1
|
Kodama T, Yokoyama A, Nishioka Y, Kawasaki R, Teshima A, Maeda A, Hojo A, Suizu T, Torii H, Fujioka K, Kishida S, Fujimura T, Arakawa K, Ikeda A, Kawamoto S. Fermented plant product (FPP) suppresses immediate hypersensitivity reactions with impaired high-affinity IgE receptor (FcεRI) signaling. Cytotechnology 2025; 77:69. [PMID: 40012927 PMCID: PMC11861467 DOI: 10.1007/s10616-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca2+ influx upon FcεRI ligation but also negatively regulated another Ca2+-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.
Collapse
Affiliation(s)
- Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayana Yokoyama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuki Nishioka
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aiko Teshima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayano Hojo
- Manda Fermentation Co. Ltd, Onomichi, Japan
| | | | | | | | | | - Takashi Fujimura
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Asai H, Kato K, Miyasaka M, Hatsukawa K, Murakami N, Takeda N, Abe J, Aoyagi Y, Kohda Y, Gui MY, Jin YR, Li XW, Hitotsuyanagi Y, Takeya K, Andoh T, Kurosaki H, Fukuishi N. Kamebakaurin Suppresses Antigen-Induced Mast Cell Activation by Inhibition of FcεRI Signaling Pathway. Int Arch Allergy Immunol 2024; 185:836-847. [PMID: 38797160 DOI: 10.1159/000536334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Kamebakaurin is an active constituent of both Rabdosia japonica and Rabdosia excisa, which are utilized in Chinese traditional medicine for improving symptoms in patients with allergies. We investigated the molecular mechanisms of the anti-allergic effects of kamebakaurin using BMMCs. METHODS The degranulation ratio, histamine release, and the interleukin (IL)-4, leukotriene B4 (LTB4), and cysteinyl leukotriene productions on antigen-triggered BMMC were investigated. Additionally, the effects of kamebakaurin on signal transduction proteins were examined by Western blot and binding to the Syk and Lyn kinase domain was calculated. The effects of kamebakaurin on antigen-induced hyperpermeability were investigated using mouse model. RESULTS At 10 μm, kamebakaurin partially inhibited degranulation, histamine release, and IL-4 production. At 30 μm, kamebakaurin partially reduced LTB4 and cysteinyl leukotriene productions and suppressed degranulation, histamine release, and IL-4 production. Phosphorylation of both Syk Y519/520 and its downstream protein, Gab2, was reduced by kamebakaurin, and complete inhibition was observed with 30 μm kamebakaurin. In contrast, phosphorylation of Erk was only partially inhibited, even in the presence of 30 μm kamebakaurin. Syk Y519/520 is known to be auto-phosphorylated via intramolecular ATP present in its own ATP-binding site, and this auto-phosphorylation triggers degranulation, histamine release, and IL-4 production. Docking simulation study indicated kamebakaurin blocked ATP binding to the ATP-binding site in Syk. Therefore, inhibition of Syk auto-phosphorylation by kamebakaurin binding to the Syk ATP-binding site appeared to cause a reduction of histamine release and IL-4 production. Kamebakaurin inhibited antigen-induced vascular hyperpermeability in a dose-dependent fashion but did not reduce histamine-induced vascular hyperpermeability. CONCLUSION Kamebakaurin ameliorates allergic symptoms via inhibition of Syk phosphorylation; thus, kamebakaurin could be a lead compound for the new anti-allergic drug.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan,
| | - Koichi Kato
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Mayu Miyasaka
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Kaho Hatsukawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Nanami Murakami
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Naoko Takeda
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Junna Abe
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Yuka Kohda
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Ming-Yu Gui
- Department of Chemistry, Jilin University, Jilin, China
| | - Yong-Ri Jin
- Department of Chemistry, Jilin University, Jilin, China
| | - Xu-Wen Li
- Department of Chemistry, Jilin University, Jilin, China
| | - Yukio Hitotsuyanagi
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Koichi Takeya
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology and Pathophysiology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| |
Collapse
|
3
|
Wegner P, Drube J, Ziegler L, Strotmann B, Marquardt R, Küchler C, Groth M, Nieswandt B, Andreas N, Drube S. The Neurobeachin-like 2 protein (NBEAL2) controls the homeostatic level of the ribosomal protein RPS6 in mast cells. Immunology 2024; 172:61-76. [PMID: 38272677 DOI: 10.1111/imm.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The Beige and Chediak-Higashi (BEACH) domain-containing, Neurobeachin-like 2 (NBEAL2) protein is a molecule with a molecular weight of 300 kDa. Inactivation of NBEAL2 by loss-of-function mutations in humans as well as deletion of the Nbeal2 gene in mice results in functional defects in cells of the innate immune system such as neutrophils, NK-cells, megakaryocytes, platelets and of mast cells (MCs). To investigate the detailed function of NBEAL2 in murine MCs we generated MCs from wild type (wt) and Nbeal2-/- mice, and deleted Nbeal2 by CRISPR/Cas9 technology in the murine mast cell line MC/9. We also predicted the structure of NBEAL2 to infer its function and to examine potential mechanisms for its association with interaction partners by using the deep learning-based method RoseTTAFold and the Pymol© software. The function of NBEAL2 was analysed by molecular and immunological techniques such as co-immunoprecipitation (co-IP) experiments, western blotting, enzyme-linked immunosorbent assay and flow cytometry. We identified RPS6 as an interaction partner of NBEAL2. Thereby, the NBEAL2/RPS6 complex formation is probably required to control the protein homeostasis of RPS6 in MCs. Consequently, inactivation of NBEAL2 leads to accumulation of strongly p90RSK-phosphorylated RPS6 molecules which results in the development of an abnormal MC phenotype characterised by prolonged growth factor-independent survival and in a pro-inflammatory MC-phenotype.
Collapse
Affiliation(s)
- Philine Wegner
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Julia Drube
- Institut für Molekulare Zellbiologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Lisa Ziegler
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Birgit Strotmann
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Raphaela Marquardt
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Fritz Lipmann Institute, Jena, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Nico Andreas
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
4
|
Seifert J, Küchler C, Drube S. ATP/IL-33-Co-Sensing by Mast Cells (MCs) Requires Activated c-Kit to Ensure Effective Cytokine Responses. Cells 2023; 12:2696. [PMID: 38067124 PMCID: PMC10705958 DOI: 10.3390/cells12232696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.
Collapse
Affiliation(s)
- Johanna Seifert
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
5
|
Asai H, Kato K, Suzuki M, Takahashi M, Miyata E, Aoi M, Kumazawa R, Nagashima F, Kurosaki H, Aoyagi Y, Fukuishi N. Potential Anti-allergic Effects of Bibenzyl Derivatives from Liverworts, Radula perrottetii. PLANTA MEDICA 2022; 88:1069-1077. [PMID: 35081628 DOI: 10.1055/a-1750-3765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liverwort Radula perrottetii contains various bibenzyl derivatives which are known to possess various biological activities, such as anti-inflammatory effects. Mast cells (MC) play crucial roles in allergic and inflammatory diseases; thus, inhibition of MC activation is pivotal for the treatment of allergic and inflammatory disorders. We investigated the effects of perrottetin D (perD), isolated from Radula perrottetii, and perD diacetate (Ac-perD) on antigen-induced activation of MCs. Bone marrow-derived MCs (BMMCs) were generated from C57BL/6 mice. The degranulation ratio, histamine release, and the interleukin (IL)-4 and leukotriene B4 productions on antigen-triggered BMMC were investigated. Additionally, the effects of the bibenzyls on binding of IgE to FcεRI were observed by flow cytometry, and signal transduction proteins was examined by Western blot. Furthermore, binding of the bibenzyls to the Fyn kinase domain was calculated. At 10 µM, perD decreased the degranulation ratio (p < 0.01), whereas 10 µM Ac-perD down-regulated IL-4 production (p < 0.05) in addition to decreasing the degranulation ratio (p < 0.01). Both compounds tended to decrease histamine release at a concentration of 10 µM. Although 10 µM perD reduced only Syk phosphorylation, 10 µM Ac-perD diminished phosphorylation of Syk, Gab2, PLC-γ, and p38. PerD appeared to selectively bind Fyn, whereas Ac-perD appeared to act as a weak but broad-spectrum inhibitor of kinases, including Fyn. In conclusion, perD and Ac-perD suppressed the phosphorylation of signal transduction molecules downstream of the FcεRI and consequently inhibited degranulation, and/or IL-4 production. These may be beneficial potential lead compounds for the development of novel anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Koichi Kato
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moe Suzuki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Misato Takahashi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Erika Miyata
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moeka Aoi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Reika Kumazawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | | | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| |
Collapse
|
6
|
The Heat Shock Protein 90 (HSP90) Is Required for the IL-33-Induced Cytokine Production in Mast Cells (MCs). Int J Mol Sci 2022; 23:ijms231810855. [PMID: 36142767 PMCID: PMC9502846 DOI: 10.3390/ijms231810855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The alarmin interleukin-33 (IL-33) is released upon cell stress and damage in peripheral tissues. The receptor for IL-33 is the Toll/Interleukin-1 receptor (TIR)-family member T1/ST2 (the IL-33R), which is highly and constitutively expressed on MCs. The sensing of IL-33 by MCs induces the MyD88-TAK1-IKK2-dependent activation of p65/RelA and MAP-kinases, which mediate the production of pro-inflammatory cytokines and amplify FcεRI-mediated MC-effector functions and the resulting allergic reactions. Therefore, the investigation of IL-33-induced signaling is of interest for developing therapeutic interventions effective against allergic reactions. Importantly, beside the release of IL-33, heat shock proteins (HSPs) are upregulated during allergic reactions. This maintains the biological functions of signaling molecules and/or cytokines but unfortunately also strengthens the severity of inflammatory reactions. Here, we demonstrate that HSP90 does not support the IL-33-induced and MyD88-TAK1-IKK2-dependent activation of p65/RelA and of mitogen-activated protein (MAP)-kinases. We found that HSP90 acts downstream of these signaling pathways, mediates the stability of produced cytokine mRNAs, and therefore facilitates the resulting cytokine production. These data show that IL-33 enables MCs to perform an effective cytokine production by the upregulation of HSP90. Consequently, HSP90 might be an attractive therapeutic target for blocking IL-33-mediated inflammatory reactions.
Collapse
|
7
|
Dhong KR, Park HJ. Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms 2021; 9:microorganisms9091855. [PMID: 34576749 PMCID: PMC8469544 DOI: 10.3390/microorganisms9091855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, the effect of GBR fermented with the Pediococcus pentosaceus SP024 strain on IgE/Ag mediated passive cutaneous anaphylaxis (PCA) was investigated. Protocatechuic acid and trans-ferulic acid levels in GBR-SP024 increased more than those in unfermented GBR, respec-tively. The inhibitory activity of GBR-SP024 on β-hexosaminidase release and the level of proin-flammatory cytokine mRNA expression (tumor necrosis factor-α (TNF-α) and interleukin 4 (IL-4)) was observed in IgE/Ag-stimulated RBL-2H3 cells. Western blot analysis showed that GBR-SP024 significantly inhibited the phosphorylation of the linker for activation of T cell (LAT) and nuclear factor-κB (NF-κB) in IgE/Ag-stimulated RBL-2H3 cells. Further, we investigated the anti-allergic effect of GBR-SP024 using PCA murine model. The number of infiltrated immune cells and degranulated mast cells in GBR-SP024 treated dermis was lower than that in the GBR-treated mice. In addition, mRNA expression of 5-lipoxygenase (5-LOX) in the dermis of ear tissue declined in the GBR-SP024–treated group, compared to that in the GBR group. GBR-SP024 was also more effective than GBR at reducing the levels of IL-33 protein expression in IgE/Ag-stimulated BALB/c mice. Our study suggests the potential usage of GBR-SP024 as a dietary supplement or an adjuvant for treating IgE-dependent-allergic diseases.
Collapse
Affiliation(s)
- Kyu-Ree Dhong
- Department of Life Science, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
- Correspondence: ; Tel.: +82-31-750-5382
| |
Collapse
|
8
|
Jordan PM, Andreas N, Groth M, Wegner P, Weber F, Jäger U, Küchler C, Werz O, Serfling E, Kamradt T, Dudeck A, Drube S. ATP/IL-33-triggered hyperactivation of mast cells results in an amplified production of pro-inflammatory cytokines and eicosanoids. Immunology 2021; 164:541-554. [PMID: 34142370 PMCID: PMC8517600 DOI: 10.1111/imm.13386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
IL‐33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high‐density expression of the IL‐33 receptor T1/ST2 (IL‐33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL‐33 or ATP in damaged peripheral tissues. Whereas IL‐33 induces the MyD88‐dependent activation of the TAK1‐IKK2‐NF‐κB signalling, ATP induces the Ca2+‐dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro‐inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co‐sensing) IL‐33 and ATP, display an enhanced and prolonged activation of the TAK1‐IKK2‐NF‐κB signalling pathway. This resulted in a massive production of pro‐inflammatory cytokines such as IL‐2, IL‐4, IL‐6 and GM‐CSF as well as of arachidonic acid‐derived cyclooxygenase (COX)‐mediated pro‐inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co‐sensing of ATP and IL‐33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE‐mediated crosslinking of the FcεRI. Therefore, the IL‐33/IL‐33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.
Collapse
Affiliation(s)
- Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Marco Groth
- CF DNA Sequencing, Fritz Lipmann Institute, Jena, Germany
| | - Philine Wegner
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Franziska Weber
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Ute Jäger
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Claudia Küchler
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University Würzburg, Würzburg, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Medical Faculty, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Kim MJ, Je IG, Song J, Fei X, Lee S, Yang H, Kang W, Jang YH, Seo SY, Kim SH. SG-SP1 Suppresses Mast Cell-Mediated Allergic Inflammation via Inhibition of FcεRI Signaling. Front Immunol 2020; 11:50. [PMID: 32063904 PMCID: PMC6998798 DOI: 10.3389/fimmu.2020.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: As the number of allergic disease increases, studies to identify new treatments take on new urgency. Epigallocatechin gallate (EGCG), a major component of green tea, has been shown to possess a wide range of pharmacological properties, including anti-inflammation and anti-viral infection. In previous study, gallic acid (GA), a part of EGCG, has shown anti-allergic inflammatory effect. To improve on preliminary evidence that GA has allergy mitigating effect, we designed SG-SP1 based on GA, and aimed to assess the effects of SG-SP1 on mast cell-mediated allergic inflammation using various animal and in vitro models. Methods: For in vitro experiments, various types of IgE-stimulated mast cells (RBL-2H3: mast cell-like basophilic leukemia cells, and primary cultured peritoneal and bone marrow-derived mast cells) were used to determine the role of SG-SP1 (0.1–1 nM). Immunoglobulin (Ig) E-induced passive cutaneous anaphylaxis and ovalbumin-induced systemic anaphylaxis, standard animal models for immediate-type hypersensitivity were also used. Results: For in vitro, SG-SP1 reduced degranulation of mast cells by down-regulating intracellular calcium levels in a concentration-dependent manner. SG-SP1 decreased expression and secretion of inflammatory cytokines in activated mast cells. This suppressive effect was associated with inhibition of the phosphorylation of Lyn, Syk and Akt, and the nuclear translocation of nuclear factor-κB. Due to the strong inhibitory effect of SG-SP1 on Lyn, the known upstream signaling to FcεRI-dependent pathway, we confirmed the direct binding of SG-SP1 to FcεRI, a high affinity IgE receptor by surface plasmon resonance experiment. Oral administration of SG-SP1 hindered allergic symptoms of both anaphylaxis models evidenced by reduction of hypothermia, serum IgE, ear thickness, and tissue pigmentation. This inhibition was mediated by the reductions in serum histamine and interleukin-4. Conclusions: We determined that SG-SP1 directly interacts with FcεRI and propose SG-SP1 as a therapeutic candidate for mast cell-mediated allergic inflammatory disorders via inhibition of FcεRI signaling.
Collapse
Affiliation(s)
- Min-Jong Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Gyu Je
- Research Laboratories, ILDONG Pharmaceutical Co. Ltd., Hwaseong, South Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Xiang Fei
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Huiseon Yang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Phellinus linteus Grown on Germinated Brown Rice Inhibits IgE-Mediated Allergic Activity through the Suppression of Fc εRI-Dependent Signaling Pathway In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1485015. [PMID: 31871471 PMCID: PMC6907041 DOI: 10.1155/2019/1485015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Phellinus linteus (PL) has been used as a traditional herbal medicine owing to its immune regulatory activity. Previous studies reported that PL grown on germinated brown rice (PBR) exerted immunomodulatory, anticancer, and anti-inflammatory activities. However, role of PBR on type I hypersensitive reactions has not been studied yet. We found that PBR contained more polyphenolic compounds than PL extract. Among fractions, PBR butanol fraction (PBR-BuOH) significantly contained the most amounts of total polyphenolic contents compared with all extracts or fractions. In this study, anti-allergic activity of PBR-BuOH was examined using in vitro and in vivo models of immunoglobulin E/antigen- (IgE/Ag-) stimulated allergy. The inhibitory activity of degranulation was higher in PBR-BuOH (IC50 41.31 ± 0.14 μg/mL) than in PL-BuOH (IC50 108.07 ± 8.98 μg/mL). We observed that PBR-BuOH suppressed calcium influx and the level of TNF-α and IL-4 mRNA expression in a dose-dependent manner. The phosphorylation of Fyn, Gab2, PI3K, Syk, and IκB protein is reduced by PBR-BuOH. Oral administration of PBR-BuOH inhibited allergic reactions including the extravasation of Evans blue dye, ear swelling, and infiltration of immune cells in mice with passive cutaneous anaphylaxis (PCA). These findings suggest that PBR-BuOH might be used as a functional food, a health supplement, or a drug for preventing type I hypersensitive allergic disease.
Collapse
|
11
|
Raf kinase inhibitor protein negatively regulates FcεRI-mediated mast cell activation and allergic response. Proc Natl Acad Sci U S A 2018; 115:E9859-E9868. [PMID: 30282734 DOI: 10.1073/pnas.1805474115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The signaling cascades triggered by the cross-linkage of immunoglobulin E (IgE) with its high-affinity receptor (FcεRI) on mast cells contribute to multiple allergic disorders, such as asthma, rhinitis, and atopic dermatitis. Restraint of intracellular signals for mast cell activation is essential to restore homeostasis. In this study, we found that Raf kinase inhibitor protein (RKIP) negatively regulated mast cell activation. RKIP-deficient mast cells showed greater IgE-FcεRI-mediated activation than wild-type mast cells. Consistently, RKIP deficiency in mast cells rendered mice more sensitive to IgE-FcεRI-mediated allergic responses and ovalbumin-induced airway inflammation. Mechanistically, RKIP interacts with the p85 subunit of PI3K, prevents it from binding to GRB2-associated binding protein 2 (Gab2), and eventually inhibits the activation of the PI3K/Akt/NF-κB complex and its downstream signaling. Furthermore, the expression of RKIP was significantly down-regulated in the peripheral blood of asthma patients and in the IgE-FcεRI-stimulated mast cells. Collectively, our findings not only suggest that RKIP plays an important role in controlling mast cell-mediated allergic responses but also provide insight into therapeutic targets for mast cell-related allergic diseases.
Collapse
|
12
|
Li X, Lee YJ, Jin F, Park YN, Deng Y, Kang Y, Yang JH, Chang JH, Kim DY, Kim JA, Chang YC, Ko HJ, Kim CH, Murakami M, Chang HW. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes. Sci Rep 2017; 7:6444. [PMID: 28744004 PMCID: PMC5527079 DOI: 10.1038/s41598-017-06835-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.
Collapse
Affiliation(s)
- Xian Li
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, Republic of Korea
| | - Fansi Jin
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young Na Park
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yifeng Deng
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youra Kang
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ju Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 2066 Seobu-Ro, Suwon City, Kyunggi-Do, 16419, Republic of Korea.
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
13
|
Rixecker T, Mathar I, Medert R, Mannebach S, Pfeifer A, Lipp P, Tsvilovskyy V, Freichel M. TRPM4-mediated control of FcεRI-evoked Ca(2+) elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Sci Rep 2016; 6:32981. [PMID: 27624684 PMCID: PMC5021962 DOI: 10.1038/srep32981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/17/2016] [Indexed: 11/09/2022] Open
Abstract
TRPM4 proteins form Ca2+-activated non selective cation (CAN) channels that affect transmembrane Ca2+-influx by determining the membrane potential. Tight control of the intracellular Ca2+ concentration is essential for mast cell responses. In this study, we analyzed the expression of TRPM4 in peritoneal mast cells (PCMC) as a model for connective tissue type mast cells with respect to FcεRI-evoked calcium changes and the subcellular localization of fluorescently labeled TRPM4 using two viral transduction systems before and following antigen stimulation. Our results show that TRPM4 is expressed in PCMCs, is an essential constituent of the endogenous CAN channels in PCMCs and regulates antigen-evoked increases in intracellular calcium that are significantly enhanced in TRPM4-deficient PCMCs. Compared to PCMCs analyzed before antigen stimulation, the cells depict a substantially increased localization of TRPM4 proteins towards the plasma membrane after FcεRI stimulation. Thus, TRPM4 functions as a limiting factor for antigen evoked calcium rise in connective tissue type mast cells and concurrent translocation of TRPM4 into the plasma membrane is part of this mechanism.
Collapse
Affiliation(s)
- Torben Rixecker
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Ilka Mathar
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Stefanie Mannebach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Peter Lipp
- Institut für Molekulare Zellbiologie Universität des Saarlandes, 66421 Homburg, Germany
| | - Volodymyr Tsvilovskyy
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
15
|
Drube S, Weber F, Loschinski R, Beyer M, Rothe M, Rabenhorst A, Göpfert C, Meininger I, Diamanti MA, Stegner D, Häfner N, Böttcher M, Reinecke K, Herdegen T, Greten FR, Nieswandt B, Hartmann K, Krämer OH, Kamradt T. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget 2016; 6:5354-68. [PMID: 25749030 PMCID: PMC4467154 DOI: 10.18632/oncotarget.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 01/16/2023] Open
Abstract
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Beyer
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Anja Rabenhorst
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Christiane Göpfert
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Isabel Meininger
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - David Stegner
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, 07743 Jena, Germany
| | - Martin Böttcher
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Kirstin Reinecke
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Herdegen
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, 55131 Mainz, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| |
Collapse
|
16
|
Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 2015; 5:77-80. [PMID: 26856948 DOI: 10.1016/j.msard.2015.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
Autoimmunity is a disease that occurs when the body tissue is attacked by its own immune system. Multiple sclerosis (MS) is an autoimmune illness which triggers neurological progressive and persistent functions. MS is associated with an abnormal B-cell response and upregulation of T-cell reactivity against a multitude of antigens. Mast cells are the first line of the innate immune system and act by degranulating and secreting chemical mediators and cytokines. Their participation on the central nervous system has been recognized since the beginning of the last century. They have an important role in autoimmune disease, including MS where they mediate inflammation and demyelinization by presenting myelin antigens to T cells or disrupting the blood-brain barrier and permitting entry of inflammatory cells and cytokines. The participation of mast cells in MS is demonstrated by gene overexpression of chemical mediators and inflammatory cytokines. Here we report the relationship and involvement between mast cells and multiple sclerosis.
Collapse
Affiliation(s)
- P Conti
- Postgraduate, Medical School, University of Chieti-Pescara, Viale Unità dell'Italia 73, 66013 Chieti, Italy.
| | - D Kempuraj
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA.
| |
Collapse
|
17
|
Lu Y, Cai S, Tan H, Fu W, Zhang H, Xu H. Inhibitory effect of oblongifolin C on allergic inflammation through the suppression of mast cell activation. Mol Cell Biochem 2015; 406:263-271. [PMID: 25968068 DOI: 10.1007/s11010-015-2444-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Oblongifolin C (OC), a natural small molecule compound extracted from Garcinia yunnanensis Hu, has been previously shown to have anti-cancer effect, but the anti-allergic effect of OC has not yet been investigated. The aim of the present study is to determine the anti-allergic effect of OC on IgE/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and on the passive systemic anaphylaxis (PSA) reaction in mice. OC clearly suppressed cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation as well as leukotriene C4 (LTC4) generation and the degranulation reaction in IgE/Ag-stimulated BMMCs. Biochemical analyses of the IgE/Ag-mediated signaling pathways showed that OC suppressed the phosphorylation of phospholipase Cγ1 (PLCγ1)-mediated intracellular Ca(2+) influx and the nuclear factor-κB (NF-κB) pathway, as well as the phosphorylation of mitogen-activated protein (MAP) kinases. Although OC did not inhibit the phosphorylation of Fyn, Lyn, and Syk, it directly inhibited the tyrosine kinase activity in vitro. Moreover, oral administration of OC inhibited the IgE-induced PSA reaction in a dose-dependent manner. Taken together, the present study provides new insights into the anti-allergic activity of OC, which could be a promising candidate for allergic therapy.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
20(S)-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation. J Ginseng Res 2014. [PMID: 26199549 PMCID: PMC4506377 DOI: 10.1016/j.jgr.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Antiallergic effect of 20(S)-protopanaxatriol (PPT), an intestinal metabolite of ginseng saponins, was investigated in guinea pig lung mast cells and mouse bone marrow-derived mast cells activated by a specific antigen/antibody reaction. Methods Increasing concentrations of PPT were pretreated 5 min prior to antigen stimulation, and various inflammatory mediator releases and their relevant cellular signaling events were measured in those cells. Results PPT dose-dependently reduced the release of histamine and leukotrienes in both types of mast cells. Especially, in activated bone marrow-derived mast cells, PPT inhibited the expression of Syk protein, cytokine mRNA, cyclooxygenase-1/2, and phospholipase A2 (PLA2), as well as the activities of various protein kinase C isoforms, mitogen-activated protein kinases, PLA2, and transcription factors (nuclear factor-κB and activator protein-1). Conclusion PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells.
Collapse
|
19
|
Balhara J, Redhu NS, Shan L, Gounni AS. IgE regulates the expression of smMLCK in human airway smooth muscle cells. PLoS One 2014; 9:e93946. [PMID: 24722483 PMCID: PMC3983085 DOI: 10.1371/journal.pone.0093946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/11/2014] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that enhanced accumulation of contractile proteins such as smooth muscle myosin light chain kinase (smMLCK) plays a major role in human airway smooth muscle cells (HASM) cell hypercontractility and hypertrophy. Furthermore, serum IgE levels play an important role in smooth muscle hyperreactivity. However, the effect of IgE on smMLCK expression has not been investigated. In this study, we demonstrate that IgE increases the expression of smMLCK at mRNA and protein levels. This effect was inhibited significantly with neutralizing abs directed against FcεRI but not with anti-FcεRII/CD23. Furthermore, Syk knock down and pharmacological inhibition of mitogen activated protein kinases (MAPK) (ERK1/2, p38, and JNK) and phosphatidylinositol 3-kinase (PI3K) significantly diminished the IgE-mediated upregulation of smMLCK expression in HASM cells. Taken together, our data suggest a role of IgE in regulating smMLCK in HASM cells. Therefore, targeting the FcεRI activation on HASM cells may offer a novel approach in controlling the bronchomotor tone in allergic asthma.
Collapse
Affiliation(s)
- Jyoti Balhara
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Lianyu Shan
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
- * E-mail:
| |
Collapse
|
20
|
Hwang SL, Li X, Lu Y, Jin Y, Jeong YT, Kim YD, Lee IK, Taketomi Y, Sato H, Cho YS, Murakami M, Chang HW. AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice. J Allergy Clin Immunol 2013; 132:729-736.e12. [DOI: 10.1016/j.jaci.2013.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/27/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
21
|
Kim JD, Kim DK, Kim HS, Kim AR, Kim B, Her E, Park KH, Kim HS, Kim YM, Choi WS. Morus bombycis extract suppresses mast cell activation and IgE-mediated allergic reaction in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:287-293. [PMID: 23313390 DOI: 10.1016/j.jep.2012.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/26/2012] [Accepted: 12/29/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus bombycis Koidzumi (MB) is widely distributed throughout Korea, where it is used as a traditional folk remedy for the treatment of allergic diseases including asthma. However, the pharmacological effect and the mechanistic study of MB have not been investigated. We aimed to investigate the anti-allergic activity of MB in vitro and in vivo and the mechanism of its action on mast cells. MATERIALS AND METHODS The anti-allergic activity of MB extract (MBE) was assessed using passive cutaneous anaphylaxis (PCA) in mice and mouse bone marrow-derived mast cells (BMMCs) in vitro. The effects of MBE on mast cell activation were evaluated by using the β-hexosaminidase release assay, reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting analysis. RESULTS MBE reversibly inhibited degranulation and generation of cytokines (TNF-α and IL-4) in antigen-stimulated mast cells. With regard to its mechanism of action, MBE inhibited the activation of Lyn and Syk, which have essential roles in degranulation and the production of various inflammatory cytokines. MBE also inhibited the activating phosphorylation of mitogen-activated protein (MAP) kinases, Erk1/2, p38, JNK, and Akt. In agreement with its in vitro effect, MBE significantly inhibited mast cell-mediated PCA reactions in IgE-sensitized mice. CONCLUSIONS The present results strongly suggest that MBE exerts an anti-allergic effect, both in vitro and in vivo by inhibiting the Lyn and Syk pathways in mast cells. Therefore, MBE may be useful for the treatment of allergic diseases, including atopic dermatitis and allergic asthma.
Collapse
Affiliation(s)
- Ju Dong Kim
- Institute of Functional Genomics and College of Medicine, Department of Microbiology, Konkuk University, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barbu EA, Zhang J, Berenstein EH, Groves JR, Parks LM, Siraganian RP. The transcription factor Zeb2 regulates signaling in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:6278-86. [PMID: 22561153 PMCID: PMC3370126 DOI: 10.4049/jimmunol.1102660] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.
Collapse
Affiliation(s)
- Emilia Alina Barbu
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Falanga YT, Chaimowitz NS, Charles N, Finkelman FD, Pullen NA, Barbour S, Dholaria K, Faber T, Kolawole M, Huang B, Odom S, Rivera J, Carlyon J, Conrad DH, Spiegel S, Oskeritzian CA, Ryan JJ. Lyn but not Fyn kinase controls IgG-mediated systemic anaphylaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4360-8. [PMID: 22450804 PMCID: PMC3536057 DOI: 10.4049/jimmunol.1003223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anaphylaxis is a rapid, life-threatening hypersensitivity reaction. Until recently, it was mainly attributed to histamine released by mast cells activated by allergen crosslinking (XL) of FcεRI-bound allergen-specific IgE. However, recent reports established that anaphylaxis could also be triggered by basophil, macrophage, and neutrophil secretion of platelet-activating factor subsequent to FcγR stimulation by IgG/Ag complexes. We have investigated the contribution of Fyn and Lyn tyrosine kinases to FcγRIIb and FcγRIII signaling in the context of IgG-mediated passive systemic anaphylaxis (PSA). We found that mast cell IgG XL induced Fyn, Lyn, Akt, Erk, p38, and JNK phosphorylation. Additionally, IgG XL of mast cells, basophils, and macrophages resulted in Fyn- and Lyn-regulated mediator release in vitro. FcγR-mediated activation was enhanced in Lyn-deficient (knockout [KO]) cells, but decreased in Fyn KO cells, compared with wild-type cells. More importantly, Lyn KO mice displayed significantly exacerbated PSA features whereas no change was observed for Fyn KO mice, compared with wild-type littermates. Intriguingly, we establish that mast cells account for most serum histamine in IgG-induced PSA. Taken together, our findings establish pivotal roles for Fyn and Lyn in the regulation of PSA and highlight their unsuspected functions in IgG-mediated pathologies.
Collapse
Affiliation(s)
- Yves T. Falanga
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Natalia S. Chaimowitz
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Nicolas Charles
- Inserm U699 "Immunopathologie Rénale, Récepteurs et Inflammation", Faculté de Médecine Xavier Bichat - Université Paris VII Denis Diderot, 75870 PARIS cedex 18, France
| | - Fred D. Finkelman
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, § Division of Immunology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, § Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Nicholas A. Pullen
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Suzanne Barbour
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Kevin Dholaria
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Travis Faber
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Motunrayo Kolawole
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Sandra Odom
- Laboratory of Molecular Immunogenetics, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carole A. Oskeritzian
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
24
|
de Castro RO, Zhang J, Groves JR, Barbu EA, Siraganian RP. Once phosphorylated, tyrosines in carboxyl terminus of protein-tyrosine kinase Syk interact with signaling proteins, including TULA-2, a negative regulator of mast cell degranulation. J Biol Chem 2012; 287:8194-204. [PMID: 22267732 DOI: 10.1074/jbc.m111.326850] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.
Collapse
Affiliation(s)
- Rodrigo Orlandini de Castro
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Pullen NA, Barnstein BO, Falanga YT, Wang Z, Suzuki R, Tamang TDL, Khurana MC, Harry EA, Draber P, Bunting KD, Mizuno K, Wilson BS, Ryan JJ. Novel mechanism for Fc{epsilon}RI-mediated signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and the selective influence of STAT5B over mast cell cytokine production. J Biol Chem 2011; 287:2045-54. [PMID: 22130676 DOI: 10.1074/jbc.m111.311142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that STAT5 expression is required for mast cell development, survival, and IgE-mediated function. STAT5 tyrosine phosphorylation is swiftly and transiently induced by activation of the high affinity IgE receptor, FcεRI. However, the mechanism for this mode of activation remains unknown. In this study we observed that STAT5 co-localizes with FcεRI in antigen-stimulated mast cells. This localization was supported by cholesterol depletion of membranes, which ablated STAT5 tyrosine phosphorylation. Through the use of various pharmacological inhibitors and murine knock-out models, we found that IgE-mediated STAT5 activation is dependent upon Fyn kinase, independent of Syk, PI3K, Akt, Bruton's tyrosine kinase, and JAK2, and enhanced in the context of Lyn kinase deficiency. STAT5 immunoprecipitation revealed that unphosphorylated protein preassociates with Fyn and that this association diminishes significantly during mast cell activation. SHP-1 tyrosine phosphatase deficiency modestly enhanced STAT5 phosphorylation. This effect was more apparent in the absence of Gab2, a scaffolding protein that docks with multiple negative regulators, including SHP-1, SHP-2, and Lyn. Targeting of STAT5A or B with specific siRNA pools revealed that IgE-mediated mast cell cytokine production is selectively dependent upon the STAT5B isoform. Altogether, these data implicate Fyn as the major positive mediator of STAT5 after FcεRI engagement and demonstrate importantly distinct roles for STAT5A and STAT5B in mast cell function.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lu Y, Yang JH, Li X, Hwangbo K, Hwang SL, Taketomi Y, Murakami M, Chang YC, Kim CH, Son JK, Chang HW. Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem Pharmacol 2011; 82:1700-8. [PMID: 21907188 DOI: 10.1016/j.bcp.2011.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/16/2022]
Abstract
The high-affinity receptor for IgE (FcɛRI)-mediated activation of mast cells plays an important role in allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. Emodin, a naturally occurring anthraquinone derivative in oriental herbal medicines, has several beneficial pharmacologic effects, such as anti-cancer and anti-diabetic activities. However, the anti-allergic effect of emodin has not yet been investigated. To assess the anti-allergic activity of emodin, in vivo passive anaphylaxis animal model and in vitro mouse bone marrow-derived mast cells were used to investigate the mechanism of its action on mast cells. Our results showed that emodin inhibited degranulation, generation of eicosanoids (prostaglandin D(2) and leukotriene C(4)), and secretion of cytokines (TNF-α and IL-6) in a dose-dependent manner in IgE/Ag-stimulated mast cells. Biochemical analysis of the FcɛRI-mediated signaling pathways demonstrated that emodin inhibited the phosphorylation of Syk and multiple downstream signaling processes including mobilization of intracellular Ca(2+) and activation of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and NF-κB pathways. When administered orally, emodin attenuated the mast cell-dependent passive anaphylactic reaction in IgE-sensitized mice. Thus, emodin inhibits mast cell activation and thereby the anaphylactic reaction through suppression of the receptor-proximal Syk-dependent signaling pathways. Therefore, emodin might provide a basis for development of a novel anti-allergic drug.
Collapse
Affiliation(s)
- Yue Lu
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee JH, Kim JW, Kim DK, Kim HS, Park HJ, Park DK, Kim AR, Kim B, Beaven MA, Park KL, Kim YM, Choi WS. The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1807-15. [PMID: 21746961 DOI: 10.4049/jimmunol.1100296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with FcεRI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with FcεRIγ as well as the tyrosine phosphorylation of FcεRIγ. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Jun Ho Lee
- Institute of Biomedical Sciences and Technology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Horiguchi T, Ishiguro N, Chihara K, Ogi K, Nakashima K, Sada K, Hori-Tamura N. Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5595-5601. [PMID: 21486000 DOI: 10.1021/jf2005707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Tomoko Horiguchi
- Laboratory of Biochemistry, Graduate School of Life Science, Kobe Women's University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Regulation and function of syk tyrosine kinase in mast cell signaling and beyond. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:507291. [PMID: 21776385 PMCID: PMC3135164 DOI: 10.1155/2011/507291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/23/2011] [Indexed: 01/16/2023]
Abstract
The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk−/− cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.
Collapse
|
30
|
Zhao J, Endoh I, Hsu K, Tedla N, Endoh Y, Geczy CL. S100A8 modulates mast cell function and suppresses eosinophil migration in acute asthma. Antioxid Redox Signal 2011; 14:1589-600. [PMID: 21142608 DOI: 10.1089/ars.2010.3583] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
S100A8 is implicated in the pathogenesis of inflammatory diseases. S100A8 is upregulated in macrophages by Toll-like receptors (TLR)-3, 4, and 9 agonists in an IL-10-dependent manner, and by corticosteroids in vitro and in vivo, and scavenges oxidants generated by activated phagocytes. Because if its elevated expression in various lung disorders, we asked whether S100A8 was protective in allergic inflammation. S100A8, but not Cys(41)-Ala S100A8, in which the single reactive Cys residue was replaced by Ala, reduced mast cell (MC) degranulation and production of particular cytokines (IL-6, IL-4, and granulocyte macrophage colony-stimulating factor) in response to IgE-crosslinking in vitro, likely by inhibiting intracellular reactive oxygen species production, thereby reducing downstream linker for activation of T cells and extracellular signal regulated kinase/mitogen-activated protein kinase phosphorylation. In lungs of mice with acute asthma, S100A8, but not Cys(41)-Ala S100A8, reduced MC degranulation, production of eosinophil chemoattractants (IL-5, eotaxin, and monocyte chemoattractant protein-1), and eosinophil infiltration. Suppression of IL-6 and IL-13 could have contributed to reduced mucus production seen in lungs of S100A8-treated mice. IgE production was unaffected. In asthma, there is an imbalance of anti-oxidant systems that are generally protective. Our results strongly support a protective role for S100A8 in allergic inflammation by modulating MC activation and eosinophil recruitment, and by scavenging oxidants generated by activated leukocytes, in processes reliant on its thiol-scavenging capacity.
Collapse
Affiliation(s)
- Jing Zhao
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Tshori S, Razin E. Editorial: Mast cell degranulation and calcium entry-the Fyn-calcium store connection. J Leukoc Biol 2010; 88:837-8. [DOI: 10.1189/jlb.0610365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Siraganian RP, de Castro RO, Barbu EA, Zhang J. Mast cell signaling: the role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. FEBS Lett 2010; 584:4933-40. [PMID: 20696166 DOI: 10.1016/j.febslet.2010.08.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
The aggregation by antigen of the IgE bound to its high affinity receptor on mast cells initiates a complex series of biochemical events that result in the release of inflammatory mediators. The essential role of the protein tyrosine kinase Syk has been appreciated for some time, and newer results have defined the mechanism of its activation. The use of siRNA has defined the relative contribution of Syk, Fyn and Gab2 to signaling and has made possible a screening study to identify previously unrecognized molecules that are involved in these pathways.
Collapse
Affiliation(s)
- Reuben P Siraganian
- Receptors and Signal Transduction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|