1
|
Planells-Cases R, Vorobeva V, Kar S, Schmitt FW, Schulte U, Schrecker M, Hite RK, Fakler B, Jentsch TJ. Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity. Nat Commun 2025; 16:3117. [PMID: 40169677 PMCID: PMC11962092 DOI: 10.1038/s41467-025-58546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
The function of endosomes critically depends on their ion homeostasis. A crucial role of luminal Cl-, in addition to that of H+, is increasingly recognized. Both ions are transported by five distinct endolysosomal CLC chloride/proton exchangers. Dysfunction of each of these transporters entails severe disease. Here we identified TMEM9 and TMEM9B as obligatory β-subunits for endosomal ClC-3, ClC-4, and ClC-5. Mice lacking both β-subunits displayed severely reduced levels of all three CLCs and died embryonically or shortly after birth. TMEM9 proteins regulate trafficking of their partners. Surprisingly, they also strongly inhibit CLC ion transport. Tonic inhibition enables the regulation of CLCs and prevents toxic Cl- accumulation and swelling of endosomes. Inhibition requires a carboxy-terminal TMEM9 domain that interacts with CLCs at multiple sites. Disease-causing CLCN mutations that weaken inhibition by TMEM9 proteins cause a pathogenic gain of ion transport. Our work reveals the need to suppress, in a regulated manner, endolysosomal chloride/proton exchange. Several aspects of endosomal ion transport must be revised.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Viktoriia Vorobeva
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Free University Berlin, Berlin, Germany
| | - Sumanta Kar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska W Schmitt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Humboldt University Berlin, Berlin, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Logopharm GmbH, March-Buchheim, Breisgau, Germany
| | - Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Lee SM, Choi Y, Kim D, Jeong HJ, Do YH, Jung S, Lee B, Choi HJ, Kim S, Oh JM, Jeon S, Han J, Kim Y. Developmental deficits, synapse and dendritic abnormalities in a Clcn4 KO autism mice model: endophenotypic target for ASD. Transl Psychiatry 2025; 15:28. [PMID: 39863599 PMCID: PMC11762770 DOI: 10.1038/s41398-024-03201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests. Surprisingly, these symptoms were improved by Risperidone treatment, a drug commonly used to treat ASD. RNA sequencing data from mouse neural progenitor cells (mNPCs) showed that the genes regulating trans-synaptic signaling, transmembrane transport, and neuronal projection development were significantly decreased in Clcn4 knockdown (KD) cells compared to wild type (WT). Moreover, Risperidone treatment increased the genes related to the ion transmembrane transport, membrane potential, and neuron projection development in Clcn4 KD. Abnormalities in synaptic plasticity and dendritic spine formation were also observed in Clcn4 KO compared to WT. We observed that phosphorylation of SYNAPSIN, PSD95, ERK and CREB, as well as the expression of CDK5, were reduced in the brains of Clcn4 KO mice. In Clcn4 KO cortical neurons, the phosphorylation of SYNAPSIN and PSD95 expressions also decreased compared to WT, indicating disrupted synaptic function. Additionally, Sholl analysis revealed a reduction in dendritic branching and neuronal projection length in both mouse and human CLCN4 KD neurons. Finally, the decreased phosphorylation of SYNAPSIN and expression of PSD95 along with dendrite abnormalities were restored after Risperidone treatment. These data suggest that dendritic outgrowth and synapse remodeling may serve as endophenotypic targets for drug efficacy in ASD.
Collapse
Affiliation(s)
- Seong Mi Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ha Jin Jeong
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Young Ho Do
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Sohee Jung
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Bomee Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Suhyeon Kim
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea.
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Fahlke C. A proline-tyrosine motif, endocytosis and low salt - how to link protein functions to organ physiology. J Physiol 2024; 602:4095-4096. [PMID: 39207180 DOI: 10.1113/jp287335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
4
|
He H, Li X, Guzman GA, Bungert-Plümke S, Franzen A, Lin X, Zhu H, Peng G, Zhang H, Yu Y, Sun S, Huang Z, Zhai Q, Chen Z, Peng J, Guzman RE. Expanding the genetic and phenotypic relevance of CLCN4 variants in neurodevelopmental condition: 13 new patients. J Neurol 2024; 271:4933-4948. [PMID: 38758281 DOI: 10.1007/s00415-024-12383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Li
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - G A Guzman
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Jülich Research Center, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - XueQin Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongmin Zhu
- Department of Rehabilitation, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guilan Peng
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Hongwei Zhang
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Sun
- Department of Pediatric Neurology, Hebei Children's Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zhongqin Huang
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany.
| |
Collapse
|
5
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Wang Y, Xu L, Zhang Y, Fu H, Gao L, Guan Y, Gu W, Sun J, Chen X, Yang F, Lai E, Wang J, Jin Y, Kou Z, Qiu X, Mao J, Hu L. Dent disease 1-linked novel CLCN5 mutations result in aberrant location and reduced ion currents. Int J Biol Macromol 2024; 257:128564. [PMID: 38061527 DOI: 10.1016/j.ijbiomac.2023.128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - EnYin Lai
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziqi Kou
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingyu Qiu
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
7
|
Yang L, Liu M, Zhu Y, Li Y, Pan T, Li E, Wu X. Candidate Regulatory Genes for Hindlimb Development in the Embryos of the Chinese Alligator ( Alligator sinensis). Animals (Basel) 2023; 13:3126. [PMID: 37835732 PMCID: PMC10571561 DOI: 10.3390/ani13193126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Crocodilians, which are a kind of animal secondary adaptation to an aquatic environment, their hindlimb can provide the power needed to engage in various life activities, even in low-oxygen water environments. The development of limbs is an important aspect of animal growth and development, as it is closely linked to body movement, support, heat production, and other critical functions. For the Chinese alligator, the hindlimb is one of the main sources of power, and its development and differentiation will directly influence the survival ability in the wild. Furthermore, a better understanding of the hindlimb developmental process will provide data support for the comparative evolutionary and functional genomics of crocodilians. In this study, the expression levels of genes related to hindlimb development in the Chinese alligator embryos during fetal development (on days 29, 35, 41, and 46) were investigated through transcriptome analysis. A total of 1675 differentially expressed genes (DEGs) at different stages were identified by using limma software. These DEGs were then analyzed using weighted correlation network analysis (WGCNA), and 4 gene expression modules and 20 hub genes were identified that were associated with the development of hindlimbs in the Chinese alligator at different periods. The results of GO enrichment and hub gene expression showed that the hindlimb development of the Chinese alligator embryos involves the development of the embryonic structure, nervous system, and hindlimb muscle in the early stage (H29) and the development of metabolic capacity occurs in the later stage (H46). Additionally, the enrichment results showed that the AMPK signaling pathway, calcium signaling pathway, HIF-1 signaling pathway, and neuroactive ligand-receptor interaction are involved in the development of the hindlimb of the Chinese alligator. Among these, the HIF-1 signaling pathway and neuroactive ligand-receptor interaction may be related to the adaptation of Chinese alligators to low-oxygen environments. Additionally, five DEGs (CAV1, IRS2, LDHA, LDB3, and MYL3) were randomly selected for qRT-PCR to verify the transcriptome results. It is expected that further research on these genes will help us to better understand the process of embryonic hindlimb development in the Chinese alligator.
Collapse
Affiliation(s)
- Liuyang Yang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Mengqin Liu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Yunzhen Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Yanan Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Tao Pan
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (M.L.); (Y.Z.); (Y.L.); (T.P.)
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
8
|
Palmer EE, Pusch M, Picollo A, Forwood C, Nguyen MH, Suckow V, Gibbons J, Hoff A, Sigfrid L, Megarbane A, Nizon M, Cogné B, Beneteau C, Alkuraya FS, Chedrawi A, Hashem MO, Stamberger H, Weckhuysen S, Vanlander A, Ceulemans B, Rajagopalan S, Nunn K, Arpin S, Raynaud M, Motter CS, Ward-Melver C, Janssens K, Meuwissen M, Beysen D, Dikow N, Grimmel M, Haack TB, Clement E, McTague A, Hunt D, Townshend S, Ward M, Richards LJ, Simons C, Costain G, Dupuis L, Mendoza-Londono R, Dudding-Byth T, Boyle J, Saunders C, Fleming E, El Chehadeh S, Spitz MA, Piton A, Gerard B, Abi Warde MT, Rea G, McKenna C, Douzgou S, Banka S, Akman C, Bain JM, Sands TT, Wilson GN, Silvertooth EJ, Miller L, Lederer D, Sachdev R, Macintosh R, Monestier O, Karadurmus D, Collins F, Carter M, Rohena L, Willemsen MH, Ockeloen CW, Pfundt R, Kroft SD, Field M, Laranjeira FER, Fortuna AM, Soares AR, Michaud V, Naudion S, Golla S, Weaver DD, Bird LM, Friedman J, Clowes V, Joss S, Pölsler L, Campeau PM, Blazo M, Bijlsma EK, Rosenfeld JA, Beetz C, Powis Z, McWalter K, Brandt T, Torti E, Mathot M, Mohammad SS, Armstrong R, Kalscheuer VM. Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition. Mol Psychiatry 2023; 28:668-697. [PMID: 36385166 PMCID: PMC9908558 DOI: 10.1038/s41380-022-01852-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.
Collapse
Affiliation(s)
- Elizabeth E Palmer
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia.
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia.
| | | | | | - Caitlin Forwood
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
| | - Matthew H Nguyen
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Vanessa Suckow
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany
| | - Jessica Gibbons
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany
| | - Alva Hoff
- Istituto di Biofisica, CNR, Genova, Italy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 83, Sweden
| | - Lisa Sigfrid
- Istituto di Biofisica, CNR, Genova, Italy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 83, Sweden
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut Jerome Lejeune, Paris, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hannah Stamberger
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neurology Department, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neurology Department, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Arnaud Vanlander
- Department of Child Neurology & Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Kenneth Nunn
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Stéphanie Arpin
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Martine Raynaud
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | | | | | - Katrien Janssens
- Center of Medical Genetics, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Marije Meuwissen
- Center of Medical Genetics, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Emma Clement
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Sharron Townshend
- Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Michelle Ward
- Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MI, USA
- The University of Queensland, Queensland Brain Institute, St Lucia, QLD, Australia
| | - Cas Simons
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
- Garvan Institute of Medical Research, UNSW, Sydney, NSW, Australia
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
- University of Newcastle Grow Up Well Priority Research Centre, Newcastle, NSW, Australia
| | - Jackie Boyle
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and Clinics, MI, Kansas City, USA
- Kansas City School of Medicine, University of Missouri, Kansas City, MI, USA
| | - Emily Fleming
- Division of Clinical Genetics, Children's Mercy Hospital and Clinics, Kansas City, MI, USA
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg et INSERM, Strasbourg, France
| | - Marie-Aude Spitz
- Service de Pédiatrie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amelie Piton
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Bénédicte Gerard
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Thérèse Abi Warde
- Service de Pédiatrie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Pediatric Neurology Department, CHU de Strasbourg, Strasbourg, France
| | - Gillian Rea
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Caoimhe McKenna
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Cigdem Akman
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Tristan T Sands
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Golder N Wilson
- Texas Tech Health Sciences Center Lubbock and KinderGenome Medical Genetics, Dallas, TX, USA
| | | | | | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
| | - Rebecca Macintosh
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
| | - Olivier Monestier
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Deniz Karadurmus
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Felicity Collins
- Department of Medical Genomics/Clinical Genetics, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Melissa Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne D Kroft
- Pluryn, Residential Care Setting, Groesbeek, The Netherlands
| | - Michael Field
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
| | - Francisco E R Laranjeira
- Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana M Fortuna
- Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Ana R Soares
- Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Vincent Michaud
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Bordeaux, Univ., Bordeaux, France
| | - Sophie Naudion
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Sailaja Golla
- Child Neurology and Neurodevelopmental Medicine Thompson Autism Center, CHOC Hospital, Orange County, CA, USA
| | - David D Weaver
- Indiana University School of Medicine, Indianapolis, USA
| | - Lynne M Bird
- University of California, San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- University of California, San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Virginia Clowes
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, London, UK
- Imperial College London, London, UK
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Laura Pölsler
- Centrum Medische Genetica, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Maria Blazo
- Division Clinical Genetics Texas A&M University Health Science Center, College Station, TX, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Zöe Powis
- Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | | | | | | | | | - Shekeeb S Mohammad
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Clinical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany.
| |
Collapse
|
9
|
Elsakka EGE, Mokhtar MM, Hegazy M, Ismail A, Doghish AS. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci 2022; 308:120923. [PMID: 36049529 DOI: 10.1016/j.lfs.2022.120923] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The endocytosis mechanism is a complicated system that is essential for cell signaling and survival. Megalin, a membrane-associated endocytic receptor, and its related proteins such as cubilin, the neonatal Fc receptor for IgG, and NaPi-IIa are important in receptors-mediated endocytosis. Physiologically, megalin uptakes plasma vitamins and proteins from primary urine, preventing their loss. It also facilitates tubular retrieval of solutes and endogenous components that may be involved in modulation and recovery from kidney injuries. Moreover, megalin is responsible for endocytosis of xenobiotics and drugs in renal tubules, increasing their half-life and/or their toxicity. Fluctuations in megalin expression and/or functionality due to changes in its regulatory mechanisms are associated with some sort of kidney injury. Also, it's an important component of several pathological conditions, including diabetic nephropathy and Dent disease. Thus, exploring the fundamental role of megalin in the kidney might help in the protection and/or treatment of multiple kidney-related diseases. Hence, this review aimed to explore the physiological roles of megalin in the kidney and their implications for kidney-related injuries.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
10
|
López-Cayuqueo KI, Planells-Cases R, Pietzke M, Oliveras A, Kempa S, Bachmann S, Jentsch TJ. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. J Am Soc Nephrol 2022; 33:1528-1545. [PMID: 35777784 PMCID: PMC9342636 DOI: 10.1681/asn.2021111458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.
Collapse
Affiliation(s)
- Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anna Oliveras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany,NeuroCure Centre of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Guzman RE, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Fahlke C. Functional Characterization of CLCN4 Variants Associated With X-Linked Intellectual Disability and Epilepsy. Front Mol Neurosci 2022; 15:872407. [PMID: 35721313 PMCID: PMC9198718 DOI: 10.3389/fnmol.2022.872407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes. CLC-type Cl–/H+ exchangers are a group of endo-lysosomal transporters that are assumed to regulate luminal acidification and chloride concentration in multiple endosomal compartments. Heterodimers of ClC-3 and ClC-4 localize to various internal membranes, from the endoplasmic reticulum and Golgi to recycling endosomes and late endosomes/lysosomes. The importance of ClC-4-mediated ion transport is illustrated by the association of naturally occurring CLCN4 mutations with epileptic encephalopathy, intellectual disability, and behavioral disorders in human patients. However, how these mutations affect the expression, subcellular localization, and function of ClC-4 is insufficiently understood. We here studied 12 CLCN4 variants that were identified in patients with X-linked intellectual disability and epilepsy and were already characterized to some extent in earlier work. We analyzed the consequences of these mutations on ClC-4 ion transport, subcellular trafficking, and heterodimerization with ClC-3 using heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings. The mutations led to a variety of changes in ClC-4 function, ranging from gain/loss of function and impaired heterodimerization with ClC-3 to subtle impairments in transport functions. Our results suggest that even slight functional changes to the endosomal Cl–/H+ exchangers can cause serious neurological symptoms.
Collapse
|
12
|
Duncan AR, Polovitskaya MM, Gaitán-Peñas H, Bertelli S, VanNoy GE, Grant PE, O’Donnell-Luria A, Valivullah Z, Lovgren AK, England EM, Agolini E, Madden JA, Schmitz-Abe K, Kritzer A, Hawley P, Novelli A, Alfieri P, Colafati GS, Wieczorek D, Platzer K, Luppe J, Koch-Hogrebe M, Abou Jamra R, Neira-Fresneda J, Lehman A, Boerkoel CF, Seath K, Clarke L, van Ierland Y, Argilli E, Sherr EH, Maiorana A, Diel T, Hempel M, Bierhals T, Estévez R, Jentsch TJ, Pusch M, Agrawal PB, Agrawal PB. Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. Am J Hum Genet 2021; 108:1450-1465. [PMID: 34186028 DOI: 10.1016/j.ajhg.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
13
|
He H, Guzman RE, Cao D, Sierra-Marquez J, Yin F, Fahlke C, Peng J, Stauber T. The molecular and phenotypic spectrum of CLCN4-related epilepsy. Epilepsia 2021; 62:1401-1415. [PMID: 33951195 DOI: 10.1111/epi.16906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Dezhi Cao
- Neurology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Berlin Free University, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
14
|
Bose S, He H, Stauber T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front Cell Dev Biol 2021; 9:639231. [PMID: 33708769 PMCID: PMC7940362 DOI: 10.3389/fcell.2021.639231] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of luminal ion concentrations is critical for the function of, and transport between intracellular organelles. The importance of the acidic pH in the compartments of the endosomal-lysosomal pathway has been well-known for decades. Besides the V-ATPase, which pumps protons into their lumen, a variety of ion transporters and channels is involved in the regulation of the organelles' complex ion homeostasis. Amongst these are the intracellular members of the CLC family, ClC-3 through ClC-7. They localize to distinct but overlapping compartments of the endosomal-lysosomal pathway, partially with tissue-specific expression. Functioning as 2Cl−/H+ exchangers, they can support the vesicular acidification and accumulate luminal Cl−. Mutations in the encoding genes in patients and mouse models underlie severe phenotypes including kidney stones with CLCN5 and osteopetrosis or hypopigmentation with CLCN7. Dysfunction of those intracellular CLCs that are expressed in neurons lead to neuronal defects. Loss of endosomal ClC-3, which heteromerizes with ClC-4, results in neurodegeneration. Mutations in ClC-4 are associated with epileptic encephalopathy and intellectual disability. Mice lacking the late endosomal ClC-6 develop a lysosomal storage disease with reduced pain sensitivity. Human gene variants have been associated with epilepsy, and a gain-of-function mutation causes early-onset neurodegeneration. Dysfunction of the lysosomal ClC-7 leads to a lysosomal storage disease and neurodegeneration in mice and humans. Reduced luminal chloride, as well as altered calcium regulation, has been associated with lysosomal storage diseases in general. This review discusses the properties of endosomal and lysosomal Cl−/H+ exchange by CLCs and how various alterations of ion transport by CLCs impact organellar ion homeostasis and function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shroddha Bose
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hailan He
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
16
|
Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO J 2020; 39:e103358. [PMID: 32118314 PMCID: PMC7196918 DOI: 10.15252/embj.2019103358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3.
Collapse
Affiliation(s)
- Stefanie Weinert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Niclas Gimber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dorothea Deuschel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Zohreh Farsi
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Carmen F Ludwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gaia Novarino
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Karen I López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Ceol M, Gianesello L, Tosetto E, Priante G, Del Prete D, Anglani F. CLCN5 5'UTR isoforms in human kidneys: differential expression analysis between controls and patients with glomerulonephritis. J Investig Med 2020; 68:864-869. [PMID: 32019767 DOI: 10.1136/jim-2019-001205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
ClC-5, the electrogenic chloride/proton exchanger strongly expressed in renal proximal tubules, belongs to the endocytic macromolecular complex responsible for albumin and low-molecular-weight protein uptake. ClC-5 was found to be overexpressed in glomeruli of glomerulonephritis and in cultured human podocytes under albumin overload. The transcriptional regulation of human ClC-5 is not fully understood. Three functional promoters of various strengths and 11 different 5' untranslated region (5'UTR) isoforms of CLCN5 messenger RNA (mRNA) were detected in the human kidney (variants 1-11). The aim of this study was to investigate the expression pattern of CLCN5 5'UTR variants and the CLCN5 common translated region in glomerulonephritis. The 5'UTR ends and the translated region of CLCN5 mRNA were analyzed using quantitative relative real-time PCR or quantitative comparative endpoint PCR with GAPDH as housekeeping gene in 8 normal kidneys and 12 renal biopsies from patients with glomerulonephritis. The expression profile for all variants in normal and glomerulonephritis biopsies was similar, and variant 3 and alternative variant 4 were the most abundantly expressed in both sets. In glomerulonephritis biopsies, isoforms under the control of a weak promoter (variants 4, 6 and 7) showed an increased expression leading to an increase in the CLCN5 translated region, underscoring their importance in kidney pathophysiology. Since weak promoters can be turned on by different stimuli, these data support the hypothesis that proteinuria could be one of the stimuli capable of starting a signaling pathway that induces an increase in CLCN5 transcription.
Collapse
Affiliation(s)
- Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Enrica Tosetto
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| |
Collapse
|
18
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
19
|
Nanami M, Pham TD, Kim YH, Yang B, Sutliff RL, Staub O, Klein JD, Lopez-Cayuqueo KI, Chambrey R, Park AY, Wang X, Pech V, Verlander JW, Wall SM. The Role of Intercalated Cell Nedd4-2 in BP Regulation, Ion Transport, and Transporter Expression. J Am Soc Nephrol 2018; 29:1706-1719. [PMID: 29773687 DOI: 10.1681/asn.2017080826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
BackgroundNedd4-2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a correlation between Nedd4-2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4-2 gene ablation on IC transporter abundance and function and on BP.Methods We generated IC Nedd4-2 knockout mice using Cre-lox technology and produced global pendrin/Nedd4-2 null mice by breeding global Nedd4-2 null (Nedd4-2-/- ) mice with global pendrin null (Slc26a4-/- ) mice. Mice ate a diet with 1%-4% NaCl; BP was measured by tail cuff and radiotelemetry. We measured transepithelial transport of Cl- and total CO2 and transepithelial voltage in cortical collecting ducts perfused in vitro Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry.Results IC Nedd4-2 gene ablation markedly increased electroneutral Cl-/HCO3- exchange in the cortical collecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little. IC Nedd4-2 gene ablation did not increase the abundance of type B IC transporters, such as AE4 (Slc4a9), H+-ATPase, barttin, or the Na+-dependent Cl-/HCO3- exchanger (Slc4a8). However, IC Nedd4-2 gene ablation increased CIC-5 total protein abundance, apical plasma membrane pendrin abundance, and the ratio of pendrin expression on the apical membrane to the cytoplasm. IC Nedd4-2 gene ablation increased BP by approximately 10 mm Hg. Moreover, pendrin gene ablation eliminated the increase in BP observed in global Nedd4-2 knockout mice.Conclusions IC Nedd4-2 regulates Cl-/HCO3- exchange in ICs., Nedd4-2 gene ablation increases BP in part through its action in these cells.
Collapse
Affiliation(s)
| | | | | | - Baoli Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa
| | | | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.ch," Zurich, Switzerland
| | | | - Karen I Lopez-Cayuqueo
- Centro de Estudios Cientificos, Valdivia, Chile.,Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- Institut National de la Santé et de la Recherche Médicale U1188, Universite de la Reunion, Plateforme Cyclotron Réunion Océan Indien, St. Denis, Ile de la Reunion, France; and
| | | | | | | | - Jill W Verlander
- Renal Division, Department of Medicine, University of Florida at Gainesville, Gainesville, Florida
| | - Susan M Wall
- Renal and .,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Mol Psychiatry 2018; 23:222-230. [PMID: 27550844 PMCID: PMC5794876 DOI: 10.1038/mp.2016.135] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.
Collapse
|
21
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
22
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
23
|
Tang X, Brown MR, Cogal AG, Gauvin D, Harris PC, Lieske JC, Romero MF, Chang MH. Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients. Physiol Rep 2016; 4:4/8/e12776. [PMID: 27117801 PMCID: PMC4848727 DOI: 10.14814/phy2.12776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
Dent disease type 1, an X‐linked inherited kidney disease is caused by mutations in electrogenic Cl−/H+ exchanger, ClC‐5. We functionally studied the most frequent mutation (S244L) and two mutations recently identified in RKSC patients, Q629X and R345W. We also studied T657S, which has a high minor‐allele frequency (0.23%) in the African‐American population, was published previously as pathogenic to cause Dent disease. The transport properties of CLC‐5 were electrophysiologically characterized. WT and ClC‐5 mutant currents were inhibited by pH 5.5, but not affected by an alkaline extracellular solution (pH 8.5). The T657S and R345W mutations showed the same anion selectivity sequence as WT ClC‐5 (SCN−>NO3−≈Cl−>Br−>I−). However, the S244L and Q629X mutations abolished this anion conductance sequence. Cell surface CLC‐5 expression was quantified using extracellular HA‐tagged CLC‐5 and a chemiluminescent immunoassay. Cellular localization of eGFP‐tagged CLC‐5 proteins was also examined in HEK293 cells with organelle‐specific fluorescent probes. Functional defects of R345W and Q629X mutations were caused by the trafficking of the protein to the plasma membrane since proteins were mostly retained in the endoplasmic reticulum, and mutations showed positive correlations between surface expression and transport function. In contrast, although the S244L transport function was significantly lower than WT, cell surface, early endosome, and endoplasmic reticulum expression was equal to that of WT CLC‐5. Function and trafficking of T657S was equivalent to the WT CLC‐5 suggesting this is a benign variant rather than pathogenic. These studies demonstrate the useful information that can be gained by detailed functional studies of mutations predicted to be pathogenic.
Collapse
Affiliation(s)
- Xiaojing Tang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Division of Nephrology, Shanghai Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Matthew R Brown
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota Wayne State University, Detroit, Michigan
| | - Andrea G Cogal
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel Gauvin
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter C Harris
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John C Lieske
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael F Romero
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Min-Hwang Chang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
24
|
Grahammer F, Ramakrishnan SK, Rinschen MM, Larionov AA, Syed M, Khatib H, Roerden M, Sass JO, Helmstaedter M, Osenberg D, Kühne L, Kretz O, Wanner N, Jouret F, Benzing T, Artunc F, Huber TB, Theilig F. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J Am Soc Nephrol 2016; 28:230-241. [PMID: 27297946 DOI: 10.1681/asn.2015111224] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/14/2016] [Indexed: 01/03/2023] Open
Abstract
Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Suresh K Ramakrishnan
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexey A Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maryam Syed
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Hazim Khatib
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Jörn Oliver Sass
- Bioanalytics and Biochemistry, Department of Natural Sciences, Bonn Rhein Sieg University of Applied Sciences, Rheinbach, Germany.,Division of Clinical Chemistry and Biochemistry and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Martin Helmstaedter
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothea Osenberg
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucas Kühne
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicola Wanner
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liege, Belgium; and
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ferruh Artunc
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS, Centre for Biological Signalling Studies and.,FRIAS, Freiburg Institute for Advanced Studies and ZBSA, Center for Biological System Analysis, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland;
| |
Collapse
|
25
|
Vélez P, Schwartz AB, Iyer SR, Warrington A, Fadool DA. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting. J Neurophysiol 2016; 116:671-85. [PMID: 27146988 DOI: 10.1152/jn.00874.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493-498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density.
Collapse
Affiliation(s)
- Patricio Vélez
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Austin B Schwartz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and
| | - Subashini R Iyer
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Anthony Warrington
- Department of Biological Sciences, Florida State University, Tallahassee, Florida
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and Department of Biological Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
26
|
Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer APM, Weinert S, Froyen G, Frints SGM, Laumonnier F, Zemojtel T, Love MI, Richard H, Emde AK, Bienek M, Jensen C, Hambrock M, Fischer U, Langnick C, Feldkamp M, Wissink-Lindhout W, Lebrun N, Castelnau L, Rucci J, Montjean R, Dorseuil O, Billuart P, Stuhlmann T, Shaw M, Corbett MA, Gardner A, Willis-Owen S, Tan C, Friend KL, Belet S, van Roozendaal KEP, Jimenez-Pocquet M, Moizard MP, Ronce N, Sun R, O'Keeffe S, Chenna R, van Bömmel A, Göke J, Hackett A, Field M, Christie L, Boyle J, Haan E, Nelson J, Turner G, Baynam G, Gillessen-Kaesbach G, Müller U, Steinberger D, Budny B, Badura-Stronka M, Latos-Bieleńska A, Ousager LB, Wieacker P, Rodríguez Criado G, Bondeson ML, Annerén G, Dufke A, Cohen M, Van Maldergem L, Vincent-Delorme C, Echenne B, Simon-Bouy B, Kleefstra T, Willemsen M, Fryns JP, Devriendt K, Ullmann R, Vingron M, Wrogemann K, Wienker TF, Tzschach A, van Bokhoven H, Gecz J, Jentsch TJ, Chen W, Ropers HH, Kalscheuer VM. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry 2016; 21:133-48. [PMID: 25644381 PMCID: PMC5414091 DOI: 10.1038/mp.2014.193] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022]
Abstract
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
Collapse
Affiliation(s)
- H Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Chelly
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - H Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - M Raynaud
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - A P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - S Weinert
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - G Froyen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - S G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - F Laumonnier
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France
| | - T Zemojtel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H Richard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A-K Emde
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Bienek
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Jensen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Hambrock
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - U Fischer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Langnick
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - M Feldkamp
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - W Wissink-Lindhout
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - N Lebrun
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - L Castelnau
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - J Rucci
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - R Montjean
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - O Dorseuil
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - P Billuart
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - T Stuhlmann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - M Shaw
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M A Corbett
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - A Gardner
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - S Willis-Owen
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,National Heart and Lung Institute, Imperial College London, London, UK
| | - C Tan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - K L Friend
- SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - S Belet
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - K E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - M Jimenez-Pocquet
- Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - M-P Moizard
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - N Ronce
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - R Sun
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S O'Keeffe
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - R Chenna
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Göke
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Hackett
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - M Field
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - L Christie
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - J Boyle
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - E Haan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - J Nelson
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
| | - G Turner
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - G Baynam
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia,Telethon Kids Institute, Perth, WA, Australia
| | | | - U Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - D Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - B Budny
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Ponzan University of Medical Sciences, Poznan, Poland
| | - M Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - A Latos-Bieleńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - L B Ousager
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - P Wieacker
- Institut für Humangenetik, Universitätsklinikum Münster, Muenster, Germany
| | | | - M-L Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - G Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - A Dufke
- Institut für Medizinische Genetik und Angewandte Genomik, Tübingen, Germany
| | - M Cohen
- Kinderzentrum München, München, Germany
| | - L Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - C Vincent-Delorme
- Service de Génétique, Hôpital Jeanne de Flandre CHRU de Lilles, Lille, France
| | - B Echenne
- Service de Neuro-Pédiatrie, CHU Montpellier, Montpellier, France
| | - B Simon-Bouy
- Laboratoire SESEP, Centre hospitalier de Versailles, Le Chesnay, France
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M Willemsen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J-P Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - K Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Ullmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - K Wrogemann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - T F Wienker
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Tzschach
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J Gecz
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - T J Jentsch
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - W Chen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - H-H Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - V M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin 14195, Germany. E-mail:
| |
Collapse
|
27
|
Jentsch TJ. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology. J Physiol 2015; 593:4091-109. [PMID: 25590607 DOI: 10.1113/jp270043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl(-) channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl(-) channels and vesicular Cl(-) /H(+) -exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| |
Collapse
|
28
|
Devuyst O, Luciani A. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J Physiol 2015; 593:4151-64. [PMID: 25820368 DOI: 10.1113/jp270087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS The reabsorptive activity of renal proximal tubule cells is mediated by receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Loss-of-function mutations of the endosomal chloride-proton exchanger ClC-5 (Dent's disease) cause a major trafficking defect in proximal tubule cells, associated with lysosomal dysfunction, oxidative stress and dedifferentiation/proliferation. A similar but milder defect is associated with mutations in CFTR (cystic fibrosis transmembrane conductance regulator). Vesicular chloride transport appears to be important for the integrity of the endolysosomal pathway in epithelial cells. ABSTRACT The epithelial cells lining the proximal tubules of the kidney reabsorb a large amount of filtered ions and solutes owing to receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Dedifferentiation of proximal tubule cells and dysfunction of receptor-mediated endocytosis characterize Dent's disease, a rare disorder caused by inactivating mutations in the CLCN5 gene that encodes the endosomal chloride-proton exchanger, ClC-5. The disease is characterized by a massive urinary loss of solutes (renal Fanconi syndrome), with severe metabolic complications and progressive renal failure. Investigations of mutations affecting the gating of ClC-5 revealed that the proximal tubule dysfunction may occur despite normal endosomal acidification. In addition to defective endocytosis, proximal tubule cells lacking ClC-5 show a trafficking defect in apical receptors and transporters, as well as lysosomal dysfunction and typical features of dedifferentiation, proliferation and oxidative stress. A similar but milder defect is observed in mouse models with defective CFTR, a chloride channel that is also expressed in the endosomes of proximal tubule cells. These data suggest a major role for endosomal chloride transport in the maintenance of epithelial differentiation and reabsorption capacity of the renal proximal tubule.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene 2014; 557:1-10. [PMID: 25433090 DOI: 10.1016/j.gene.2014.11.051] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Pranay Goel
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
30
|
Pohl M, Shan Q, Petsch T, Styp-Rekowska B, Matthey P, Bleich M, Bachmann S, Theilig F. Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J Am Soc Nephrol 2014; 26:1269-78. [PMID: 25270072 DOI: 10.1681/asn.2014020148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 11/03/2022] Open
Abstract
Transepithelial water flow across the renal proximal tubule is mediated predominantly by aquaporin-1 (AQP1). Along this nephron segment, luminal delivery and transepithelial reabsorption are directly coupled, a phenomenon called glomerulotubular balance. We hypothesized that the surface expression of AQP1 is regulated by fluid shear stress, contributing to this effect. Consistent with this finding, we found that the abundance of AQP1 in brush border apical and basolateral membranes was augmented >2-fold by increasing luminal perfusion rates in isolated, microperfused proximal tubules for 15 minutes. Mouse kidneys with diminished endocytosis caused by a conditional deletion of megalin or the chloride channel ClC-5 had constitutively enhanced AQP1 abundance in the proximal tubule brush border membrane. In AQP1-transfected, cultured proximal tubule cells, fluid shear stress or the addition of cyclic nucleotides enhanced AQP1 surface expression and concomitantly diminished its ubiquitination. These effects were also associated with an elevated osmotic water permeability. In sum, we have shown that luminal surface expression of AQP1 in the proximal tubule brush border membrane is regulated in response to flow. Cellular trafficking, endocytosis, an intact endosomal compartment, and controlled protein stability are the likely prerequisites for AQP1 activation by enhanced tubular fluid shear stress, serving to maintain glomerulotubular balance.
Collapse
Affiliation(s)
- Marcus Pohl
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | - Qixian Shan
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Thomas Petsch
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | | | - Patricia Matthey
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | | | - Franziska Theilig
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany; Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
32
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
33
|
Fervenza FC. A patient with nephrotic-range proteinuria and focal global glomerulosclerosis. Clin J Am Soc Nephrol 2013; 8:1979-87. [PMID: 23886564 DOI: 10.2215/cjn.03400313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A young male is evaluated for nephrotic-range proteinuria, hypercalciuria, and an elevated serum creatinine. A renal biopsy is performed and shows focal global glomerulosclerosis. The absence of nephrotic syndrome suggest that glomerulosclerosis was a secondary process. Further analysis of the proteinuria showed it to be due mainly to low-molecular weight proteins. The case illustrates the crucial role of electron microscopy as well as evaluation of the identity of the proteinuria that accompanies a biopsy finding of focal and global or focal and segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
34
|
Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch T, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54:1270-81. [PMID: 23647072 PMCID: PMC3700577 DOI: 10.1111/epi.12201] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses. METHODS We performed WES (mean coverage approximately 40×) on 10 trios comprised of unaffected parents and a child with sporadic epilepsy characterized by difficult-to-control seizures and some combination of developmental delay, epileptic encephalopathy, autistic features, cognitive impairment, or motor deficits. Sequence processing and variant calling were performed using standard bioinformatics tools. A custom filtering system was used to prioritize de novo variants of possible functional significance for validation by Sanger sequencing. KEY FINDINGS In 9 of 10 probands, we identified one or more de novo variants predicted to alter protein function, for a total of 15. Four probands had de novo mutations in genes previously shown to harbor heterozygous mutations in patients with severe, early onset epilepsies (two in SCN1A, and one each in CDKL5 and EEF1A2). In three children, the de novo variants were in genes with functional roles that are plausibly relevant to epilepsy (KCNH5, CLCN4, and ARHGEF15). The variant in KCNH5 alters one of the highly conserved arginine residues of the voltage sensor of the encoded voltage-gated potassium channel. In vitro analyses using cell-based assays revealed that the CLCN4 mutation greatly impaired ion transport by the ClC-4 2Cl(-) /H(+) -exchanger and that the mutation in ARHGEF15 reduced GEF exchange activity of the gene product, Ephexin5, by about 50%. Of interest, these seven probands all presented with seizures within the first 6 months of life, and six of these have intractable seizures. SIGNIFICANCE The finding that 7 of 10 children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
Collapse
Affiliation(s)
- Krishna R Veeramah
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Laurel Johnstone
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel Wolf
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ryan Sprissler
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - John Salogiannis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Till Stuhlmann
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Stefanie Weinert
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Thomas Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | | | - Linda L Restifo
- Department of Neurology, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Neuroscience, University of Arizona, Tucson, AZ 85821, USA
- Department of Cellular & Molecular Medicine, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Dinesh Talwar
- Center for Neurosciences, Tucson, AZ 85718, USA
- Department of Neurology, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Pediatrics, Arizona Health Science Center, Tucson AZ 85724, USA
| | - Robert P Erickson
- Department of Pediatrics, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
35
|
Lippiat JD, Smith AJ. The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease. Front Physiol 2012; 3:449. [PMID: 23226131 PMCID: PMC3510460 DOI: 10.3389/fphys.2012.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/09/2012] [Indexed: 01/25/2023] Open
Abstract
CLC-5 plays a critical role in the process of endocytosis in the proximal tubule of the kidney and mutations that alter protein function are the cause of Dent's I disease. In this X-linked disorder impaired reabsorption results in the wasting of calcium and low molecular weight protein to the urine, kidney stones, and progressive renal failure. Several different ion-transporting and protein clustering roles have been proposed as the physiological function of CLC-5 in endosomal membranes. At the time of its discovery, nearly 20 years ago, it was understandably assumed to be a chloride channel similar to known members of the CLC family, such as CLC-1, suggesting that chloride transport by CLC-5 was critical for endosomal function. Since then CLC-5 was found instead to be a 2Cl−/H+ exchange transporter with voltage-dependent activity. Recent studies have determined that it is this coupled exchange of protons for chloride, and not just chloride transport, which is critical for endosomal and kidney function. This review discusses the recent ideas that describe how CLC-5 might function in endosomal membranes, the aspects that we still do not understand, and where controversies remain.
Collapse
Affiliation(s)
- Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | |
Collapse
|
36
|
Abstract
Luminal acidification is of pivotal importance for the physiology of the secretory and endocytic pathways and its diverse trafficking events. Acidification by the proton-pumping V-ATPase requires charge compensation by counterion currents that are commonly attributed to chloride. The molecular identification of intracellular chloride transporters and the improvement of methodologies for measuring intraorganellar pH and chloride have facilitated the investigation of the physiology of vesicular chloride transport. New data question the requirement of chloride for pH regulation of various organelles and furthermore ascribe functions to chloride that are beyond merely electrically shunting the proton pump. This review surveys the currently established and proposed intracellular chloride transporters and gives an overview of membrane-trafficking steps that are affected by the perturbation of chloride transport. Finally, potential mechanisms of membrane-trafficking modulation by chloride are discussed and put into the context of organellar ion homeostasis in general.
Collapse
Affiliation(s)
- Tobias Stauber
- Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | | |
Collapse
|
37
|
Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S. Heterogeneity in the processing of CLCN5 mutants related to Dent disease. Hum Mutat 2011; 32:476-483. [PMID: 21305656 DOI: 10.1002/humu.21467] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the electrogenic Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in Xenopus laevis oocytes and in HEK293 cells of nine previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were nonfunctional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing, and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss of function in Dent disease.
Collapse
Affiliation(s)
- Teddy Grand
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de Génomique, Physiologie et Physiopathologie Rénales, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stauber T, Jentsch TJ. Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J Biol Chem 2010; 285:34537-48. [PMID: 20817731 DOI: 10.1074/jbc.m110.162545] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CLC protein family contains plasma membrane chloride channels and the intracellular chloride-proton exchangers ClC-3-7. The latter proteins mainly reside on the various compartments of the endosomal-lysosomal system where they are involved in the luminal acidification or chloride accumulation. Although their partially overlapping subcellular distribution has been studied extensively, little is known about their targeting mechanism. In a comprehensive study we now performed pulldown experiments to systematically map the differential binding of adaptor proteins of the endosomal sorting machinery (adaptor proteins and GGAs (Golgi-localized, γ-ear containing, Arf binding)) as well as clathrin to the cytosolic regions of the intracellular CLCs. The resulting interaction pattern fitted well to the known subcellular localizations of the CLCs. By mutating potential sorting motifs, we could locate almost all binding sites, including one already known for ClC-3 and several new motifs for ClC-5, -6, and -7. The impact of the identified binding sites on the subcellular localization of CLC transporters was determined by heterologous expression of mutants. Surprisingly, some vesicular CLCs retained their localization after disruption of interaction sites. However, ClC-7 could be partially shifted from lysosomes to the plasma membrane by combined mutation of N-terminal sorting motifs. The localization of its β-subunit, Ostm1, was determined by that of ClC-7. Ostm1 was not capable of redirecting ClC-7 to lysosomes.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin D-13125, Germany
| | | |
Collapse
|