1
|
Gutiérrez-García K, Aumiller K, Dodge R, Obadia B, Deng A, Agrawal S, Yuan X, Wolff R, Zhu H, Hsia RC, Garud N, Ludington WB. A conserved bacterial genetic basis for commensal-host specificity. Science 2024; 386:1117-1122. [PMID: 39636981 PMCID: PMC11914777 DOI: 10.1126/science.adp7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of living Drosophila melanogaster to show that Lactiplantibacillus plantarum specifically recognizes the fruit fly foregut as a distinct physical niche. L. plantarum establishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Kevin Aumiller
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ren Dodge
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Benjamin Obadia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ann Deng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Agrawal
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xincheng Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haolong Zhu
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ru-Ching Hsia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - William B. Ludington
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
de Amorim GC, Bardiaux B, Izadi-Pruneyre N. Structural Analysis of Proteins from Bacterial Secretion Systems and Their Assemblies by NMR Spectroscopy. Methods Mol Biol 2024; 2715:503-517. [PMID: 37930547 DOI: 10.1007/978-1-0716-3445-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are built up from proteins with different physicochemical characteristics, such as highly hydrophobic transmembrane polypeptides, and soluble periplasmic or intracellular domains. A single complex can be composed of more than ten proteins with distinct features, spreading through different cellular compartments. The membrane and multicompartment nature of the proteins, and their large molecular weight make their study challenging. However, information on their structure and assemblies is required to understand their mechanisms and interfere with them. An alternative strategy is to work with soluble domains and peptides corresponding to the regions of interest of the proteins.Here, we describe a simple and fast protocol to evaluate the stability, folding, and interaction of protein sub-complexes by using solution-state Nuclear Magnetic Resonance (NMR) spectroscopy. This technique is widely used for protein structure and protein-ligand interaction analysis in solution.
Collapse
Affiliation(s)
- Gisele Cardoso de Amorim
- Núcleo Multidisciplinar de Pesquisa em Biologia, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France.
| |
Collapse
|
4
|
Wang L, Wang H, Zhang H, Wu H. Formation of a biofilm matrix network shapes polymicrobial interactions. THE ISME JOURNAL 2023; 17:467-477. [PMID: 36639539 PMCID: PMC9938193 DOI: 10.1038/s41396-023-01362-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus colonizes the same ecological niche as many commensals. However, little is known about how such commensals modulate staphylococcal fitness and persistence. Here we report a new mechanism that mediates dynamic interactions between a commensal streptococcus and S. aureus. Commensal Streptococcus parasanguinis significantly increased the staphylococcal biofilm formation in vitro and enhanced its colonization in vivo. A streptococcal biofilm-associated protein BapA1, not fimbriae-associated protein Fap1, is essential for dual-species biofilm formation. On the other side, three staphylococcal virulence determinants responsible for the BapA1-dependent dual-species biofilm formation were identified by screening a staphylococcal transposon mutant library. The corresponding staphylococcal mutants lacked binding to recombinant BapA1 (rBapA1) due to lower amounts of eDNA in their culture supernatants and were defective in biofilm formation with streptococcus. The rBapA1 selectively colocalized with eDNA within the dual-species biofilm and bound to eDNA in vitro, highlighting the contributions of the biofilm matrix formed between streptococcal BapA1 and staphylococcal eDNA to dual-species biofilm formation. These findings have revealed an additional new mechanism through which an interspecies biofilm matrix network mediates polymicrobial interactions.
Collapse
Affiliation(s)
- Lijun Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Laboratory Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Hongxia Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
| | - Hua Zhang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA
| | - Hui Wu
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA.
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
7
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Stubbs HE, Bensing BA, Yamakawa I, Sharma P, Yu H, Chen X, Sullam PM, Iverson TM. Tandem sialoglycan-binding modules in a Streptococcus sanguinis serine-rich repeat adhesin create target dependent avidity effects. J Biol Chem 2020; 295:14737-14749. [PMID: 32820052 PMCID: PMC7586212 DOI: 10.1074/jbc.ra120.014177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglec)-like domains of streptococcal serine-rich repeat (SRR) adhesins recognize sialylated glycans on human salivary, platelet, and plasma glycoproteins via a YTRY sequence motif. The SRR adhesin from Streptococcus sanguinis strain SK1 has tandem sialoglycan-binding domains and has previously been shown to bind sialoglycans with high affinity. However, both domains contain substitutions within the canonical YTRY motif, making it unclear how they interact with host receptors. To identify how the S. sanguinis strain SK1 SRR adhesin affects interactions with sialylated glycans and glycoproteins, we determined high-resolution crystal structures of the binding domains alone and with purified trisaccharides. These structural studies determined that the ligands still bind at the noncanonical binding motif, but with fewer hydrogen-bonding interactions to the protein than is observed in structures of other Siglec-like adhesins. Complementary biochemical studies identified that each of the two binding domains has a different selectivity profile. Interestingly, the binding of SK1 to platelets and plasma glycoproteins identified that the interaction to some host targets is dominated by the contribution of one binding domain, whereas the binding to other host receptors is mediated by both binding domains. These results provide insight into outstanding questions concerning the roles of tandem domains in targeting host receptors and suggest mechanisms for how pathogens can adapt to the availability of a range of related but nonidentical host receptors. They further suggest that the definition of the YTRY motif should be changed to ϕTRX, a more rigorous description of this sialic acid-recognition motif given recent findings.
Collapse
Affiliation(s)
- Haley E. Stubbs
- Graduate Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara A. Bensing
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA,Department of Medicine, University of California, San Francisco, California, USA
| | - Izumi Yamakawa
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Paul M. Sullam
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA,For correspondence: T. M. Iverson,
| |
Collapse
|
10
|
Monoclonal antibody against l-lectin module of SraP blocks adhesion and protects mice against Staphylococcus aureus challenge. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:420-428. [PMID: 31706823 DOI: 10.1016/j.jmii.2019.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/14/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE SraP is a serine-rich repeat protein (SRRP) from Staphylococcus aureus that binds to sialylated receptors to promote bacterial adhesion to and invasion into host epithelial cells, mediated by the l-lectin module of its ligand-binding region. METHODS The sequence encoding the L-lectin module of SraP was inserted into pET28a plasmid, and the recombinant protein was purified by His label affinity chromatography. A monoclonal antibody (mAb) against the l-lectin module was obtained and confirmed by enzyme-linked immunosorbent assay and western blotting. The effect of the mAb on S. aureus adhesion and invasion was assessed in A549 cells and mice subjected to S. aureus challenge. RESULTS We successfully obtained a mAb against the l-lectin module of SraP. Pre-incubation with the mAb dramatically inhibited the bacteria's ability to adhere to and invade A549 cells. Moreover, mice administered mAb through tail vein injection had significantly fewer bacteria in the blood. CONCLUSION The anti-SraPL-Lectin mAb significantly reduced the adherence and invasion of S. aureus to host cells. This study lays the foundation for the future development of the l-lectin module of SraP as a target for the prevention and treatment of S. aureus infection. Our findings suggest that specific subdomains of SRRPs may represent potential antibacterial drug targets for intervention.
Collapse
|
11
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
12
|
The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol 2019; 27:927-941. [PMID: 31375310 DOI: 10.1016/j.tim.2019.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are a family of proteins that are defined by the presence of two adjacent IgG-like folded subdomains. These promote binding to ligands by mechanisms that involve major conformational changes exemplified by the binding to fibrinogen by the 'dock-lock-latch' mechanism or to collagen by the 'collagen hug'. Clumping factors A and B are two such MSCRAMMs that have several important roles in the pathogenesis of Staphylococcus aureus infections. MSCRAMM architecture, ligand binding, and roles in infection and colonization are examined with a focus on recent developments with clumping factors.
Collapse
|
13
|
Latousakis D, MacKenzie DA, Telatin A, Juge N. Serine-rich repeat proteins from gut microbes. Gut Microbes 2019; 11:102-117. [PMID: 31035824 PMCID: PMC6973325 DOI: 10.1080/19490976.2019.1602428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Serine-rich repeat proteins (SRRPs) have emerged as an important group of cell surface adhesins found in a growing number of Gram-positive bacteria. Studies focused on SRRPs from streptococci and staphylococci demonstrated that these proteins are O-glycosylated on serine or threonine residues and exported via an accessory secretion (aSec) system. In pathogens, these adhesins contribute to disease pathogenesis and represent therapeutic targets. Recently, the non-canonical aSec system has been identified in the genomes of gut microbes and characterization of their associated SRRPs is beginning to unfold, showing their role in mediating attachment and biofilm formation. Here we provide an update of the occurrence, structure, and function of SRRPs across bacteria, with emphasis on the molecular and biochemical properties of SRRPs from gut symbionts, particularly Lactobacilli. These emerging studies underscore the range of ligands recognized by these adhesins and the importance of SRRP glycosylation in the interaction of gut microbes with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Donald A. MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
14
|
The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 Suppl 1:S3-S12. [DOI: 10.1016/j.jdent.2018.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
|
15
|
SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. Appl Environ Microbiol 2018; 84:AEM.01385-18. [PMID: 30030221 DOI: 10.1128/aem.01385-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an important Gram-positive pathogen in the swine industry and is an emerging zoonotic pathogen for humans. In our previous work, we found a virulent S. suis strain, CZ130302, belonging to a novel serotype, Chz, to be associated with acute meningitis in piglets. However, its underlying mechanisms of pathogenesis remain poorly understood. In this study, we sequenced and analyzed the complete genomes of three Chz serotype strains, including strain CZ130302 and two avirulent strains, HN136 and AH681. By genome comparison, we found two putative genomic islands (GIs) uniquely encoded in strain CZ130302 and designated them 50K GI and 58K GI. In mouse infection model, the deletion of 50K and 58K GIs caused 270-fold and 3-fold attenuation of virulence, respectively. Notably, we identified a complete SecY2/A2 system, coupled with its secretory protein SssP1 encoded in the 50K GI, which contributed to the pathogenicity of strain CZ130302. Immunogold electron microscopy and immunofluorescence analyses indicated that SssP1 could form fimbria-like structures that extend outward from the bacterial cell surface. The sssP1 mutation also attenuated bacterial adherence in human laryngeal epithelial (HEp-2) cells and human brain microvessel endothelial cells (HBMECs) compared with the wild type. Furthermore, we showed that two analogous Ig-like subdomains of SssP1 have sialic acid binding capacities. In conclusion, our results revealed that the 50K GI and the inside SecY2/A2 system gene cluster are related to the virulence of strain CZ130302, and we clarified a new S. suis pathogenesis mechanism mediated by the secretion protein SssP1.IMPORTANCE Streptococcus suis is an important zoonotic pathogen. Here, we managed to identify key factors to clarify the virulence of S. suis strain CZ130302 from a novel serotype, Chz. Notably, it was shown that a fimbria-like structure was significantly connected to the pathogenicity of the CZ130302 strain by comparative genomics analysis and animal infection assays. The mechanisms of how the CZ130302 strain constructs these fimbria-like structures in the cell surface by genes encoding and production transport were subsequently elucidated. Biosynthesis of the fimbria-like structure was achieved by the production of SssP1 glycoproteins, and its construction was dependent on the SecA2/Y2 secretion system. This study identified a visible fimbria-like protein, SssP1, participating in adhesion to host cells and contributing to the virulence in S. suis These findings will promote a better understanding of the pathogenesis of S. suis.
Collapse
|
16
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
17
|
Bensing BA, Li Q, Park D, Lebrilla CB, Sullam PM. Streptococcal Siglec-like adhesins recognize different subsets of human plasma glycoproteins: implications for infective endocarditis. Glycobiology 2018; 28:601-611. [PMID: 29796594 PMCID: PMC6054165 DOI: 10.1093/glycob/cwy052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are typically found among the normal oral microbiota but can also cause infective endocarditis. These organisms express cell surface serine-rich repeat adhesins containing "Siglec-like" binding regions (SLBRs) that mediate attachment to α2-3-linked sialic acids on human glycoproteins. Two known receptors for the Siglec-like adhesins are the salivary mucin MG2/MUC7 and platelet GPIbα, and the interaction of streptococci with these targets may contribute to oral colonization and endocarditis, respectively. The SLBRs display a surprising diversity of preferences for defined glycans, ranging from highly selective to broader specificity. In this report, we characterize the glycoproteins in human plasma recognized by four SLBRs that prefer different α2-3 sialoglycan structures. We found that the SLBRs recognize a surprisingly small subset of plasma proteins that are extensively O-glycosylated. The preferred plasma protein ligands for a sialyl-T antigen-selective SLBR are proteoglycan 4 (lubricin) and inter-alpha-trypsin inhibitor heavy chain H4. Conversely, the preferred ligand for a 3'sialyllactosamine-selective SLBR is glycocalicin (the extracellular portion of platelet GPIbα). All four SLBRs recognize C1 inhibitor but detect distinctly different glycoforms of this key regulator of the complement and kallikrein protease cascades. The four plasma ligands have potential roles in thrombosis and inflammation, and each has been cited as a biomarker for one or more vascular or other diseases. The combined results suggest that the interaction of Siglec-like adhesins with different subsets of plasma glycoproteins could have a significant impact on the propensity of streptococci to establish endocardial infections.
Collapse
Affiliation(s)
- Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Paul M Sullam
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
18
|
Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706-E2715. [PMID: 29507249 PMCID: PMC5866549 DOI: 10.1073/pnas.1715016115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.
Collapse
|
19
|
Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim Biophys Acta Rev Cancer 2017; 1868:372-393. [DOI: 10.1016/j.bbcan.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
20
|
Esberg A, Sheng N, Mårell L, Claesson R, Persson K, Borén T, Strömberg N. Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine 2017; 24:205-215. [PMID: 28958656 PMCID: PMC5652290 DOI: 10.1016/j.ebiom.2017.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Dental caries, which affects billions of people, is a chronic infectious disease that involves Streptococcus mutans, which is nevertheless a poor predictor of individual caries development. We therefore investigated if adhesin types of S.mutans with sucrose-independent adhesion to host DMBT1 (i.e. SpaP A, B or C) and collagen (i.e. Cnm, Cbm) match and predict individual differences in caries development. The adhesin types were measured in whole saliva by qPCR in 452 12-year-old Swedish children and related to caries at baseline and prospectively at a 5-year follow-up. Strains isolated from the children were explored for genetic and phenotypic properties. The presence of SpaP B and Cnm subtypes coincided with increased 5-year caries increment, and their binding to DMBT1 and saliva correlated with individual caries scores. The SpaP B subtypes are enriched in amino acid substitutions that coincided with caries and binding and specify biotypes of S. mutans with increased acid tolerance. The findings reveal adhesin subtypes of S. mutans that match and predict individual differences in caries development and provide a rationale for individualized oral care. Adhesin subtypes of Streptococcus mutans match and predict individual caries development. Adhesin binding to salivary DMBT1 correlates with individual caries scores. The adhesin types coincide with distinct biotypes of S. mutans.
Dental caries, which affects billions of people, involves the bacterium Streptococcus mutans, which is nevertheless a poor predictor of caries development. The present findings provide the first evidence that S. mutans adhesin subtypes match and predict individual 5-year caries development in Swedish children. The binding strength of the adhesin subtypes correlates with individual caries scores, and the adhesin subtypes specify biotypes of S. mutans that also differ in acid tolerance. The present findings provide a rationale for individualized oral care and improved systemic health because chronic caries infection and carrying high-virulence strains pose a systemic disease risk.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nongfei Sheng
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Lena Mårell
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicklas Strömberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
21
|
Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium,Streptococcus salivarius. Environ Microbiol 2017; 19:3579-3594. [DOI: 10.1111/1462-2920.13853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Benoit Couvigny
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Nicolas Lapaque
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Lionel Rigottier-Gois
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alain Guillot
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Sophie Chat
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Thierry Meylheuc
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Saulius Kulakauskas
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Manfred Rohde
- HZI, Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Michel-Yves Mistou
- Laboratory for Food Safety; Université Paris-Est, ANSES; Maisons-Alfort France
| | - Pierre Renault
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Joel Doré
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Romain Briandet
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Pascale Serror
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Eric Guédon
- STLO, UMR1253, INRA, Agrocampus Ouest; Rennes France
| |
Collapse
|
22
|
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017; 85:IAI.00774-16. [PMID: 27993975 DOI: 10.1128/iai.00774-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.
Collapse
|
23
|
The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation. Sci Rep 2016; 6:32371. [PMID: 27582320 PMCID: PMC5007671 DOI: 10.1038/srep32371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022] Open
Abstract
The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187–385). Here, we show that BR187–385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187–378 or the longer BR120–378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187–385 homo-dimers via an intermolecular β-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120–166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation.
Collapse
|
24
|
Bensing BA, Khedri Z, Deng L, Yu H, Prakobphol A, Fisher SJ, Chen X, Iverson TM, Varki A, Sullam PM. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology 2016; 26:1222-1234. [PMID: 27037304 DOI: 10.1093/glycob/cww042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022] Open
Abstract
Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis.
Collapse
Affiliation(s)
- Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| | - Zahra Khedri
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Lingquan Deng
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA
| | - Ajit Varki
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
25
|
Bensing BA, Loukachevitch LV, McCulloch KM, Yu H, Vann KR, Wawrzak Z, Anderson S, Chen X, Sullam PM, Iverson TM. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin. J Biol Chem 2016; 291:7230-40. [PMID: 26833566 DOI: 10.1074/jbc.m115.701425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/06/2022] Open
Abstract
Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site.
Collapse
Affiliation(s)
- Barbara A Bensing
- From the Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco and the Northern California Institute for Research and Education, San Francisco, California 94121
| | | | | | - Hai Yu
- the Department of Chemistry, University of California, Davis, California 95616, and
| | | | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439
| | - Spencer Anderson
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439
| | - Xi Chen
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Paul M Sullam
- From the Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco and the Northern California Institute for Research and Education, San Francisco, California 94121
| | - T M Iverson
- the Departments of Pharmacology and Biochemistry, Center for Structural Biology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,
| |
Collapse
|
26
|
Arora S, Uhlemann AC, Lowy FD, Hook M. A Novel MSCRAMM Subfamily in Coagulase Negative Staphylococcal Species. Front Microbiol 2016; 7:540. [PMID: 27199900 PMCID: PMC4850167 DOI: 10.3389/fmicb.2016.00540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022] Open
Abstract
Coagulase negative staphylococci (CoNS) are important opportunistic pathogens. Staphylococcus epidermidis, a coagulase negative staphylococcus, is the third leading cause of nosocomial infections in the US. Surface proteins like Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are major virulence factors of pathogenic gram positive bacteria. Here, we identified a new chimeric protein in S. epidermidis, that we call SesJ. SesJ represents a prototype of a new subfamily of MSCRAMMs. Structural predictions show that SesJ has structural features characteristic of a MSCRAMM along with a N-terminal repeat region and an aspartic acid containing C-terminal repeat region, features that have not been previously observed in staphylococcal MSCRAMMs but have been found in other surface proteins from gram positive bacteria. We identified and analyzed structural homologs of SesJ in three other CoNS. These homologs of SesJ have an identical structural organization but varying sequence identities within the domains. Using flow cytometry, we also show that SesJ is expressed constitutively on the surface of a representative S. epidermidis strain, from early exponential to stationary growth phase. Thus, SesJ is positioned to interact with protein targets in the environment and plays a role in S. epidermidis virulence.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, HoustonTX, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University in the City of New York, New YorkNY, USA
| | - Franklin D. Lowy
- Division of Infectious Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University in the City of New York, New YorkNY, USA
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, HoustonTX, USA
- *Correspondence: Magnus Hook,
| |
Collapse
|
27
|
Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J. Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:176. [PMID: 27555882 PMCID: PMC4994175 DOI: 10.1186/s13068-016-0588-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of lignocellulosic biomass to biofuels and bioproducts. These Gram-positive bacteria are hyperthermophilic anaerobes and the most thermophilic cellulolytic organisms so far described. They use both C5 and C6 sugars simultaneously and have the ability to grow well on xylan, a major component of plant cell walls. This is an important advantage for their use to efficiently convert biomass at yields sufficient for an industrial process. For commodity chemicals, yield from substrate is perhaps the most important economic factor. In an attempt to improve even further the ability of C. bescii to use xylan, we introduced two xylanases from Acidothermus cellulolyticus. Acel_0180 includes tandem carbohydrate-binding modules (CBM2 and CBM3) located at the C-terminus, one of which, CBM2, is not present in C. bescii. Also, the sequences of Xyn10A and Acel_0180 have very little homology with the GH10 domains present in C. bescii. For these reasons, we selected these xylanases as potential candidates for synergistic interaction with those in the C. bescii exoproteome. RESULTS Heterologous expression of two xylanases from Acidothermus cellulolyticus in Caldicellulosiruptor bescii resulted in a modest, but significant increase in the activity of the exoproteome of C. bescii on xylan substrates. Even though the increase in extracellular activity was modest, the ability of C. bescii to grow on these substrates was dramatically improved suggesting that the xylan substrate/microbe interaction substantially increased deconstruction over the secreted free enzymes alone. CONCLUSIONS We anticipate that the ability to efficiently use xylan, a major component of plant cell walls for conversion of plant biomass to products of interest, will allow the conversion of renewable, sustainable, and inexpensive plant feedstocks to products at high yields.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Genetics, University of Georgia, Athens, GA USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Janet Westpheling
- Department of Genetics, University of Georgia, Athens, GA USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
28
|
Yang YH, Jiang YL, Zhang J, Wang L, Bai XH, Zhang SJ, Ren YM, Li N, Zhang YH, Zhang Z, Gong Q, Mei Y, Xue T, Zhang JR, Chen Y, Zhou CZ. Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 2014; 10:e1004169. [PMID: 24901708 PMCID: PMC4047093 DOI: 10.1371/journal.ppat.1004169] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.
Collapse
Affiliation(s)
- Yi-Hu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Juan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Xiao-Hui Bai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Shi-Jie Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yan-Min Ren
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Na Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yong-Hui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Ting Xue
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
- * E-mail: (YC); (CZZ)
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
- * E-mail: (YC); (CZZ)
| |
Collapse
|
29
|
Etzold S, Kober OI, Mackenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol 2014; 16:888-903. [PMID: 24373178 DOI: 10.1111/1462-2920.12377] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the underpinning mechanisms of these interactions are not understood. Here, we provide structural and functional insights into the canonical mucus-binding protein (MUB), a multi-repeat cell-surface adhesin found in Lactobacillus inhabitants of the GI tract. X-ray crystallography together with small-angle X-ray scattering demonstrated a 'beads on a string' arrangement of repeats, generating 174 nm long protein fibrils, as shown by atomic force microscopy. Each repeat consists of tandemly arranged Ig- and mucin-binding protein (MucBP) modules. The binding of full-length MUB was confined to mucus via multiple interactions involving terminal sialylated mucin glycans. While individual MUB domains showed structural similarity to fimbrial proteins from Gram-positive pathogens, the particular organization of MUB provides a structural explanation for the mechanisms in which lactobacilli have adapted to their host niche by maximizing interactions with the mucus receptors, potentiating the retention of bacteria within the mucus layer. Together, this study reveals functional and structural features which may affect tropism of microbes across mucus and along the GI tract, providing unique insights into the mechanisms adopted by commensals and probiotics to adapt to the mucosal environment.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schulte T, Löfling J, Mikaelsson C, Kikhney A, Hentrich K, Diamante A, Ebel C, Normark S, Svergun D, Henriques-Normark B, Achour A. The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold. Open Biol 2014; 4:130090. [PMID: 24430336 PMCID: PMC3909270 DOI: 10.1098/rsob.130090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, and a leading cause of disease and death worldwide. Pneumococcal invasive disease is triggered by initial asymptomatic colonization of the human upper respiratory tract. The pneumococcal serine-rich repeat protein (PsrP) is a lung-specific virulence factor whose functional binding region (BR) binds to keratin-10 (KRT10) and promotes pneumococcal biofilm formation through self-oligomerization. We present the crystal structure of the KRT10-binding domain of PsrP (BR187–385) determined to 2.0 Å resolution. BR187–385 adopts a novel variant of the DEv-IgG fold, typical for microbial surface components recognizing adhesive matrix molecules adhesins, despite very low sequence identity. An extended β-sheet on one side of the compressed, two-sided barrel presents a basic groove that possibly binds to the acidic helical rod domain of KRT10. Our study also demonstrates the importance of the other side of the barrel, formed by extensive well-ordered loops and stabilized by short β-strands, for interaction with KRT10.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet Science Park, Tomtebodavägen 23A Solna, Stockholm 17165, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nylander Å, Svensäter G, Senadheera DB, Cvitkovitch DG, Davies JR, Persson K. Structural and functional analysis of the N-terminal domain of the Streptococcus gordonii adhesin Sgo0707. PLoS One 2013; 8:e63768. [PMID: 23691093 PMCID: PMC3656908 DOI: 10.1371/journal.pone.0063768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
Collapse
Affiliation(s)
- Åsa Nylander
- Department of Odontology, Division of Oral Microbiology, Umeå University, Umeå, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | - Julia R. Davies
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
32
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
33
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2012; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
34
|
Lizcano A, Sanchez CJ, Orihuela CJ. A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol 2012; 27:257-69. [PMID: 22759311 DOI: 10.1111/j.2041-1014.2012.00653.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial attachment to host surfaces is a pivotal event in the biological and infectious processes of both commensal and pathogenic bacteria, respectively. Serine-rich repeat proteins (SRRPs) are a family of adhesins in Gram-positive bacteria that mediate attachment to a variety of host and bacterial surfaces. As such, they contribute towards a wide-range of diseases including sub-acute bacterial endocarditis, community-acquired pneumonia, and meningitis. SRRPs are unique in that they are glycosylated, require a non-canonical Sec-translocase for transport, and are largely composed of a domain containing hundreds of alternating serine residues. These serine-rich repeats are thought to extend a unique non-repeat (NR) domain outward away from the bacterial surface to mediate adhesion. So far, NR domains have been determined to bind to sialic acid moieties, keratins, or other NR domains of a similar SRRP. This review summarizes how this important family of bacterial adhesins mediates bacterial attachment to host and bacterial cells, contributes to disease pathogenesis, and might be targeted for pharmacological intervention or used as novel protective vaccine antigens. This review also highlights recent structural findings on the NR domains of these proteins.
Collapse
Affiliation(s)
- A Lizcano
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
35
|
Folding helical proteins in explicit solvent using dihedral-biased tempering. Proc Natl Acad Sci U S A 2012; 109:8139-44. [PMID: 22573819 DOI: 10.1073/pnas.1112143109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a single-trajectory-based tempering method with a high-temperature dihedral bias, we repeatedly folded four helical proteins [α(3)D (PDB ID: 2A3D, 73 residues), α(3)W (1LQ7, 67 residues), Fap1-NR(α) (2KUB, 81 residues) and S-836 (2JUA, 102 residues)] and some of the mutants in explicit solvent within several microseconds. The lowest root-mean-square deviations of backbone atoms from the experimentally determined structures were 1.9, 1.4, 1.0, and 2.1 Å, respectively. Cluster analyses of folding trajectories showed the native conformation usually occupied the most populated cluster. The simulation protocol can be applied to large-scale simulations of other helical proteins on commonly accessible computing platforms.
Collapse
|
36
|
Garnett JA, Simpson PJ, Taylor J, Benjamin SV, Tagliaferri C, Cota E, Chen YYM, Wu H, Matthews S. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation. Biochem Biophys Res Commun 2012; 417:421-6. [PMID: 22166217 PMCID: PMC3518267 DOI: 10.1016/j.bbrc.2011.11.131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR) is composed of two domains (Fap1-NR(α) and Fap1-NR(β)) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR(α) and Fap1-NR(β) domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR(α) at pH 5.0 at 3.0Ǻ resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates 'opening' and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.
Collapse
Affiliation(s)
- James A. Garnett
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Peter J. Simpson
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Jonathan Taylor
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Stefi V. Benjamin
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Camille Tagliaferri
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Ernesto Cota
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Yi-Ywan M. Chen
- Department of Microbiology & Immunology, and Research Center for Pathogenic Bacteria, Chang Gung University, Tao-Yuan, Taiwan
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL 35294
| | - Stephen Matthews
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
37
|
Wu R, Wu H. A molecular chaperone mediates a two-protein enzyme complex and glycosylation of serine-rich streptococcal adhesins. J Biol Chem 2011; 286:34923-31. [PMID: 21862581 DOI: 10.1074/jbc.m111.239350] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-rich repeat glycoproteins identified from streptococci and staphylococci are important for bacterial adhesion and biofilm formation. Two putative glycosyltransferases, Gtf1 and Gtf2, from Streptococcus parasanguinis form a two-protein enzyme complex that is required for glycosylation of a serine-rich repeat adhesin, Fap1. Gtf1 is a glycosyltransferase; however, the function of Gtf2 is unknown. Here, we demonstrate that Gtf2 enhances the enzymatic activity of Gtf1 by its chaperone-like property. Gtf2 interacted with Gtf1, mediated the subcellular localization of Gtf1, and stabilized Gtf1. Deletion of invariable amino acid residues in a conserved domain of unknown function (DUF1975) at the N terminus of Gtf2 had a greater impact on Fap1 glycosylation than deletion of the C-terminal non-DUF1975 residues. The DUF1975 deletions concurrently reduced the interaction between Gtf1 and Gtf2, altered the subcellular localization of Gtf1, and destabilized Gtf1, suggesting that DUF1975 is crucial for the chaperone activity of Gtf2. Homologous GtfA and GtfB from Streptococcus agalactiae rescued the glycosylation defect in the gtf1gtf2 mutant; like Gtf2, GtfB also possesses chaperone-like activity. Taken together, our studies suggest that Gtf2 and its homologs possess the conserved molecular chaperone activity that mediates protein glycosylation of bacterial adhesins.
Collapse
Affiliation(s)
- Ren Wu
- Department of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
38
|
Pyburn TM, Bensing BA, Xiong YQ, Melancon BJ, Tomasiak TM, Ward NJ, Yankovskaya V, Oliver KM, Cecchini G, Sulikowski GA, Tyska MJ, Sullam PM, Iverson TM. A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog 2011; 7:e1002112. [PMID: 21765814 PMCID: PMC3131266 DOI: 10.1371/journal.ppat.1002112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022] Open
Abstract
GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB(BR)), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB(BR) structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspB(BR)-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspB(BR). This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.
Collapse
Affiliation(s)
- Tasia M. Pyburn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
| | - Barbara A. Bensing
- Department of Medicine, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
| | - Yan Q. Xiong
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Bruce J. Melancon
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Thomas M. Tomasiak
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
| | - Nicholas J. Ward
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Victoria Yankovskaya
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Kevin M. Oliver
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics University of California, San Francisco, California, United States of America
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul M. Sullam
- Department of Medicine, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
39
|
New cell surface protein involved in biofilm formation by Streptococcus parasanguinis. Infect Immun 2011; 79:3239-48. [PMID: 21576336 DOI: 10.1128/iai.00029-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dental biofilm formation is critical for maintaining the healthy microbial ecology of the oral cavity. Streptococci are predominant bacterial species in the oral cavity and play important roles in the initiation of plaque formation. In this study, we identified a new cell surface protein, BapA1, from Streptococcus parasanguinis FW213 and determined that BapA1 is critical for biofilm formation. Sequence analysis revealed that BapA1 possesses a typical cell wall-sorting signal for cell surface-anchored proteins from Gram-positive bacteria. No functional orthologue was reported in other streptococci. BapA1 possesses nine putative pilin isopeptide linker domains which are crucial for pilus assembly in a number of Gram-positive bacteria. Deletion of the 3' portion of bapA1 generated a mutant that lacks surface-anchored BapA1 and abolishes formation of short fibrils on the cell surface. The mutant failed to form biofilms and exhibited reduced adherence to an in vitro tooth model. The BapA1 deficiency also inhibited bacterial autoaggregation. The N-terminal muramidase-released-protein-like domain mediated BapA1-BapA1 interactions, suggesting that BapA1-mediated cell-cell interactions are important for bacterial autoaggregation and biofilm formation. Furthermore, the BapA1-mediated bacterial adhesion and biofilm formation are independent of a fimbria-associated serine-rich repeat adhesin, Fap1, demonstrating that BapA1 is a new streptococcal adhesin.
Collapse
|
40
|
Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi. J Mol Graph Model 2011; 29:834-42. [PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 01/20/2023]
Abstract
The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
Collapse
|
41
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
42
|
Garnett JA, Ramboarina S, Lee WC, Tagliaferri C, Wu W, Matthews S. Crystallization and initial crystallographic analysis of the Streptococcus parasanguinis FW213 Fap1-NRα adhesive domain at pH 5.0. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:274-6. [PMID: 21301104 PMCID: PMC3034626 DOI: 10.1107/s1744309110052772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/15/2010] [Indexed: 11/10/2022]
Abstract
The adhesin fimbriae-associated protein 1 (Fap1) is a surface protein of Streptococcus parasanguinis FW213 and plays a major role in the formation of dental plaque in humans. Increased adherence is highly correlated to a reduction in pH and acid activation has been mapped to a subdomain: Fap1-NR(α). Here, Fap1-NR(α) has been crystallized at pH 5.0 and diffraction data have been collected to 3.0 Å resolution. The crystals belonged to space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = b = 122.0, c = 117.8 Å. It was not possible to conclusively determine the number of molecules in the asymmetric unit and heavy-atom derivatives are now being prepared.
Collapse
Affiliation(s)
- James A. Garnett
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| | - Stéphanie Ramboarina
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| | - Wei-chao Lee
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| | - Camille Tagliaferri
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| | - Wilfred Wu
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| | - Stephen Matthews
- Centre for Structural Biology, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, England
| |
Collapse
|
43
|
Dell A, Galadari A, Sastre F, Hitchen P. Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2011; 2010:148178. [PMID: 21490701 PMCID: PMC3068309 DOI: 10.1155/2010/148178] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i) oligosaccharyltransferase (OST)-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii) stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii) OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv) stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring "en bloc" to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.
Collapse
Affiliation(s)
- Anne Dell
- Division of Molecular Biosciences and Centre for Integrative Systems Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alaa Galadari
- Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. BOX 17666, Al-Ain, UAE
| | - Federico Sastre
- Division of Molecular Biosciences and Centre for Integrative Systems Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paul Hitchen
- Division of Molecular Biosciences and Centre for Integrative Systems Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
44
|
Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2010; 13:186-97. [PMID: 21199258 DOI: 10.1111/j.1462-5822.2010.01560.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we focus on three important families of LPxTG-anchored adhesins in the human pathogen Streptococcus pneumoniae, but also their homologues in related streptococci. We discuss the contribution of these streptococcal adhesins to host tropism, pathogenesis and their interactions with different host cell types. The first surface structures discussed are the heteropolymeric pili that have been found in important streptococcal pathogens such as S. pneumoniae, S. pyogenes, S. agalactiae and E. faecalis/faecium. Major and minor pilus subunit proteins are covalently joined and finally attached to the cell wall through the action of specific sortases. The role of pili and individual pilin subunits in adhesion and pathogenesis and their structure and assembly in different streptococcal species are being covered. Furthermore, we address recent findings regarding a family of large glycosylated serine-rich repeat (SRR) proteins that act as fibrillar adhesins for which homologues have been found in several streptococcal species including pneumococci. In the pneumococcal genome both pili and its giant SRR protein are encoded by accessory genes present in particular clonal lineages for which epidemiological information is available. Finally, we briefly discuss the role played by the pneumococcal neuraminidase NanA in adhesion and pathogenesis.
Collapse
Affiliation(s)
- J Löfling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Pyburn TM, Yankovskaya V, Bensing BA, Cecchini G, Sullam PM, Iverson TM. Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding region of the Streptococcus gordonii adhesin GspB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1503-7. [PMID: 21045307 PMCID: PMC3001660 DOI: 10.1107/s1744309110036535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/13/2010] [Indexed: 05/30/2023]
Abstract
The carbohydrate-binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspB(BR)) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspB(BR) buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspB(BR) in each buffer. While both sets of conditions supported crystal growth in space group P2(1)2(1)2(1), the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 Å for crystal form 1 and a = 34.6, b = 98.3, c = 99.0 Å for crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 Å resolution. A complete data set has been collected to 1.3 Å resolution with an overall R(merge) value of 0.04 and an R(merge) value of 0.33 in the highest resolution shell.
Collapse
Affiliation(s)
- Tasia M. Pyburn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Victoria Yankovskaya
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Barbara A. Bensing
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Paul M. Sullam
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| |
Collapse
|