NF-κB) and antioxidant protein levels: NF-E2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), thioredoxin (Trx), thioredoxin reductase (TrxR), and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. These effects were accompanied with decreased antiapoptotic survivin protein level. However, distinct cell line dependent effects were observed. In conclusion, the combination of AZD0364 and ZSTK474 can exert a synergistic anticancer effect in ALL and AML cells, which is associated with the induction of oxidative stress and the involvement of cellular antioxidant defense mechanisms.
Collapse
|
28
|
Histone deacetylase inhibitor based prodrugs. Eur J Med Chem 2020; 203:112628. [PMID: 32679451 DOI: 10.1016/j.ejmech.2020.112628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes which play important roles in the development and progression of cancers. Inhibition of HDACs has been widely studied as a therapeutic strategy in the discovery of anticancer drugs. HDAC inhibitors (HDACIs) have exhibited potency against a variety of cancer types, and four of them have been approved by the US FDA for cancer treatment. However, the clinical benefits of current HDACIs is limited by the insufficient physicochemical property, selectivity and potency. To improve the clinical potential of HDACIs, the prodrug strategy had been utilized to improve the in vivo pharmacokinetic and pharmacodynamic performances of HDACIs. Enhancements in the stability, water solubility, lipophilicity, oral bioavailability and tumor cell selectivity were reported by various studies. Herein, the development of different kinds of HDACI-based prodrug is summarized for the further structural modification of HDACIs with high potential to be drug candidates.
Collapse
|
29
|
Inhibition of Xanthine Oxidoreductase Enhances the Potential of Tyrosine Kinase Inhibitors against Chronic Myeloid Leukemia. Antioxidants (Basel) 2020; 9:antiox9010074. [PMID: 31952182 PMCID: PMC7022995 DOI: 10.3390/antiox9010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the expression of the oncogenic kinase BCR-ABL. Although tyrosine kinase inhibitors (TKIs) against BCR-ABL represent the standard therapeutic option for CML, resistances to TKIs can be a serious problem. Thus, the search for novel therapeutic approaches is still needed. CML cells show an increased ROS production, which is required for maintaining the BCR-ABL signaling cascade active. In line with that, reducing ROS levels could be an interesting therapeutic strategy for the clinical management of resistant CML. To analyze the therapeutic potential of xanthine oxidoreductase (XOR) in CML, we tested the effect of XOR inhibitor allopurinol. Here, we show for the first time the therapeutic potential of allopurinol against BCR-ABL-positive CML cells. Allopurinol reduces the proliferation and clonogenic ability of the CML model cell lines K562 and KCL22. More importantly, the combination of allopurinol with imatinib or nilotinib reduced cell proliferation in a synergistic manner. Moreover, the co-treatment arms hampered cell clonogenic capacity and induced cell death more strongly than each single-agent arm. The reduction of intracellular ROS levels and the attenuation of the BCR-ABL signaling cascade may explain these effects. Finally, the self-renewal potential of primary bone marrow cells from CML patients was also severely reduced especially by the combination of allopurinol with TKIs. In summary, here we show that XOR inhibition is an interesting therapeutic option for CML, which can enhance the effectiveness of the TKIs currently used in clinics.
Collapse
|
30
|
Kreitz J, Schönfeld C, Seibert M, Stolp V, Alshamleh I, Oellerich T, Steffen B, Schwalbe H, Schnütgen F, Kurrle N, Serve H. Metabolic Plasticity of Acute Myeloid Leukemia. Cells 2019; 8:E805. [PMID: 31370337 PMCID: PMC6721808 DOI: 10.3390/cells8080805] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common and life-threatening leukemias. A highly diverse and flexible metabolism contributes to the aggressiveness of the disease that is still difficult to treat. By using different sources of nutrients for energy and biomass supply, AML cells gain metabolic plasticity and rapidly outcompete normal hematopoietic cells. This review aims to decipher the diverse metabolic strategies and the underlying oncogenic and environmental changes that sustain continuous growth, mediate redox homeostasis and induce drug resistance in AML. We revisit Warburg's hypothesis and illustrate the role of glucose as a provider of cellular building blocks rather than as a supplier of the tricarboxylic acid (TCA) cycle for energy production. We discuss how the diversity of fuels for the TCA cycle, including glutamine and fatty acids, contributes to the metabolic plasticity of the disease and highlight the roles of amino acids and lipids in AML metabolism. Furthermore, we point out the potential of the different metabolic effectors to be used as novel therapeutic targets.
Collapse
Affiliation(s)
- Johanna Kreitz
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Christine Schönfeld
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Marcel Seibert
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Verena Stolp
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Islam Alshamleh
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Björn Steffen
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany.
| | - Hubert Serve
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion 2019; 47:38-46. [PMID: 31029641 DOI: 10.1016/j.mito.2019.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
32
|
Riccio P, Sessa R, de Nicola S, Petruzziello F, Trombetti S, Menna G, Pepe G, Maddalena P, Izzo P, Grosso M. GATA-1 isoforms differently contribute to the production and compartmentation of reactive oxygen species in the myeloid leukemia cell line K562. J Cell Physiol 2019; 234:20829-20846. [PMID: 31049966 PMCID: PMC6767011 DOI: 10.1002/jcp.28688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Maintenance of a balanced expression of the two isoforms of the transcription factor GATA‐1, the full‐length protein (GATA‐1FL) and a shorter isoform (GATA‐1
S), contributes to control hematopoiesis, whereas their dysregulation can alter the differentiation/proliferation potential of hematopoietic precursors thereby eventually leading to a variety of hematopoietic disorders. Although it is well established that these isoforms play opposite roles in these remarkable processes, most of the molecular pathways involved remain unknown. Here, we demonstrate that GATA‐1FL and GATA‐1S are able to differently influence intracellular redox states and reactive oxygen species (ROS) compartmentation in the erythroleukemic K562 cell line, thus shedding novel mechanistic insights into the processes of cell proliferation and apoptosis resistance in myeloid precursors. Furthermore, given the role played by ROS signaling as a strategy to escape apoptosis and evade cell‐mediated immunity in myeloid cells, this study highlights a mechanism through which aberrant expression of GATA‐1 isoforms could play a role in the leukemogenic process.
Collapse
Affiliation(s)
- Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Sergio de Nicola
- CNR-SPIN, National Research Council, Institute for Superconductors, Innovative Materials and Devices, Naples, Italy
| | - Fara Petruzziello
- Pediatric Hematology Unit, Santobono-Pausilipon Hospital, Naples, Italy
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Menna
- Pediatric Hematology Unit, Santobono-Pausilipon Hospital, Naples, Italy
| | - Giampiero Pepe
- CNR-SPIN, National Research Council, Institute for Superconductors, Innovative Materials and Devices, Naples, Italy.,Department of Physics, University of Naples Federico II, Naples, Italy
| | | | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Jin Y, Yang Q, Liang L, Ding L, Liang Y, Zhang D, Wu B, Yang T, Liu H, Huang T, Shen H, Tu H, Pan Y, Wei Y, Yang Y, Zhou F. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. J Exp Clin Cancer Res 2018; 37:277. [PMID: 30454068 PMCID: PMC6245615 DOI: 10.1186/s13046-018-0948-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increase in the levels of reactive oxygen species (ROS) in acute myeloid leukemia (AML) patients has been previously described; thus, it is important to regulate ROS levels in AML. METHODS Flow cytometry were used to assess the in vitro effect of compound kushen injection (CKI). Quantitative proteomics were used to analyse the mechanism. The AML patient-derived xenograft (PDX) model were used to evaluate the in vivo effect of CKI. RESULTS We found that intracellular ROS levels in AML cells were decreased, the antioxidant capacity were increased when treated with CKI. CKI inhibited the proliferation of AML cells and enhanced the cytotoxicity of AML cells, which has few toxic effects on haematopoietic stem cells (HSCs) and T cells. At the single-cell level, individual AML cells died gradually by CKI treatment on optofluidic chips. CKI promoted apoptosis and arrested cell cycle at G1/G0 phase in U937 cells. Furthermore, higher peroxiredoxin-3 (Prdx3) expression levels were identified in CKI-treated U937 cells through quantitative proteomics detection. Mechanically, the expression of Prdx3 and peroxiredoxin-2 (Prdx2) was up-regulated in CKI-treated AML cells, while thioredoxin 1 (Trx1) was reduced. Laser confocal microscopy showed that the proteins Prdx2 could be Interacted with Trx1 by CKI treatment. In vivo, the survival was longer and the disease was partially alleviated by decreased CD45+ immunophenotyping in peripheral blood in the CKI-treated group in the AML PDX model. CONCLUSIONS Antioxidant CKI possess better clinical application against AML through the Prdxs/ROS/Trx1 signalling pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Female
- HL-60 Cells
- Heterografts
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Microscopy, Confocal
- Peroxiredoxins/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Thioredoxins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Qian Yang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Li Liang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 Hubei China
| | - Lu Ding
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Yuxing Liang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Dongdong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Balu Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Tian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Hailing Liu
- Department of Clinical Haematology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Tingting Huang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Hui Shen
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Honglei Tu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071 Hubei China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 Hubei China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| |
Collapse
|
34
|
Characterization of Mutations in the Mitochondrial Encoded Electron Transport Chain Complexes in Acute Myeloid Leukemia. Sci Rep 2018; 8:13301. [PMID: 30185817 PMCID: PMC6125587 DOI: 10.1038/s41598-018-31489-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Acute Myeloid Leukemia is a devastating and heterogeneous, hematological malignancy characterized by the uncontrolled proliferation of undifferentiated myeloid progenitor cells—blasts. Mutations in certain mitochondrial proteins, such as IDH2 have been shown to contribute to leukemogenesis. However, the role of mutations in mitochondrial-encoded Electron Transport Chain (ETC) genes have thus far not been well elucidated in AML. Here, we use TCGA data to characterize mutations in the ETC genes and their association with clinical outcomes in AML. We found that mitochondrial ETC mutations—in Complex I, III, IV and/or V (ATP Synthase)—were present in 8% of patients with AML and were significantly more frequent in older patients. Patients with ETC mutations had worse overall survival than ETC wild type patients (OS: 9.3 vs 20.1 months; p-value: 0.007). Additionally, mutations in either or both Complex I and IV were associated with TP53 mutations (p-value: 0.009), and among TP53 mutated patients, mutations in either or both Complex I and IV were significantly associated with worse overall survival (OS: 0.85 vs 9.4 months; p-value: 0.008). Elucidation of the mechanisms by which ETC mutations contribute to AML pathogenesis and progression would facilitate the development of novel therapeutic targets.
Collapse
|
35
|
Liao Y, Xu L, Ou S, Edwards H, Luedtke D, Ge Y, Qin Z. H 2O 2/Peroxynitrite-Activated Hydroxamic Acid HDAC Inhibitor Prodrugs Show Antileukemic Activities against AML Cells. ACS Med Chem Lett 2018; 9:635-640. [PMID: 30034592 DOI: 10.1021/acsmedchemlett.8b00057] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Occurrence of acute myeloid leukemia (AML) results in abundant endogenous reactive oxygen species (ROS)/reactive nitrogen species (RNS) in AML cells and in disease-relevant microenvironments. Histone deacetylase inhibitor (HDACi) prodrug approach was designed accordingly by masking the hydroxamic acid zinc binding group with hydrogen peroxide (H2O2)/peroxynitrite (PNT)-sensitive, self-immolative aryl boronic acid moiety. Model prodrugs 5-82 and 5-23 were activated in AML cells to release cytotoxic HDACis, evidenced by inducing acetylation markers and reducing viability of AML cells. Intracellular activation and antileukemic activities of prodrug were increased or decreased by ROS/PNT inducers and scavengers, respectively. Prodrugs 5-82 and 5-23 also enhanced the potency of chemotherapy drug cytarabine, supporting the potentials of this prodrug class in combinatorial treatment.
Collapse
Affiliation(s)
- Yi Liao
- Department of Pharmaceutical Sciences, Eugene Applebaum College
of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College
of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College
of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Holly Edwards
- Department of Oncology and the Molecular Therapeutics Program of the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Daniel Luedtke
- Department of Oncology and the Molecular Therapeutics Program of the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Yubin Ge
- Department of Oncology and the Molecular Therapeutics Program of the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College
of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
36
|
Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:125. [PMID: 29940987 PMCID: PMC6019308 DOI: 10.1186/s13046-018-0797-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
Oxidative stress is related to ageing and degenerative diseases, including cancer. However, a moderate amount of reactive oxygen species (ROS) is required for the regulation of cellular signalling and gene expression. A low level of ROS is important for maintaining quiescence and the differentiation potential of haematopoietic stem cells (HSCs), whereas the level of ROS increases during haematopoietic differentiation; thus, suggesting the importance of redox signalling in haematopoiesis. Here, we will analyse the importance of ROS for haematopoiesis and include evidence showing that cells from leukaemia patients live under oxidative stress. The potential sources of ROS will be described. Finally, the level of oxidative stress in leukaemic cells can also be harnessed for therapeutic purposes. In this regard, the reliance of front-line anti-leukaemia chemotherapeutics on increased levels of ROS for their mechanism of action, as well as the active search for novel compounds that modulate the redox state of leukaemic cells, will be analysed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Marta Romo-González
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Carla Ijurko
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain. .,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain.
| |
Collapse
|
37
|
Huang M, Garcia JS, Thomas D, Zhu L, Nguyen LXT, Chan SM, Majeti R, Medeiros BC, Mitchell BS. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget 2018; 7:74917-74930. [PMID: 27732946 PMCID: PMC5342712 DOI: 10.18632/oncotarget.12493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying activation of the BET pathway in AML cells remain poorly understood. We have discovered that autophagy is activated in acute leukemia cells expressing mutant nucleophosmin 1 (NPMc+) or MLL-fusion proteins. Autophagy activation results in the degradation of NPM1 and HEXIM1, two negative regulators of BET pathway activation. Inhibition of autophagy with pharmacologic inhibitors or through knocking down autophagy-related gene 5 (Atg5) expression increases the expression of both NPM1 and HEXIM1. The Brd4 inhibitors JQ1 and I-BET-151 also inhibit autophagy and increase NPM1 and HEXIM1 expression. We conclude that the degradation of NPM1 and HEXIM1 through autophagy in certain AML subsets contributes to the activation of the BET pathway in these cells.
Collapse
Affiliation(s)
- Min Huang
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Jacqueline S Garcia
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Daniel Thomas
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Steven M Chan
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Bruno C Medeiros
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
38
|
Huang M, Zhu L, Garcia JS, Li MX, Gentles AJ, Mitchell BS. Brd4 regulates the expression of essential autophagy genes and Keap1 in AML cells. Oncotarget 2018; 9:11665-11676. [PMID: 29545928 PMCID: PMC5837743 DOI: 10.18632/oncotarget.24432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
We have recently reported that activation of Brd4 is associated with the presence of autophagy in NPMc+ and MLL AML cells. In order to determine the mechanisms underlying this relationship, we have examined the role of Brd4 in regulating the expression of several genes that are central to the process of autophagy. We found that Brd4 binds to the promoters of ATG 3, 7 and CEBPβ, and expression of these genes is markedly reduced by inhibitors of Brd4, as well as by Brd4-shRNA and depletion of CEBPβ. Inhibitors of Brd4 also dramatically suppress the transcription of Keap1, thereby increasing the expression of anti-oxidant genes through the Nrf2 pathway and reducing the cytotoxicity induced by Brd4 inhibitors. Elimination of ATG3 or KEAP1 expression using CRISPR-cas9 mediated genomic editing markedly reduced autophagy. We conclude that Brd4 plays a significant role in autophagy activation through the direct transcriptional regulation of genes essential for it, as well as through the Keap1-Nrf2 axis in NPMc+ and MLL-fusion AML cells.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jacqueline S Garcia
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael X Li
- Department of Electrical Engineering and Computer Science, College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Andrew J Gentles
- Department of Medicine, Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
39
|
Di Marcantonio D, Martinez E, Sidoli S, Vadaketh J, Nieborowska-Skorska M, Gupta A, Meadows JM, Ferraro F, Masselli E, Challen GA, Milsom MD, Scholl C, Fröhling S, Balachandran S, Skorski T, Garcia BA, Mirandola P, Gobbi G, Garzon R, Vitale M, Sykes SM. Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clin Cancer Res 2017; 24:608-618. [PMID: 29127121 DOI: 10.1158/1078-0432.ccr-17-2684] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Purpose: The intracellular redox environment of acute myeloid leukemia (AML) cells is often highly oxidized compared to healthy hematopoietic progenitors and this is purported to contribute to disease pathogenesis. However, the redox regulators that allow AML cell survival in this oxidized environment remain largely unknown.Experimental Design: Utilizing several chemical and genetically-encoded redox sensing probes across multiple human and mouse models of AML, we evaluated the role of the serine/threonine kinase PKC-epsilon (PKCε) in intracellular redox biology, cell survival and disease progression.Results: We show that RNA interference-mediated inhibition of PKCε significantly reduces patient-derived AML cell survival as well as disease onset in a genetically engineered mouse model (GEMM) of AML driven by MLL-AF9. We also show that PKCε inhibition induces multiple reactive oxygen species (ROS) and that neutralization of mitochondrial ROS with chemical antioxidants or co-expression of the mitochondrial ROS-buffering enzymes SOD2 and CAT, mitigates the anti-leukemia effects of PKCε inhibition. Moreover, direct inhibition of SOD2 increases mitochondrial ROS and significantly impedes AML progression in vivo Furthermore, we report that PKCε over-expression protects AML cells from otherwise-lethal doses of mitochondrial ROS-inducing agents. Proteomic analysis reveals that PKCε may control mitochondrial ROS by controlling the expression of regulatory proteins of redox homeostasis, electron transport chain flux, as well as outer mitochondrial membrane potential and transport.Conclusions: This study uncovers a previously unrecognized role for PKCε in supporting AML cell survival and disease progression by regulating mitochondrial ROS biology and positions mitochondrial redox regulators as potential therapeutic targets in AML. Clin Cancer Res; 24(3); 608-18. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Simone Sidoli
- Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Vadaketh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Immersion Science Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anushk Gupta
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Immersion Science Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Elena Masselli
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ) Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Claudia Scholl
- Department of Translational Oncology, NCT Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, NCT Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Prisco Mirandola
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Ramiro Garzon
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Marco Vitale
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy.,CoreLab, Parma University Hospital, Parma, Italy
| | | |
Collapse
|
40
|
Should every Patient with MDS get Iron Chelation - Probably Yes. Mediterr J Hematol Infect Dis 2017; 9:e2017055. [PMID: 28894564 PMCID: PMC5584764 DOI: 10.4084/mjhid.2017.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|
41
|
Pilo F, Angelucci E. A storm in the niche: Iron, oxidative stress and haemopoiesis. Blood Rev 2017; 32:29-35. [PMID: 28847531 DOI: 10.1016/j.blre.2017.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Iron, although essential, is harmful in high amounts. Oxidative stress as a result of excess reactive oxygen species (ROS) and a prooxidative/antioxidative imbalance between ROS production and elimination, play a key role in cellular damage. There is evidence to support the role of ROS in the pathogenesis of a range of diseases including the myelodysplastic syndromes (MDS) and leukaemia. Oxidative stress seems to affect the self-renewal, proliferation and differentiation of haematopoietic stem cells and impair cell growth. Three aspects of these defective haemopoietic mechanisms may be associated with the activities of ROS: clonal evolution, haematological improvement and recovery of haemopoiesis after haematopoietic stem cell transplantation (HSCT). This review aims to provide haematologists with an overview of results from in vitro and murine models and preliminary clinical evidence on the diagnostic, prognostic and therapeutic implications of the complex interactions between the haemopoietic niche, iron, oxidative stress and inadequate haemopoiesis.
Collapse
Affiliation(s)
- Federica Pilo
- Hematology and Transplant Center, Ospedale Oncologico di Riferimento Regionale "Armando Businco", Azienda Ospedaliera Brotzu, Cagliari, Italy..
| | - Emanuele Angelucci
- Hematology and Transplant Center, Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
42
|
Zhou F, Pan Y, Wei Y, Zhang R, Bai G, Shen Q, Meng S, Le XF, Andreeff M, Claret FX. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress. Clin Cancer Res 2017; 23:4450-4461. [PMID: 28270496 PMCID: PMC5861712 DOI: 10.1158/1078-0432.ccr-16-2426] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway.Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 (JAB1/COPS5) and thioredoxin (TRX) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines.Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivoConclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Yunbao Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Clinical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ronghua Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gaigai Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Qiuju Shen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Shan Meng
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
43
|
NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 2017; 130:1649-1660. [PMID: 28733324 DOI: 10.1182/blood-2017-03-772939] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
Improvements in the understanding of the metabolic cross-talk between cancer and its microenvironment are expected to lead to novel therapeutic approaches. Acute myeloid leukemia (AML) cells have increased mitochondria compared with nonmalignant CD34+ hematopoietic progenitor cells. Furthermore, contrary to the Warburg hypothesis, AML relies on oxidative phosphorylation to generate adenosine triphosphate. Here we report that in human AML, NOX2 generates superoxide, which stimulates bone marrow stromal cells (BMSC) to AML blast transfer of mitochondria through AML-derived tunneling nanotubes. Moreover, inhibition of NOX2 was able to prevent mitochondrial transfer, increase AML apoptosis, and improve NSG AML mouse survival. Although mitochondrial transfer from BMSC to nonmalignant CD34+ cells occurs in response to oxidative stress, NOX2 inhibition had no detectable effect on nonmalignant CD34+ cell survival. Taken together, we identify tumor-specific dependence on NOX2-driven mitochondrial transfer as a novel therapeutic strategy in AML.
Collapse
|
44
|
Schito L, Rey S, Konopleva M. Integration of hypoxic HIF-α signaling in blood cancers. Oncogene 2017; 36:5331-5340. [DOI: 10.1038/onc.2017.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
|
45
|
Menteşe A, Erkut N, Demir S, Özer Yaman S, Sümer A, Doğramacı Ş, Alver A, Sönmez M. Autoantibodies Against Carbonic Anhydrase I and II in Patients with Acute Myeloid Leukemia. Turk J Haematol 2017; 34:307-313. [PMID: 28270370 PMCID: PMC5774362 DOI: 10.4274/tjh.2016.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Cancer, one of the principal causes of death, is a global social health problem. Autoantibodies developed against the organism's self-antigens are detected in the sera of subjects with cancer. In recent years carbonic anhydrase (CA) I and II autoantibodies have been shown in some autoimmune diseases and carcinomas, but the mechanisms underlying this immune response have not yet been explained. The aim of this study was to evaluate CA I and II autoantibodies in patients with acute myeloid leukemia (AML) and to provide a novel perspective regarding the autoimmune basis of the disease. MATERIALS AND METHODS Anti-CA I and II antibody levels were investigated using ELISA in serum samples from 30 patients with AML and 30 healthy peers. RESULTS Anti-CA I and II antibody titers in the AML group were significantly higher compared with the control group (p=0.0001 and 0.018, respectively). A strong positive correlation was also determined between titers of anti-CA I and II antibodies (r=0.613, p=0.0001). CONCLUSION Our results suggest that these autoantibodies may be involved in the pathogenesis of AML. More extensive studies are now needed to reveal the entire mechanism.
Collapse
Affiliation(s)
- Ahmet Menteşe
- Karadeniz Technical University Vocational School of Health Sciences, Program of Medical Laboratory Techniques, Trabzon, Turkey
| | - Nergiz Erkut
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University Faculty of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Serap Özer Yaman
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ayşegül Sümer
- Recep Tayyip Erdoğan University Faculty of Health Services, Department of Nursing, Rize, Turkey
| | - Şeniz Doğramacı
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ahmet Alver
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey.,Recep Tayyip Erdoğan University Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Mehmet Sönmez
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| |
Collapse
|
46
|
Hackl H, Astanina K, Wieser R. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol 2017; 10:51. [PMID: 28219393 PMCID: PMC5322789 DOI: 10.1186/s13045-017-0416-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The majority of individuals with acute myeloid leukemia (AML) respond to initial chemotherapy and achieve a complete remission, yet only a minority experience long-term survival because a large proportion of patients eventually relapse with therapy-resistant disease. Relapse therefore represents a central problem in the treatment of AML. Despite this, and in contrast to the extensive knowledge about the molecular events underlying the process of leukemogenesis, information about the mechanisms leading to therapy resistance and relapse is still limited. PURPOSE AND CONTENT OF REVIEW Recently, a number of studies have aimed to fill this gap and provided valuable information about the clonal composition and evolution of leukemic cell populations during the course of disease, and about genetic, epigenetic, and gene expression changes associated with relapse. In this review, these studies are summarized and discussed, and the data reported in them are compiled in order to provide a resource for the identification of molecular aberrations recurrently acquired at, and thus potentially contributing to, disease recurrence and the associated therapy resistance. This survey indeed uncovered genetic aberrations with known associations with therapy resistance that were newly gained at relapse in a subset of patients. Furthermore, the expression of a number of protein coding and microRNA genes was reported to change between diagnosis and relapse in a statistically significant manner. CONCLUSIONS Together, these findings foster the expectation that future studies on larger and more homogeneous patient cohorts will uncover pathways that are robustly associated with relapse, thus representing potential targets for rationally designed therapies that may improve the treatment of patients with relapsed AML, or even facilitate the prevention of relapse in the first place.
Collapse
Affiliation(s)
- Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Ksenia Astanina
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Rotraud Wieser
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| |
Collapse
|
47
|
Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017; 112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
As a clonal disease of hematopoietic stem cells (HSCs), the etiology and pathogenesis of leukemia is not fully understood. Recent studies suggest that cellular homeostasis plays an essential role in maintaining the function of HSCs because dysregulation of cellular homeostasis is one of the major factors underlying the malignant transformation of HSCs. Reactive oxygen species (ROS) and autophagy, key factors regulating cellular homeostasis, are commonly observed in the human body. Autophagy can be induced by ROS through a variety of signaling pathways, and conversely inhibits ROS-induced damage to cells and tissues. ROS and autophagy coordinate to maintain cellular homeostasis. Previous studies have demonstrated that both of ROS and autophagy play important roles in the development of leukemia and are closely involved in drug resistance in leukemia. Interference with cellular homeostasis by promoting programmed leukemia cell death via ROS and autophagy has been verified to be an efficient technique in the treatment of leukemia. However, the critical roles of ROS and autophagy in the development of leukemia are largely unknown. In this review, we summarize the roles of ROS and autophagy in the pathogenesis of leukemia, which may allow the identification of novel targets and drugs for the treatment of leukemia based on the regulation of HSCs homeostasis through ROS and autophagy.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Hao Liu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xin-Jing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhiqiang Zhao
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhen-You Zou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Biochemistry Department of Purdue University, West Lafayette, IN 47906, USA
| | - Jing Li
- Department of Histology and Embryology, North SiChuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiao-Jing Lin
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Yong Liang
- Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
48
|
Wei C, Wen H, Yuan L, McHale CM, Li H, Wang K, Yuan J, Yang X, Zhang L. Formaldehyde induces toxicity in mouse bone marrow and hematopoietic stem/progenitor cells and enhances benzene-induced adverse effects. Arch Toxicol 2016; 91:921-933. [PMID: 27339418 DOI: 10.1007/s00204-016-1760-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
FA in air for 2 weeks, mimicking occupational exposure, then measured complete blood counts, nucleated BM cell count, and myeloid progenitor colony formation. We also investigated potential mechanisms of FA toxicity, including reactive oxygen species (ROS) generation, apoptosis, and hematopoietic growth factor and receptor levels. FA exposure significantly reduced nucleated BM cells and BM-derived colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E); down-regulated GM-CSFRα and EPOR expression; increased ROS in nucleated BM, spleen and CFU-GM cells; and increased apoptosis in nucleated spleen and CFU-GM cells. FA and BZ each similarly altered BM mature cells and stem/progenitor counts, BM and CFU-GM ROS, and apoptosis in spleen and CFU-GM but had differential effects on other end points. Co-exposure was more potent for several end points. Thus, FA is toxic to the mouse hematopoietic system, including BM stem/progenitor cells, and it enhances BZ-induced toxic effects. Our findings suggest that FA may induce BM toxicity by affecting myeloid progenitor growth and survival through oxidative damage and reduced expression levels of GM-CSFRα and EPOR.
Collapse
Affiliation(s)
- Chenxi Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.,Key Laboratory of Ecological Safety Monitoring and Evaluation, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huaxiao Wen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Langyue Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Hui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Kun Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.,Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, USA
| | - Junlin Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
49
|
Kamal AM, El-Hefny NH, Hegab HM, El-Mesallamy HO. Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: A comparative study. ACTA ACUST UNITED AC 2016; 21:567-575. [PMID: 27158980 DOI: 10.1080/10245332.2016.1173341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Thioredoxin-1 (TXN) is a key element in the elimination of reactive oxygen species as well as activation of tumor suppressor genes and DNA repair enzymes. Several studies showed that TXN was over expressed in solid tumors and this was correlated to poorer prognosis. However, TXN expression has been insufficiently studied, particularly in newly diagnosed adult acute leukemia. METHODS This study was designed to evaluate the gene expression of TXN in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) adult patients and to investigate its association with oxidative DNA damage. The expression of TXN was analyzed using quantitative reverse transcriptase-polymerase chain reaction while oxidative DNA damage was evaluated by measuring serum 8-hydroxy-2-deoxyguanosine (8-OHdG) by enzyme-linked immunosorbent assay and strand breaks by the comet assay. RESULTS We found that TXN was under expressed in both AML and ALL groups (P < 0.001 for both) as compared to the control group. Also TXN expression level was negatively correlated with serum 8-OHdG and tail moment in both AML (P = 0.042 and 0.047, respectively) and ALL (P < 0.001 and P = 0.02, respectively) while it showed no correlation with treatment outcome in either groups. DISCUSSION This study suggests that TXN expression is hindered in adult acute leukemia which augments oxidative DNA damage and hence mutagenesis. CONCLUSION This study provides a new insight into the pathogenesis of acute leukemia and suggests TXN as a new screening test for the risk for acute leukemia.
Collapse
Affiliation(s)
- Amany M Kamal
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Nadia H El-Hefny
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Hany M Hegab
- b Department of Clinical Hematology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hala O El-Mesallamy
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
50
|
A systematic framework for the design, simulation and optimization of personalized healthcare: Making and healing blood. Comput Chem Eng 2015. [DOI: 10.1016/j.compchemeng.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|