1
|
Srivastava S, Sekar G, Ojoawo A, Aggarwal A, Ferreira E, Uchikawa E, Yang M, Grace CR, Dey R, Lin YL, Guibao CD, Jayaraman S, Mukherjee S, Kossiakoff AA, Dong B, Myasnikov A, Moldoveanu T. Structural basis of BAK sequestration by MCL-1 in apoptosis. Mol Cell 2025; 85:1606-1623.e10. [PMID: 40187349 DOI: 10.1016/j.molcel.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Apoptosis controls cell fate, ensuring tissue homeostasis and promoting disease when dysregulated. The rate-limiting step in apoptosis is mitochondrial poration by the effector B cell lymphoma 2 (BCL-2) family proteins BAK and BAX, which are activated by initiator BCL-2 homology 3 (BH3)-only proteins (e.g., BIM) and inhibited by guardian BCL-2 family proteins (e.g., MCL-1). We integrated structural, biochemical, and pharmacological approaches to characterize the human prosurvival MCL-1:BAK complex assembled from their BCL-2 globular core domains. We reveal a canonical interaction with BAK BH3 bound to the hydrophobic groove of MCL-1 and disordered and highly dynamic BAK regions outside the complex interface. We predict similar conformations of activated effectors in complex with other guardians or effectors. The MCL-1:BAK complex is a major cancer drug target. We show that MCL-1 inhibitors are inefficient in neutralizing the MCL-1:BAK complex, requiring high doses to initiate apoptosis. Our study underscores the need to design superior clinical candidate MCL-1 inhibitors.
Collapse
Affiliation(s)
- Shagun Srivastava
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giridhar Sekar
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Adedolapo Ojoawo
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anup Aggarwal
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Ferreira
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Emiko Uchikawa
- Dubochet Center for Imaging, EPFL, Lausanne 1015, Vaud, Switzerland
| | - Meek Yang
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | - Christy R Grace
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Raja Dey
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yi-Lun Lin
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Cristina D Guibao
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Seetharaman Jayaraman
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Somnath Mukherjee
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Bin Dong
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | | | - Tudor Moldoveanu
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
2
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8164-8175. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Wright T, Turnis ME, Grace CR, Li X, Brakefield LA, Wang YD, Xu H, Kaminska E, Climer LK, Mukiza TO, Chang CL, Moldoveanu T, Opferman JT. Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1. Mol Cell 2024; 84:1338-1353.e8. [PMID: 38503284 PMCID: PMC11017322 DOI: 10.1016/j.molcel.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid β-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Tristen Wright
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren A Brakefield
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Xu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ewa Kaminska
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie K Climer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tresor O Mukiza
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Vázquez Torres S, Leung PJY, Venkatesh P, Lutz ID, Hink F, Huynh HH, Becker J, Yeh AHW, Juergens D, Bennett NR, Hoofnagle AN, Huang E, MacCoss MJ, Expòsit M, Lee GR, Bera AK, Kang A, De La Cruz J, Levine PM, Li X, Lamb M, Gerben SR, Murray A, Heine P, Korkmaz EN, Nivala J, Stewart L, Watson JL, Rogers JM, Baker D. De novo design of high-affinity binders of bioactive helical peptides. Nature 2024; 626:435-442. [PMID: 38109936 PMCID: PMC10849960 DOI: 10.1038/s41586-023-06953-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Many peptide hormones form an α-helix on binding their receptors1-4, and sensitive methods for their detection could contribute to better clinical management of disease5. De novo protein design can now generate binders with high affinity and specificity to structured proteins6,7. However, the design of interactions between proteins and short peptides with helical propensity is an unmet challenge. Here we describe parametric generation and deep learning-based methods for designing proteins to address this challenge. We show that by extending RFdiffusion8 to enable binder design to flexible targets, and to refining input structure models by successive noising and denoising (partial diffusion), picomolar-affinity binders can be generated to helical peptide targets by either refining designs generated with other methods, or completely de novo starting from random noise distributions without any subsequent experimental optimization. The RFdiffusion designs enable the enrichment and subsequent detection of parathyroid hormone and glucagon by mass spectrometry, and the construction of bioluminescence-based protein biosensors. The ability to design binders to conformationally variable targets, and to optimize by partial diffusion both natural and designed proteins, should be broadly useful.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Isaac D Lutz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Fabian Hink
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Huu-Hien Huynh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andy Hsien-Wei Yeh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Marc Expòsit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joshmyn De La Cruz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul M Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Piper Heine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elif Nihal Korkmaz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Wolf E, Lento C, Pu J, Dickinson BC, Wilson DJ. Innate Conformational Dynamics Drive Binding Specificity in Anti-Apoptotic Proteins Mcl-1 and Bcl-2. Biochemistry 2023; 62:1619-1630. [PMID: 37192192 PMCID: PMC10249625 DOI: 10.1021/acs.biochem.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Indexed: 05/18/2023]
Abstract
The structurally conserved B-cell lymphoma 2 (Bcl-2) family of protein function to promote or inhibit apoptosis through an exceedingly complex web of specific, intrafamilial protein-protein interactions. The critical role of these proteins in lymphomas and other cancers has motivated a widespread interest in understanding the molecular mechanisms that drive specificity in Bcl-2 family interactions. However, the high degree of structural similarity among Bcl-2 homologues has made it difficult to rationalize the highly specific (and often divergent) binding behavior exhibited by these proteins using conventional structural arguments. In this work, we use time-resolved hydrogen deuterium exchange mass spectrometry to explore shifts in conformational dynamics associated with binding partner engagement in the Bcl-2 family proteins Bcl-2 and Mcl-1. Using this approach combined with homology modeling, we reveal that Mcl-1 binding is driven by a large-scale shift in conformational dynamics, while Bcl-2 complexation occurs primarily through a classical charge compensation mechanism. This work has implications for understanding the evolution of internally regulated biological systems composed of structurally similar proteins and for the development of drugs targeting Bcl-2 family proteins for promotion of apoptosis in cancer.
Collapse
Affiliation(s)
- Esther Wolf
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jinyue Pu
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
7
|
Malard F, Sizun C, Thureau A, Carlier L, Lescop E. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. J Biol Chem 2023:104830. [PMID: 37201583 PMCID: PMC10333598 DOI: 10.1016/j.jbc.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a β-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | - Ludovic Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Kim J, Ji S, Lee JY, Lorquin J, Orlikova-Boyer B, Cerella C, Mazumder A, Muller F, Dicato M, Detournay O, Diederich M. Marine Polyether Phycotoxin Palytoxin Induces Apoptotic Cell Death via Mcl-1 and Bcl-2 Downregulation. Mar Drugs 2023; 21:md21040233. [PMID: 37103372 PMCID: PMC10143546 DOI: 10.3390/md21040233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.
Collapse
Affiliation(s)
- Jaemyun Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jean Lorquin
- Institut Méditerranéen d'Océanologie, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Barbora Orlikova-Boyer
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Claudia Cerella
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Olivier Detournay
- Planktovie SAS, 45 Rue Frédéric Joliot Curie, CEDEX 13, 13013 Marseille, France
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| |
Collapse
|
9
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
10
|
Suraweera CD, Hinds MG, Kvansakul M. Structural Insight into KsBcl-2 Mediated Apoptosis Inhibition by Kaposi Sarcoma Associated Herpes Virus. Viruses 2022; 14:v14040738. [PMID: 35458468 PMCID: PMC9027176 DOI: 10.3390/v14040738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous large DNA viruses have evolved sophisticated countermeasures to hijack the premature programmed cell death of host cells post-infection, including the expression of proteins homologous in sequence, structure, or function to cellular Bcl-2 proteins. Kaposi sarcoma herpes virus (KSHV), a member of the gammaherpesvirinae, has been shown to encode for KsBcl-2, a potent inhibitor of Bcl-2 mediated apoptosis. KsBcl-2 acts by directly engaging host pro-apoptotic Bcl-2 proteins including Bak, Bax and Bok, the BH3-only proteins; Bim, Bid, Bik, Hrk, Noxa and Puma. Here we determined the crystal structures of KsBcl-2 bound to the BH3 motif of pro-apoptotic proteins Bid and Puma. The structures reveal that KsBcl-2 engages pro-apoptotic BH3 motif peptides using the canonical ligand binding groove. Thus, the presence of the readily identifiable conserved BH1 motif sequence “NWGR” of KsBcl-2, as well as highly conserved Arg residue (R86) forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for KSHV mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
11
|
Jang DM, Oh EK, Hahn H, Kim HS, Han BW. Structural insights into apoptotic regulation of human Bfk as a novel Bcl-2 family member. Comput Struct Biotechnol J 2022; 20:745-756. [PMID: 35140891 PMCID: PMC8814693 DOI: 10.1016/j.csbj.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Corresponding authors.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding authors.
| |
Collapse
|
12
|
Luo Y, Jin H, Kim JH, Bae J. Guanylate-binding proteins induce apoptosis of leukemia cells by regulating MCL-1 and BAK. Oncogenesis 2021; 10:54. [PMID: 34294680 PMCID: PMC8298518 DOI: 10.1038/s41389-021-00341-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) are well-known for mediating host-defense mechanisms against cellular pathogens. Emerging evidence suggests that GBPs are also implicated in tumorigenesis; however, their underlying molecular mechanism is still unknown. In this study, we identified that GBP1 and GBP2 interact with MCL-1, the key prosurvival member of the BCL-2 family, via its BH3 domain. GBPs induce caspase-dependent apoptosis in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells, where the proapoptotic BCL-2 member, BAK, is an indispensable mediator. In particular, GBP2 completely inhibited the MCL-1-mediated promotion of the survival of CML cells through competitive inhibition, resulting in BAK liberation from MCL-1. Concurrently, GBP2 dramatically upregulates BAK expression via its inhibition of the PI3K/AKT pathway. Moreover, paclitaxel upregulates GBP2 expression, and paclitaxel-induced apoptotic activity was distinctively compromised by knockout of GBP2 in CML cells. Bioinformatics analyses of leukemia databases revealed that transcripts of GBPs were generally downregulated in leukemia patients and that GBPs were favorable prognosis markers. Thus, these findings provide molecular evidence of GBPs as apoptosis-inducing proteins of leukemia cells and suggest that GBPs are attractive targets for the development of chemotherapeutics.
Collapse
Affiliation(s)
- Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hanyong Jin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Je Hyeong Kim
- Division of Pulmonology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, 15355, Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
13
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
14
|
Daressy F, Malard F, Seguy L, Guérineau V, Apel C, Dumontet V, Robert A, Groo AC, Litaudon M, Bignon J, Desrat S, Malzert-Fréon A, Wiels J, Lescop E, Roussi F. Drimane Derivatives as the First Examples of Covalent BH3 Mimetics that Target MCL-1. ChemMedChem 2021; 16:1788-1797. [PMID: 33665938 DOI: 10.1002/cmdc.202100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Indexed: 01/27/2023]
Abstract
Drimane sesquiterpenoid dialdehydes are natural compounds with antiproliferative properties. Nevertheless, their mode of action has not yet been discovered. Herein, we demonstrate that various drimanes are potent inhibitors of MCL-1 and BCL-xL, two proteins of the BCL-2 family that are overexpressed in various cancers, including lymphoid malignancies. Subtle changes in their structure significantly modified their activity on the target proteins. The two most active compounds are MCL-1 selective and bind in the BH3 binding groove of the protein. Complementary studies by NMR spectroscopy and mass spectrometry analyses, but also synthesis, showed that they covalently inhibit MCL-1 though the formation of a pyrrole adduct. In addition, cytotoxic assays revealed that these two compounds show a cytotoxic selectivity for BL2, a MCL-1/BCL-xL-dependent cell line and induce apoptosis.
Collapse
Affiliation(s)
- Florian Daressy
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France.,Institut Gustave Roussy, CNRS UMR8126, Université Paris-Saclay, 114 rue Edouard-Vaillant, 94805, Villejuif Cedex, France.,UMR9018 CNRS, Institut Gustave Roussy, Université Paris-Saclay, 114 rue Edouard-Vaillant, 94805, Villejuif, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Line Seguy
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Université, Boulevard Becquerel, 14032, Caen Cedex, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Aude Robert
- Institut Gustave Roussy, CNRS UMR8126, Université Paris-Saclay, 114 rue Edouard-Vaillant, 94805, Villejuif Cedex, France.,Université Paris-Saclay, Inserm, Institut Gustave Roussy, UMR1279, 114 rue Edouard-Vaillant, 94805, Villejuif, France
| | - Anne-Claire Groo
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Université, Boulevard Becquerel, 14032, Caen Cedex, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Sandy Desrat
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Aurélie Malzert-Fréon
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Université, Boulevard Becquerel, 14032, Caen Cedex, France
| | - Joëlle Wiels
- Institut Gustave Roussy, CNRS UMR8126, Université Paris-Saclay, 114 rue Edouard-Vaillant, 94805, Villejuif Cedex, France.,UMR9018 CNRS, Institut Gustave Roussy, Université Paris-Saclay, 114 rue Edouard-Vaillant, 94805, Villejuif, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Avenue de la terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
15
|
Pannecoucke E, Van Trimpont M, Desmet J, Pieters T, Reunes L, Demoen L, Vuylsteke M, Loverix S, Vandenbroucke K, Alard P, Henderikx P, Deroo S, Baatz F, Lorent E, Thiolloy S, Somers K, McGrath Y, Van Vlierberghe P, Lasters I, Savvides SN. Cell-penetrating Alphabody protein scaffolds for intracellular drug targeting. SCIENCE ADVANCES 2021; 7:7/13/eabe1682. [PMID: 33771865 PMCID: PMC7997521 DOI: 10.1126/sciadv.abe1682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/05/2021] [Indexed: 05/02/2023]
Abstract
The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold's termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden. Crystal structures of such a designed Alphabody in complex with MCL-1 and serum albumin provided the structural blueprint of the applied design principles. Collectively, we provide proof of concept for the use of Alphabodies against intracellular disease mediators, which, to date, have remained in the realm of small-molecule therapeutics.
Collapse
Affiliation(s)
- Erwin Pannecoucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Maaike Van Trimpont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Savvas N Savvides
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
16
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
17
|
Sinha S, Ghosh Dastidar S. Shifting Polar Residues Across Primary Sequence Frames of Transmembrane Domains Calibrates Membrane Permeation Thermodynamics. Biochemistry 2020; 59:4353-4366. [PMID: 33136366 DOI: 10.1021/acs.biochem.0c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Permeation of the mitochondrial outer membrane (MOM) using the transmembrane domains (TMDs) is the key step of the Bcl-2 family of proteins to control apoptosis. The primary sequences of the TMDs of the family members like Bcl-xL, Bcl-2, Bak, etc. indicate the presence of charged residues at the C-terminal tip to be essential for drilling the membrane. However, Bax, a variant of the same family, is an exception, as the charged residues are shifted away from the tip by two positional frames in the primary sequence, but does it matter really? The free energy landscapes of membrane permeation, computed from a total of ∼13.3 μs of conformational sampling, show how such shifting of the amino acid frames in the primary sequence is correlated with the energy landscape that ensures the balance between membrane permeation and cytosolic population. Shifting the charged residues back to the terminal, in suitable mutants of Bax, proves the necessity of terminal charged residues by improving the insertion free energy but adds a high energy barrier unless some other polar residues are adjusted further. The difference in the TMDs of Bcl-xL and Bax is also reflected in their mechanism to drill the MOM-like anionic membrane; only Bax-TMD requires surface crowding to favorably shape the permeation landscape by weakening the bilayer integrity. So, this investigation suggests that such proteins can calibrate the free energy landscape of membrane permeation by adjusting the positions of the charged or polar residues in the primary sequence frames, a strategy analogous to the game of the "sliding tile puzzle" but played with primary sequence frames.
Collapse
Affiliation(s)
- Souvik Sinha
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
18
|
Reddy CN, Manzar N, Ateeq B, Sankararamakrishnan R. Computational Design of BH3-Mimetic Peptide Inhibitors That Can Bind Specifically to Mcl-1 or Bcl-X L: Role of Non-Hot Spot Residues. Biochemistry 2020; 59:4379-4394. [PMID: 33146015 DOI: 10.1021/acs.biochem.0c00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions between pro- and anti-apoptotic Bcl-2 proteins decide the fate of the cell. The BH3 domain of pro-apoptotic Bcl-2 proteins interacts with the exposed hydrophobic groove of their anti-apoptotic counterparts. Through their design and development, BH3 mimetics that target the hydrophobic groove of specific anti-apoptotic Bcl-2 proteins have the potential to become anticancer drugs. We have developed a novel computational method for designing sequences with BH3 domain features that can bind specifically to anti-apoptotic Mcl-1 or Bcl-XL. In this method, we retained the four highly conserved hydrophobic and aspartic residues of wild-type BH3 sequences and randomly substituted all other positions to generate a large number of BH3-like sequences. We modeled 20000 complex structures with Mcl-1 or Bcl-XL using the BH3-like sequences derived from five wild-type pro-apoptotic BH3 peptides. Peptide-protein interaction energies calculated from these models for each set of BH3-like sequences resulted in negatively skewed extreme value distributions. The selected BH3-like sequences from the extreme negative tail regions have highly favorable interaction energies with Mcl-1 or Bcl-XL. They are enriched in acidic and basic residues when they bind to Mcl-1 and Bcl-XL, respectively. With the charged residues often away from the binding interface, the overall electric field generated by the charged residues results in strong long-range electrostatic interaction energies between the peptide and the protein giving rise to high specificity. Cell viability studies of representative BH3-like peptides further validated the predicted specificity. This study has revealed the importance of non-hot spot residues in BH3-mimetic peptides in providing specificity to a particular anti-apoptotic protein.
Collapse
|
19
|
Marimuthu P, Razzokov J, Eshonqulov G. Disruption of conserved polar interactions causes a sequential release of Bim mutants from the canonical binding groove of Mcl1. Int J Biol Macromol 2020; 158:364-374. [PMID: 32376253 DOI: 10.1016/j.ijbiomac.2020.04.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Mcl1 is an important anti-apoptotic member of the Bcl2 family proteins that are upregulated in several cancer malignancies. The canonical binding groove (CBG) located at the surface of Mcl1 exhibits a critical role in binding partners selectively via the BH3-domain of pro-apoptotic Bcl2 family members that trigger the downregulation of Mcl1 function. There are several crystal structures of point-mutated pro-apoptotic Bim peptides in complex with Mcl1. However, the mechanistic effects of such point-mutations towards peptide binding and complex stability still remain unexplored. Here, the effects of the reported point mutations in Bim peptides and their binding mechanisms to Mcl1 were computationally evaluated using atomistic-level steered molecular dynamics (SMD) simulations. A range of external-forces and constant-velocities were applied to the Bim peptides to uncover the mechanistic basis of peptide dissociation from the CBG of Mcl1. Although the peptides showed similarities in their dissociation pathways, the peak rupture forces varied significantly. According to simulations results, the disruption of the conserved polar contacts at the complex interface causes a sequential release of the peptides from the CBG of Mcl1. Overall, the results obtained from the current study may provide valuable insights for the development of novel anti-cancer peptide-inhibitors that can downregulate Mcl1's function.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL), Biochemistry and Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Gofur Eshonqulov
- Department of Physics, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
| |
Collapse
|
20
|
Suleiman MR, Wang H, Huang D, Wang H, Joseph J, Huang T, Zhang F, Wang J, Cheng M. Discovery of small molecule inhibitors through pharmacophore modeling, molecular docking, molecular dynamics simulation and experimental validation against myeloid cell leukemia-1 (Mcl-1). J Biomol Struct Dyn 2020; 39:2512-2525. [PMID: 32228162 DOI: 10.1080/07391102.2020.1749132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Myeloid cell leukemia-1 (Mcl-1) protein is a family of Bcl-2 (B cell lymphoma 2) rich proteases of the most common increase threshold for genetic aberrations observed in human cancer, including lung, breast, pancreatic, cervical, and ovarian cancers as well as leukemia and lymphoma. Mcl-1 is recognized as an attractive drug target in number of diseases, including cancer. In the present study we surveyed and collected queries compounds from PDB database of Mcl-1 protein and generated pharmacophore-based models adapted to screen the drug-like compounds from FDA approved database. The 206 best lead molecules from pharmacophore-screening were further evaluated by molecular docking, molecular dynamics simulation, MM-GBSA calculation, as well as experimental validation. Two hits, ZINC00601272 and ZINC00002166, showed the best docking scores, which showed a tendency to inhibit cell viability of HL60 and K562 leukemia cells with Mcl-1 expressions. Conclusively, the present study provides structural information of Mcl-1 inhibitors for next generations of cancer therapeutics through computational and experimental validation approach.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad R Suleiman
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Danxia Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Huibin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Johnson Joseph
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianci Huang
- School of Life Science and Biopharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
21
|
Bourafai-Aziez A, Sebban M, Benabderrahmane M, Marekha B, Denis C, Paysant H, Weiswald LB, Carlier L, Bureau R, Coadou G, Ravault D, Voisin-Chiret AS, Sopková-de Oliveira Santos J, Oulyadi H. Binding mode of Pyridoclax to myeloid cell leukemia-1 (Mcl-1) revealed by nuclear magnetic resonance spectroscopy, docking and molecular dynamics approaches. J Biomol Struct Dyn 2019; 38:4162-4178. [PMID: 31612791 DOI: 10.1080/07391102.2019.1680434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family proteins. Its amplification is one of the most frequent genetic aberrations found in human cancers. Pyridoclax, a promising BH3 mimetic inhibitor, interacts directly with Mcl-1 and induces massive apoptosis at a concentration of 15 µM in combination with anti-Bcl-xL strategies in chemo-resistant ovarian cancer cell lines. In this study, a combined experimental and theoretical approach was used to investigate the binding mode of Pyridoclax to Mcl-1. The representative poses generated from dynamics simulations compared with NMR data revealed: (i) Pyridoclax bound to P1 and P2 pockets of Mcl-1 BH3 binding groove through its styryl and methyl groups establishing mainly hydrophobic contacts, (ii) one of the ending pyridines interacts through electrostatic interaction with K234 side chain, a negatively charged residue present only in this position in Mcl-1. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Bourafai-Aziez
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France.,Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - M Sebban
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | | | - B Marekha
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - C Denis
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - H Paysant
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L B Weiswald
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - R Bureau
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - G Coadou
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | - D Ravault
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | | | | | - H Oulyadi
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| |
Collapse
|
22
|
Investigating the Molecular Basis of N-Substituted 1-Hydroxy-4-Sulfamoyl-2-Naphthoate Compounds Binding to Mcl1. Processes (Basel) 2019. [DOI: 10.3390/pr7040224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myeloid cell leukemia-1 (Mcl1) is an anti–apoptotic protein that has gained considerable attention due to its overexpression activity prevents cell death. Therefore, a potential inhibitor that specifically targets Mcl1 with higher binding affinity is necessary. Recently, a series of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoate compounds was reported that targets Mcl1, but its binding mechanism remains unexplored. Here, we attempted to explore the molecular mechanism of binding to Mcl1 using advanced computational approaches: pharmacophore-based 3D-QSAR, docking, and MD simulation. The selected pharmacophore—NNRRR—yielded a statistically significant 3D-QSAR model containing high confidence scores (R2 = 0.9209, Q2 = 0.8459, and RMSE = 0.3473). The contour maps—comprising hydrogen bond donor, hydrophobic, negative ionic and electron withdrawal effects—from our 3D-QSAR model identified the favorable regions crucial for maximum activity. Furthermore, the external validation of the selected model using enrichment and decoys analysis reveals a high predictive power. Also, the screening capacity of the selected model had scores of 0.94, 0.90, and 8.26 from ROC, AUC, and RIE analysis, respectively. The molecular docking of the highly active compound—C40; 4-(N-benzyl-N-(4-(4-chloro-3,5-dimethylphenoxy) phenyl) sulfamoyl)-1-hydroxy-2-naphthoate—predicted the low-energy conformational pose, and the MD simulation revealed crucial details responsible for the molecular mechanism of binding with Mcl1.
Collapse
|
23
|
Liu Q, Osterlund EJ, Chi X, Pogmore J, Leber B, Andrews DW. Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. eLife 2019; 8:e37689. [PMID: 30860026 PMCID: PMC6414199 DOI: 10.7554/elife.37689] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/16/2019] [Indexed: 01/07/2023] Open
Abstract
Tumor initiation, progression and resistance to chemotherapy rely on cancer cells bypassing programmed cell death by apoptosis. We report that unlike other pro-apoptotic proteins, Bim contains two distinct binding sites for the anti-apoptotic proteins Bcl-XL and Bcl-2. These include the BH3 sequence shared with other pro-apoptotic proteins and an unexpected sequence located near the Bim carboxyl-terminus (residues 181-192). Using automated Fluorescence Lifetime Imaging Microscopy - Fluorescence Resonance Energy Transfer (FLIM-FRET) we show that the two binding interfaces enable Bim to double-bolt lock Bcl-XL and Bcl-2 in complexes resistant to displacement by BH3-mimetic drugs currently in use or being evaluated for cancer therapy. Quantifying in live cells the contributions of individual amino acids revealed that residue L185 previously thought involved in binding Bim to membranes, instead contributes to binding to anti-apoptotic proteins. This double-bolt lock mechanism has profound implications for the utility of BH3-mimetics as drugs. .
Collapse
Affiliation(s)
- Qian Liu
- Biological SciencesSunnybrook Research InstituteTorontoCanada
| | - Elizabeth J Osterlund
- Biological SciencesSunnybrook Research InstituteTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Xiaoke Chi
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
| | - Justin Pogmore
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Brian Leber
- Department of MedicineMcMaster UniversityHamiltonCanada
| | | |
Collapse
|
24
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag-Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018; 57:16688-16692. [PMID: 30393918 PMCID: PMC6348423 DOI: 10.1002/anie.201809149] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Indexed: 12/31/2022]
Abstract
Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).
Collapse
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Martin Walko
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Mark A. Levenstein
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
25
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag‐Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Martin Walko
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Mark A. Levenstein
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - Andrew J. Wilson
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
26
|
Marimuthu P, Singaravelu K. Unraveling the molecular mechanism of benzothiophene and benzofuran scaffold-merged compounds binding to anti-apoptotic Myeloid cell leukemia 1. J Biomol Struct Dyn 2018; 37:1992-2003. [DOI: 10.1080/07391102.2018.1474805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Parthiban Marimuthu
- Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Kalaimathy Singaravelu
- Department of Information Technology, Turku Centre for Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Hedir S, De Giorgi M, Fogha J, De Pascale M, Weiswald LB, Brotin E, Marekha B, Denoyelle C, Denis C, Suzanne P, Gautier F, Juin P, Ligat L, Lopez F, Carlier L, Legay R, Bureau R, Rault S, Poulain L, Oliveira Santos JSD, Voisin-Chiret AS. Structure-guided design of pyridoclax derivatives based on Noxa / Mcl-1 interaction mode. Eur J Med Chem 2018; 159:357-380. [PMID: 30308410 DOI: 10.1016/j.ejmech.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Protein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Apoptotic cell death is controlled via PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain. In ovarian carcinoma, it has been previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect tumor cells against apoptosis. Moreover, Mcl-1 is a key regulator of cancer cell survival and is a known resistance factor to Bcl-2/Bcl-xL pharmacological inhibitors making it an attractive therapeutic target. Here, using a structure-guided design from the oligopyridine lead Pyridoclax based on Noxa/Mcl-1 interaction we identified a new derivative, active at lower concentration as compared to Pyridoclax. This new derivative selectively binds to the Mcl-1 hydrophobic groove and releases Bak and Bim from Mcl-1 to induce cell death and sensitize cancer cells to Bcl-2/Bcl-xL targeting strategies.
Collapse
Affiliation(s)
- Siham Hedir
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France; UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Marcella De Giorgi
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Jade Fogha
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Martina De Pascale
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Louis-Bastien Weiswald
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France; UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Emilie Brotin
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France; UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Bogdan Marekha
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France; UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Camille Denis
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Peggy Suzanne
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Fabien Gautier
- Team 8 "Stress adaptation and tumor escape", CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, Nantes, France; ICO site René Gauducheau, Boulevard Jacques Monod, Saint Herblain, 44805, France
| | - Philippe Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, Nantes, France; ICO site René Gauducheau, Boulevard Jacques Monod, Saint Herblain, 44805, France
| | - Laetitia Ligat
- INSERM UMR1037-Plateforme Protéomique-Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, 2 avenue Hubert Curien, 31100 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, 31000 Toulouse, France
| | - Frédéric Lopez
- INSERM UMR1037-Plateforme Protéomique-Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, 2 avenue Hubert Curien, 31100 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, 31000 Toulouse, France
| | - Ludovic Carlier
- Sorbonne Université, Ecole normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Rémi Legay
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Ronan Bureau
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Sylvain Rault
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France; UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France.
| | - Jana Sopková-de Oliveira Santos
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France.
| | - Anne Sophie Voisin-Chiret
- Normandie Univ, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Caen, France.
| |
Collapse
|
28
|
Promiscuous and Selective: How Intrinsically Disordered BH3 Proteins Interact with Their Pro-survival Partner MCL-1. J Mol Biol 2018; 430:2468-2477. [DOI: 10.1016/j.jmb.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
29
|
BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 2017; 25:65-80. [PMID: 29149100 PMCID: PMC5729540 DOI: 10.1038/cdd.2017.186] [Citation(s) in RCA: 1049] [Impact Index Per Article: 131.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
The BCL-2 family of proteins controls cell death primarily by direct binding interactions that regulate mitochondrial outer membrane permeabilization (MOMP) leading to the irreversible release of intermembrane space proteins, subsequent caspase activation and apoptosis. The affinities and relative abundance of the BCL-2 family proteins dictate the predominate interactions between anti-apoptotic and pro-apoptotic BCL-2 family proteins that regulate MOMP. We highlight the core mechanisms of BCL-2 family regulation of MOMP with an emphasis on how the interactions between the BCL-2 family proteins govern cell fate. We address the critical importance of both the concentration and affinities of BCL-2 family proteins and show how differences in either can greatly change the outcome. Further, we explain the importance of using full-length BCL-2 family proteins (versus truncated versions or peptides) to parse out the core mechanisms of MOMP regulation by the BCL-2 family. Finally, we discuss how post-translational modifications and differing intracellular localizations alter the mechanisms of apoptosis regulation by BCL-2 family proteins. Successful therapeutic intervention of MOMP regulation in human disease requires an understanding of the factors that mediate the major binding interactions between BCL-2 family proteins in cells.
Collapse
|
30
|
Fogha J, Marekha B, De Giorgi M, Voisin-Chiret AS, Rault S, Bureau R, Sopkova-de Oliveira Santos J. Toward Understanding Mcl-1 Promiscuous and Specific Binding Mode. J Chem Inf Model 2017; 57:2885-2895. [DOI: 10.1021/acs.jcim.7b00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jade Fogha
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | - Bogdan Marekha
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | - Marcella De Giorgi
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | - Anne Sophie Voisin-Chiret
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | - Sylvain Rault
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | - Ronan Bureau
- Normandie Univ, UNICAEN, CERMN, FR CNRS 3038 INC3M, SF 4206 ICORE bd Becquerel, F-14000 Caen, France
| | | |
Collapse
|
31
|
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol 2017; 19:1226-1236. [PMID: 28945232 PMCID: PMC5657599 DOI: 10.1038/ncb3616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Direct interactions between pro- and anti-apoptotic BCL-2 family members form the basis of cell death decision-making at the outer mitochondrial membrane (OMM). Here we report that three antiapoptotic BCL-2 proteins (MCL-1, BCL-2, and BCL-XL) found untethered from the OMM function as transcriptional regulators of a prosurvival and growth program. Antiapoptotic BCL-2 proteins engage a BCL-2 homology (BH) domain sequence found in Suppressor of Fused (SUFU), a tumor suppressor and antagonist of the GLI DNA binding proteins. BCL-2 proteins directly promote SUFU turnover, inhibit SUFU-GLI interaction, and induce the expression of the GLI target genes BCL-2, MCL-1, and BCL-XL. Antiapoptotic BCL-2 protein/SUFU feedforward signaling promotes cancer cell survival and growth and can be disabled with BH3 mimetics – small molecules that target antiapoptotic BCL-2 proteins. Our findings delineate a chemical strategy for countering drug resistance in GLI-associated tumors and reveal unanticipated functions for BCL-2 proteins as transcriptional regulators.
Collapse
|
32
|
Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. Structural Insight into African Swine Fever Virus A179L-Mediated Inhibition of Apoptosis. J Virol 2017; 91:e02228-16. [PMID: 28053104 PMCID: PMC5331815 DOI: 10.1128/jvi.02228-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022] Open
Abstract
Programmed cell death is a tightly controlled process critical for the removal of damaged or infected cells. Pro- and antiapoptotic proteins of the Bcl-2 family are pivotal mediators of this process. African swine fever virus (ASFV) is a large DNA virus, the only member of the Asfarviridae family, and harbors A179L, a putative Bcl-2 like protein. A179L has been shown to bind to several proapoptotic Bcl-2 proteins; however, the hierarchy of binding and the structural basis for apoptosis inhibition are currently not understood. We systematically evaluated the ability of A179L to bind proapoptotic Bcl-2 family members and show that A179L is the first antiapoptotic Bcl-2 protein to bind to all major death-inducing mammalian Bcl-2 proteins. We then defined the structural basis for apoptosis inhibition of A179L by determining the crystal structures of A179L bound to both Bid and Bax BH3 motifs. Our findings provide a mechanistic understanding for the potent antiapoptotic activity of A179L by identifying it as the first panprodeath Bcl-2 binder and serve as a platform for more-detailed investigations into the role of A179L during ASFV infection.IMPORTANCE Numerous viruses have acquired strategies to subvert apoptosis by encoding proteins capable of sequestering proapoptotic host proteins. African swine fever virus (ASFV), a large DNA virus and the only member of the Asfarviridae family, encodes the protein A179L, which functions to prevent apoptosis. We show that A179L is unusual among antiapoptotic Bcl-2 proteins in being able to physically bind to all core death-inducing mammalian Bcl-2 proteins. Currently, little is known regarding the molecular interactions between A179L and the proapoptotic Bcl-2 members. Using the crystal structures of A179L bound to two of the identified proapoptotic Bcl-2 proteins, Bid and Bax, we now provide a three-dimensional (3D) view of how A179L sequesters host proapoptotic proteins, which is crucial for subverting premature host cell apoptosis.
Collapse
Affiliation(s)
- Suresh Banjara
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sofia Caria
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Mark G Hinds
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Luna-Vargas MP, Chipuk JE. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 2016; 283:2676-89. [PMID: 26662859 PMCID: PMC4907887 DOI: 10.1111/febs.13624] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Apoptosis is a biological process that removes damaged, excess or infected cells through a genetically controlled mechanism. This process plays a crucial role in organismal development, immunity and tissue homeostasis, and alterations in apoptosis contribute to human diseases including cancer and auto-immunity. In the past two decades, significant efforts have focused on understanding the function of the BCL-2 proteins, a complex family of pro-survival and pro-apoptotic α-helical proteins that directly control the mitochondrial pathway of apoptosis. Diverse structural investigations of the BCL-2 family members have broadened our mechanistic understanding of their individual functions. However, an often over-looked aspect of the mitochondrial pathway of apoptosis is how the BCL-2 family specifically interacts with and targets the outer mitochondrial membrane to initiate apoptosis. Structural information on the relationship between the BCL-2 family and the outer mitochondrial membrane is missing; likewise, knowledge of the biophysical mechanisms by which the outer mitochondrial membrane affects and effects apoptosis is lacking. In this mini-review, we provide a current overview of the BCL-2 family members and discuss the latest structural insights into BAK/BAX activation and oligomerization in the context of the outer mitochondrial membrane and mitochondrial biology.
Collapse
Affiliation(s)
- Mark P.A. Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jerry E. Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
34
|
Abstract
High-resolution protein structures determined by X-ray crystallography or NMR have proven invaluable for deciphering the molecular mechanisms underlying the function of a vast range of proteins. Here, we describe methods to generate complexes of proteins belonging to the Bcl-2 family of proteins with either biological ligands or small molecule antagonists.
Collapse
Affiliation(s)
- Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Physical Sciences 4, Room 205, Kingsbury Drive, Bundoora, Melbourne, VIC, 3086, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
35
|
Foight GW, Keating AE. Locating Herpesvirus Bcl-2 Homologs in the Specificity Landscape of Anti-Apoptotic Bcl-2 Proteins. J Mol Biol 2015; 427:2468-2490. [PMID: 26009469 DOI: 10.1016/j.jmb.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Viral homologs of the anti-apoptotic Bcl-2 proteins are highly diverged from their mammalian counterparts, yet they perform overlapping functions by binding and inhibiting BH3 (Bcl-2 homology 3)-motif-containing proteins. We investigated the BH3 binding properties of the herpesvirus Bcl-2 homologs KSBcl-2, BHRF1, and M11, as they relate to those of the human Bcl-2 homologs Mcl-1, Bfl-1, Bcl-w, Bcl-xL, and Bcl-2. Analysis of the sequence and structure of the BH3 binding grooves showed that, despite low sequence identity, M11 has structural similarities to Bcl-xL, Bcl-2, and Bcl-w. BHRF1 and KSBcl-2 are more structurally similar to Mcl-1 than to the other human proteins. Binding to human BH3-like peptides showed that KSBcl-2 has similar specificity to Mcl-1, and BHRF1 has a restricted binding profile; M11 binding preferences are distinct from those of Bcl-xL, Bcl-2, and Bcl-w. Because KSBcl-2 and BHRF1 are from human herpesviruses associated with malignancies, we screened computationally designed BH3 peptide libraries using bacterial surface display to identify selective binders of KSBcl-2 or BHRF1. The resulting peptides bound to KSBcl-2 and BHRF1 in preference to Bfl-1, Bcl-w, Bcl-xL, and Bcl-2 but showed only modest specificity over Mcl-1. Rational mutagenesis increased specificity against Mcl-1, resulting in a peptide with a dissociation constant of 2.9nM for binding to KSBcl-2 and >1000-fold specificity over other Bcl-2 proteins, as well as a peptide with >70-fold specificity for BHRF1. In addition to providing new insights into viral Bcl-2 binding specificity, this study will inform future work analyzing the interaction properties of homologous binding domains and designing specific protein interaction partners.
Collapse
Affiliation(s)
- Glenna Wink Foight
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Gloaguen C, Voisin-Chiret AS, Sopkova-de Oliveira Santos J, Fogha J, Gautier F, De Giorgi M, Burzicki G, Perato S, Pétigny-Lechartier C, Simonin-Le Jeune K, Brotin E, Goux D, N'Diaye M, Lambert B, Louis MH, Ligat L, Lopez F, Juin P, Bureau R, Rault S, Poulain L. First evidence that oligopyridines, α-helix foldamers, inhibit Mcl-1 and sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. J Med Chem 2015; 58:1644-68. [PMID: 25585174 DOI: 10.1021/jm500672y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic. In this context, we designed and synthesized oligopyridines potentially targeting the Mcl-1 hydrophobic pocket, evaluated their capacity to inhibit Mcl-1 in live cells, and implemented a functional screening assay to evaluate their ability to sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. We established structure-activity relationships and focused our attention on MR29072, named Pyridoclax. Surface plasmon resonance assay demonstrated that pyridoclax directly binds to Mcl-1. Without cytotoxic activity when administered as a single agent, pyridoclax induced apoptosis in combination with Bcl-xL-targeting siRNA or with ABT-737 in ovarian, lung, and mesothelioma cancer cells.
Collapse
|
37
|
Li R, Cheng C, Balasis ME, Liu Y, Garner TP, Daniel KG, Li J, Qin Y, Gavathiotis E, Sebti SM. Design, synthesis and evaluation of marinopyrrole derivatives as selective inhibitors of Mcl-1 binding to pro-apoptotic Bim and dual Mcl-1/Bcl-xL inhibitors. Eur J Med Chem 2014; 90:315-331. [PMID: 25437618 DOI: 10.1016/j.ejmech.2014.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/20/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Inhibition of anti-apoptotic Mcl-1 is a promising anticancer strategy to overcome the survival and chemoresistance of a broad spectrum of human cancers. We previously reported on the identification of a natural product marinopyrrole A (1) that induces apoptosis in Mcl-1-dependent cells through Mcl-1 degradation. Here, we report the design and synthesis of novel marinopyrrole-based analogs and their evaluation as selective inhibitors of Mcl-1 as well as dual Mcl-1/Bcl-xL inhibitors. The most selective Mcl-1 antagonists were 34, 36 and 37 with 16-, 13- and 9-fold more selectivity for disrupting Mcl-1/Bim over Bcl-xL/Bim binding, respectively. Among the most potent dual inhibitors is 42 which inhibited Mcl-1/Bim and Bcl-xL/Bim binding 15-fold (IC50 = 600 nM) and 33-fold (500 nM) more potently than (±)-marinopyrrole A (1), respectively. Fluorescence quenching, NMR analysis and molecular docking indicated binding of marinopyrroles to the BH3 binding site of Mcl-1. Several marinopyrroles potently decreased Mcl-1 cellular levels and induced caspase 3 activation in human breast cancer cells. Our studies provide novel "lead" marinopyrroles for further optimization as selective Mcl-1 inhibitors and dual Mcl-1 and Bcl-xL inhibitors.
Collapse
Affiliation(s)
- Rongshi Li
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs, Tampa, FL 33612, United States
| | - Chunwei Cheng
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Maria E Balasis
- Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Yan Liu
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Thomas P Garner
- Departments of Biochemistry and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer G46, Bronx, NY 10461, United States
| | - Kenyon G Daniel
- Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Jerry Li
- Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Evripidis Gavathiotis
- Departments of Biochemistry and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer G46, Bronx, NY 10461, United States
| | - Said M Sebti
- Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs, Tampa, FL 33612, United States
| |
Collapse
|
38
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Cohen NA, Stewart ML, Gavathiotis E, Tepper JL, Bruekner SR, Koss B, Opferman JT, Walensky LD. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. ACTA ACUST UNITED AC 2014; 19:1175-86. [PMID: 22999885 DOI: 10.1016/j.chembiol.2012.07.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 11/26/2022]
Abstract
Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and thereby enforce an immortal state. This is accomplished biochemically by an antiapoptotic surface groove that neutralizes the proapoptotic BH3 α helix of death proteins. Antiapoptotic MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Although targeting the BCL-2 antiapoptotic subclass effectively restores the death pathway in BCL-2-dependent cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-1, neutralizes its biochemical lock-hold on apoptosis, and induces caspase activation and leukemia cell death in the specific context of MCL-1 dependence.
Collapse
Affiliation(s)
- Nicole A Cohen
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abulwerdi F, Liao C, Mady AS, Gavin J, Shen C, Cierpicki T, Stuckey J, Showalter HDH, Nikolovska-Coleska Z. 3-Substituted-N-(4-hydroxynaphthalen-1-yl)arylsulfonamides as a novel class of selective Mcl-1 inhibitors: structure-based design, synthesis, SAR, and biological evaluation. J Med Chem 2014; 57:4111-33. [PMID: 24749893 PMCID: PMC4033665 DOI: 10.1021/jm500010b] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 02/02/2023]
Abstract
Mcl-1, an antiapoptotic member of the Bcl-2 family of proteins, is a validated and attractive target for cancer therapy. Overexpression of Mcl-1 in many cancers results in disease progression and resistance to current chemotherapeutics. Utilizing high-throughput screening, compound 1 was identified as a selective Mcl-1 inhibitor and its binding to the BH3 binding groove of Mcl-1 was confirmed by several different, but complementary, biochemical and biophysical assays. Guided by structure-based drug design and supported by NMR experiments, comprehensive SAR studies were undertaken and a potent and selective inhibitor, compound 21, was designed which binds to Mcl-1 with a Ki of 180 nM. Biological characterization of 21 showed that it disrupts the interaction of endogenous Mcl-1 and biotinylated Noxa-BH3 peptide, causes cell death through a Bak/Bax-dependent mechanism, and selectively sensitizes Eμ-myc lymphomas overexpressing Mcl-1, but not Eμ-myc lymphoma cells overexpressing Bcl-2. Treatment of human leukemic cell lines with compound 21 resulted in cell death through activation of caspase-3 and induction of apoptosis.
Collapse
Affiliation(s)
- Fardokht
A. Abulwerdi
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chenzhong Liao
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ahmed S. Mady
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jordan Gavin
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Chenxi Shen
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeanne
A. Stuckey
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - H. D. Hollis Showalter
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Li X, Wang Z, Feng Y, Song T, Su P, Chen C, Chai G, Yang Y, Zhang Z. Two-face, two-turn α-helix mimetics based on a cross-acridine scaffold: analogues of the Bim BH3 domain. Chembiochem 2014; 15:1280-5. [PMID: 24838655 DOI: 10.1002/cbic.201402040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/09/2022]
Abstract
The design of a cross-acridine scaffold mimicking the i, i+3, i+5, and i+7 residues distributed over a two-face, two-turn α-helix is described. Docking studies and 2D (1)H, (15)N HSQC NMR spectroscopy provide compelling evidence that compound 3 d accurately reproduces the arrangement of four hotspots in the Bim BH3 peptide to permit binding to the Mcl-1 and Bcl-2 proteins (Ki 0.079 and 0.056 μM, respectively). Furthermore, the hotspot mutation could also be mimicked by individual or multiple deletions of side chains on the scaffold.
Collapse
Affiliation(s)
- Xiangqian Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116012 (P.R. China)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu G, Poppe L, Aoki K, Yamane H, Lewis J, Szyperski T. High-quality NMR structure of human anti-apoptotic protein domain Mcl-1(171-327) for cancer drug design. PLoS One 2014; 9:e96521. [PMID: 24789074 PMCID: PMC4008586 DOI: 10.1371/journal.pone.0096521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/08/2014] [Indexed: 12/18/2022] Open
Abstract
A high-quality NMR solution structure is presented for protein hMcl-1(171–327) which comprises residues 171–327 of the human anti-apoptotic protein Mcl-1 (hMcl-1). Since this construct contains the three Bcl-2 homology (BH) sequence motifs which participate in forming a binding site for inhibitors of hMcl-1, it is deemed to be crucial for structure-based design of novel anti-cancer drugs blocking the Mcl1 related anti-apoptotic pathway. While the coordinates of an NMR solution structure for a corresponding construct of the mouse homologue (mMcl-1) are publicly available, our structure is the first atomic resolution structure reported for the ‘apo form’ of the human protein. Comparison of the two structures reveals that hMcl-1(171–327) exhibits a somewhat wider ligand/inhibitor binding groove as well as a different charge distribution within the BH3 binding groove. These findings strongly suggest that the availability of the human structure is of critical importance to support future design of cancer drugs.
Collapse
Affiliation(s)
- Gaohua Liu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Leszek Poppe
- Molecular Structure, Amgen, Thousand Oaks, California, United States of America
| | - Ken Aoki
- Protein Science, Amgen, Thousand Oaks, California, United States of America
| | - Harvey Yamane
- Protein Science, Amgen, Thousand Oaks, California, United States of America
| | - Jeffrey Lewis
- Protein Science, Amgen, Thousand Oaks, California, United States of America
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci 2014; 39:101-11. [PMID: 24503222 DOI: 10.1016/j.tibs.2013.12.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
During apoptotic cell death, cellular stress signals converge at the mitochondria to induce mitochondrial outer-membrane permeabilization (MOMP) through B cell lymphoma-2 (BCL-2) family proteins and their effectors. BCL-2 proteins function through protein-protein interactions, the mechanisms and structural aspects of which are only now being uncovered. Recently, the elucidation of the dynamic features underlying their function has highlighted their structural plasticity and the consequent complex thermodynamic landscape governing their protein-protein interactions. These studies show that canonical interactions involve a conserved, hydrophobic groove, whereas non-canonical interactions function allosterically outside the groove. We review the latest structural advances in understanding the interactions and functions of mammalian BCL-2 family members, and discuss new opportunities to modulate these proteins in health and disease.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
44
|
Maity A, Yadav S, Verma CS, Ghosh Dastidar S. Dynamics of Bcl-xL in water and membrane: molecular simulations. PLoS One 2013; 8:e76837. [PMID: 24116174 PMCID: PMC3792877 DOI: 10.1371/journal.pone.0076837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
The Bcl2 family of proteins is capable of switching the apoptotic machinery by directly controlling the release of apoptotic factors from the mitochondrial outer membrane. They have 'pro' and 'anti'-apoptotic subgroups of proteins which antagonize each other's function; however a detailed atomistic understanding of their mechanisms based on the dynamical events, particularly in the membrane, is lacking. Using molecular dynamics simulations totaling 1.6µs we outline the major differences between the conformational dynamics in water and in membrane. Using implicit models of solvent and membrane, the simulated results reveal a picture that is in agreement with the 'hit-and run' concept which states that BH3-only peptides displace the tail (which acts as a pseudo substrate of the protein itself) from its binding pocket; this helps the membrane association of the protein after which the BH3 peptide becomes free. From simulations, Bcl-xL appears to be auto-inhibited by its C-terminal tail that embeds into and covers the hydrophobic binding pocket. However the tail is unable to energetically compete with BH3-peptides in water. In contrast, in the membrane, neither the tail nor the BH3-peptides are stable in the binding pocket and appear to be easily dissociated off as the pocket expands in response to the hydrophobic environment. This renders the binding pocket large and open, thus receptive to interactions with other protein partners. Principal components of the motions are dramatically different in the aqueous and in the membrane environments and provide clues regarding the conformational transitions that Bcl-xL undergoes in the membrane, in agreement with the biochemical data.
Collapse
Affiliation(s)
- Atanu Maity
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Seema Yadav
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
45
|
Yao H, Mi S, Gong W, Lin J, Xu N, Perrett S, Xia B, Wang J, Feng Y. Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles. Biochemistry 2013; 52:6324-34. [PMID: 23977882 DOI: 10.1021/bi400690m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the transcription-independent mechanisms of the tumor suppressor p53 discovered in recent years involves physical interaction between p53 and proteins of the Bcl-2 family. In this paper, significant differences between the interaction of p53 with Mcl-1 and Bcl-xL were demonstrated by NMR spectroscopy and isothermal titration calorimetry. Bcl-xL was found to bind strongly to the p53 DNA-binding domain (DBD) with a dissociation constant (Kd) of ~600 nM, whereas Mcl-1 binds to the p53 DBD weakly with a dissociation constant in the mM range. In contrast, the p53 transactivation domain (TAD) binds weakly to Bcl-xL with a Kd ~ 300-500 μM and strongly to Mcl-1 with a Kd ~ 10-20 μM. NMR titrations indicate that although the p53 TAD binds to the BH3-binding grooves of both Bcl-xL and Mcl-1, Bcl-xL prefers to bind to the first subdomain (TAD1) in the p53 TAD, and Mcl-1 prefers to bind to the second subdomain (TAD2). Therefore, Mcl-1 and Bcl-xL have different p53-binding profiles. This indicates that the detailed interaction mechanisms are different, although both Mcl-1 and Bcl-xL can mediate transcription-independent cytosolic roles of p53. The revealed differences in binding sites and binding affinities should be considered when BH3 mimetics are used in cancer therapy development.
Collapse
Affiliation(s)
- Hongwei Yao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Song J, Chen Q, Xing D. Enhanced apoptotic effects by downregulating Mcl-1: evidence for the improvement of photodynamic therapy with Celecoxib. Exp Cell Res 2013; 319:1491-504. [PMID: 23524145 DOI: 10.1016/j.yexcr.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 12/23/2022]
Abstract
Tumor cells exposed to sub-lethal photodynamic therapy (PDT) cause cellular rescue responses that lead to resistance to the therapy, including expression of angiogenic factors and survival molecules. However, the mechanisms contributing to the resistance are yet to be fully understood. Here, we show for the first time that Mcl-1, an anti-apoptotic protein, plays an important role in protecting cells from PDT-induced apoptosis. In contrast to the reduction in the anti-apoptotic proteins Bcl-2 and Bcl-xl, sub-lethal PDT induces an increase in Mcl-1 expression. Silencing Mcl-1 sensitizes tumor cells to PDT-induced apoptosis, and ectopic expression of Mcl-1 significantly delays Bax translocation to mitochondria and inhibits caspase-3 activity following PDT. Mcl-1 expression is associated closely with activated AKT signaling following PDT. AKT can regulate Mcl-1 expression through GSK-3β and NF-κB at the protein and transcriptional levels, respectively. Inhibition of AKT by Wortmannin or siRNA significantly reduces the levels of Mcl-1 mRNA and protein and enhances PDT-induced apoptosis. Treatment with Celecoxib, a non-steroidal anti-inflammatory drug (NSAID), is shown to downregulate Mcl-1 expression, and enhances PDT-induced apoptosis both in vitro and in vivo. This down-regulation is closely related to the inhibition effect of Celecoxib on the AKT/GSK-3β pathway, and was blocked upon addition of GSK-3β inhibitor LiCl or the proteasome inhibitor MG132. These results suggest that Mcl-1 is a potential target for improving the antitumor efficiency of PDT. A loss in Mcl-1 by inhibiting AKT promotes PDT-induced apoptosis through the mitochondrial pathway. This also provides a novel rationale for utilizing Celecoxib to improve the efficacy of PDT.
Collapse
Affiliation(s)
- Jiaxing Song
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
48
|
Franklin E, Khan AR. Poxvirus antagonism of innate immunity by Bcl-2 fold proteins. J Struct Biol 2013; 181:1-10. [DOI: 10.1016/j.jsb.2012.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
49
|
De Biasio A, Blanco FJ. Proliferating Cell Nuclear Antigen Structure and Interactions. PROTEIN-NUCLEIC ACIDS INTERACTIONS 2013; 91:1-36. [DOI: 10.1016/b978-0-12-411637-5.00001-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Zhang Z, Li X, Song T, Zhao Y, Feng Y. An Anthraquinone Scaffold for Putative, Two-Face Bim BH3 α-Helix Mimic. J Med Chem 2012; 55:10735-41. [DOI: 10.1021/jm301504b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhichao Zhang
- State Key
Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116012, People’s Republic
of China
| | - Xiangqian Li
- State Key
Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116012, People’s Republic
of China
- State Key Laboratory
of Natural
and Biomimetic Drugs, Peking University, Beijing 100191, People’s Republic of China
| | - Ting Song
- School of Life Science and Technology, Dalian University of Technology, Dalian
116024, People’s Republic of China
| | - Yan Zhao
- School of Life Science and Technology, Dalian University of Technology, Dalian
116024, People’s Republic of China
| | - Yingang Feng
- Qingdao Institute of BioEnergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People’s Republic of China
| |
Collapse
|