1
|
Dong W, Liu Y, Lin M, Zhang J, Lin D. pH-gated activation of nematodes-secreted NUC-1 accelerates extracellular antibiotic resistance gene degradation in aquatic environments. WATER RESEARCH 2025; 283:123788. [PMID: 40349596 DOI: 10.1016/j.watres.2025.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The global dissemination of extracellular antibiotic resistance genes (eARGs) in environmental matrices necessitates urgent development of mitigation approaches. Although nematodes exhibit potential as biological agents for eARG degradation, significant research gaps exist in understanding their performance under diverse environmental conditions and strategies for enhancing degradation efficiency through systematic parameter optimization. Here, we systematically evaluated the degradation of plasmid-borne tetM by Caenorhabditis elegans across eight high nematodes-prevalent habitats, revealing a remarkable 38-fold variation in efficacy. Solution pH was identified as the pivotal regulatory parameter through controlled experiments. Acidification to pH 6 enhanced nematodes-mediated eARG degradation by 25-fold, effectively reducing the transformation efficiency below the detectable limit within 15 min. Through multidisciplinary analyses incorporating gene mutation analysis, mRNA quantification, capillary electrophoresis, and zymographic analysis, we demonstrate that environmental pH specifically modulates NUC-1 activity rather than expression. Structural modeling and pKa calculation reveal this pH-dependent regulation operates through protonation state change in the NUC-1 catalytic center, achieving maximal enzymatic activity at pH 6. Remarkably, this pH-gated regulatory mechanism is conserved across five nematode species spanning two distinct families, highlighting its broad biological significance and biotechnological potential. Our study establishes the first comprehensive environmental assessment framework for nematodes-mediated eARG degradation and elucidates a pH-gated regulation mechanism at the molecular level, providing a novel foundation for developing biotechnologies to control AR dissemination with spatiotemporal accuracy.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manxi Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Stock SP, Campos-Herrera R, Shapiro-Ilan D. The first 100 years in the history of entomopathogenic nematodes. J Invertebr Pathol 2025; 211:108302. [PMID: 40081791 DOI: 10.1016/j.jip.2025.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
The field of entomopathogenic nematology has grown exponentially since the discovery of the first species, Steinernema kraussei (=Aplecatna kraussei), in 1923. Initially, entomopathogenic nematodes (EPN) were solely viewed as a curiosity. The discovery of the nematode-bacteria association in 1965 and the incipient research for mass production motivated their recognition as biological control agents for agricultural pests. Subsequent studies were focused on the discovery of new species and/or populations, the early studies to understand the biotic and abiotic factors that contribute to their performance in the field and success in insect pest management. However, as we entered the 21st century, and with the advent of molecular biology, research on these organisms took a fascinating turn, unraveling a deeper understanding of the complex symbiotic relationship EPN has with their bacterial symbionts and the insect host. Furthermore, because of their experimental tractability, EPNs have proven to be model organisms that are used among various biological sciences to gain further insights into host-symbiont, host-pathogen interactions, population dynamics, and as resources for pharmaceutical bioprospecting. This special issue commemorates the first 100 years of research in entomopathogenic nematology and summarizes the contributions of ten symposia and presentations at the 100th Anniversary of the First EPN Discovery Congress in Logroño, Spain (https://www.icvv.es/english/epn). This specific article focuses on the historical review of EPN, their bacterial partners and the numerous and diverse applications in disciplines in basic such as phylogeny, biogeography, symbiosis, and soil biology and ecology, or more applied venues such as formulation and mass production, application technology, commercialization and regulation, from 1923 to the present time.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way #407ALS, Corvallis, OR 97331, USA.
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Gobierno de La Rioja, Universidad de La Rioja). Finca La Granjera, Ctra. Burgos Km 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - David Shapiro-Ilan
- USDA-ARS, Southeastern Fruit and Tree Nut Research Unit, 21 Dunbar Road. Byron, GA 31008, USA
| |
Collapse
|
3
|
Stock SP, Hazir S. The bacterial symbionts of Entomopathogenic nematodes and their role in symbiosis and pathogenesis. J Invertebr Pathol 2025; 211:108295. [PMID: 40032241 DOI: 10.1016/j.jip.2025.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Entomopathogenic bacteria in the genera Xenorhabdus and Photorhabdus are mutualistically associated with entomopathogenic nematodes (EPN) Steinernema and Heterorhabditis, respectively. Together they form an insecticidal partnership which has been shown to kill a wide range of insect species. The spectrum of dependence in this symbiotic partnership is diverse, ranging from a tight, obligate relationship to a facultative one. A body of evidence suggests that the reproductive fitness of the nematode-bacterium partnership is tightly associated and interdependent. Furthermore, maintenance of their virulence is also critical to the conversion of the insect host as a suitable environment where this partnership can be perpetuated. Disruption of the symbiotic partnership can have detrimental effects on the fitness of both partners. The nematode-bacterial symbiont-insect partnership represents a model system in ecology and evolutionary biology and amenable to investigate beneficial and antagonistic interactions between invertebrates and microbes. Furthermore, the EPN's bacterial symbionts are also viewed as a model system to study the biosynthesis, structure and function of various natural products. Their ability to produce up to 25 different natural product classes is outstanding among the Morganellaceae. These natural products show biological activity, most likely originating from important functions during the life cycle of both the nematodes and their symbionts. Tools and high throughput technologies have been developed to identify ubiquitous and rare molecules and study their function and assess their potential as novel biological activities. We herein summarize the symbiotic relationship between EPN and their bacterial symbionts, focusing on their fitness and their ability to successfully access and utilize an insect host. We also recapitulate the history of natural products research highlighting recent findings and the synthetic biology approaches that are currently implemented to identify non-natural derivatives from Xenorhabdus and Photorhabdus with improved biological activity.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Horticulture, Oregon State University, Agriculture and Life Sciences Bldg. Rm 4007B 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Selçuk Hazir
- Aydin Adnan Menderes University, Faculty of Science, Department of Biology, Aydin, Turkey
| |
Collapse
|
4
|
Li Y, Wu SY. Entomopathogenic nematodes in insect pest biocontrol: Diversity and function of excretory/secretory proteins. J Invertebr Pathol 2024; 207:108205. [PMID: 39313094 DOI: 10.1016/j.jip.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Entomopathogenic nematodes (EPNs) are obligate parasitic "biopesticides" that play a vital role in pest management. A thorough understanding of their pathogenic mechanisms is essential for promoting their widespread use in agricultural pest control. The pathogenicity of EPNs arises from two key factors: the pathogenicity of their symbiotic bacteria and the nematodes' intrinsic pathogenic mechanisms. This review concentrates on the latter, offering an exploration of the excretory/secretory products of EPNs, along with their pathogenic mechanisms and key components. Particular attention is given to specific excretory/secretory proteins (ESPs) identified in various EPN species. The aim is to provide a foundational reference for comprehending the role of these ESPs in pest control. Furthermore, the review discusses the potential of these findings to advance the development of eco-friendly biopesticides, thereby supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng-Yen Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Jiao Z, Chen M, Zhao W, Wu Y, Guo G. Serine protease mediates Ovomermis sinensis-inhibited host immune responses by inducing apoptosis: implications for successful parasitism and host mortality. PEST MANAGEMENT SCIENCE 2024; 80:1968-1980. [PMID: 38105114 DOI: 10.1002/ps.7931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mermithid nematodes are entomopathogens that parasitize and kill insect hosts and are used for biological control. It is widely believed that mermithid nematodes kill their host upon nematode emergence, unlike other parasites that depend on virulence factors. In this study, we disproved this theory by demonstrating that the mermithid nematode Ovomermis sinensis mediates host mortality by serine protease-induced apoptosis. RESULTS Successful parasitism of O. sinensis increased with the infection rate, and the inhibition of host immunity by O. sinensis increased with the parasitic load. A serine protease was identified from the host hemolymph. This protease belongs to the trypsin-like serine protease family, which is an apoptosis-inducing serine protease. Specifically, Os-sp was highly expressed only during the parasitic stage and could be induced by host hemocytes and the fat body. Importantly, host immune effectors (melanization, phenoloxidase activity, and encapsulation) were suppressed by the recombinant protein rOs-sp that induced apoptosis of hemocytes and fat body in a dose-dependent manner, which contributes to host death. CONCLUSION Serine protease mediates O. sinensis-inhibited host immune responses by inducing apoptosis that is lethal to the insect host. Our findings have broader implications for understanding the mechanism of successful parasitism and killing of host by nematodes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Mingming Chen
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yuanming Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Lefoulon E, McMullen JG, Stock SP. Transcriptomic Analysis of Steinernema Nematodes Highlights Metabolic Costs Associated to Xenorhabdus Endosymbiont Association and Rearing Conditions. Front Physiol 2022; 13:821845. [PMID: 35283769 PMCID: PMC8914265 DOI: 10.3389/fphys.2022.821845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Entomopathogenic nematodes of the genus Steinernema have a mutualistic relationship with bacteria of the genus Xenorhabdus and together they form an antagonist partnership against their insect hosts. The nematodes (third-stage infective juveniles, or IJs) protect the bacteria from the external environmental stressors and vector them from one insect host to another. Xenorhabdus produce secondary metabolites and antimicrobial compounds inside the insect that protect the cadaver from soil saprobes and scavengers. The bacteria also become the nematodes’ food, allowing them to grow and reproduce. Despite these benefits, it is yet unclear what the potential metabolic costs for Steinernema IJs are relative to the maintenance and vectoring of Xenorhabdus. In this study, we performed a comparative dual RNA-seq analysis of IJs of two nematode-bacteria partnerships: Steinernema carpocapsae-Xenorhabdus nematophila and Steinernema. puntauvense-Xenorhbdus bovienii. For each association, three conditions were studied: (1) IJs reared in the insect (in vivo colonized), (2) colonized IJs reared on liver-kidney agar (in vitro colonized), and (3) IJs depleted by the bacteria reared on liver-kidney agar (in vitro aposymbiotic). Our study revealed the downregulation of numerous genes involved in metabolism pathways, such as carbohydrate, amino acid, and lipid metabolism when IJs were reared in vitro, both colonized and without the symbiont. This downregulation appears to impact the longevity pathway, with the involvement of glycogen and trehalose metabolism, as well as arginine metabolism. Additionally, a differential expression of the venom protein known to be secreted by the nematodes was observed when both Steinernema species were depleted of their symbiotic partners. These results suggest Steinernema IJs may have a mechanism to adapt their virulence in absence of their symbionts.
Collapse
Affiliation(s)
- Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - John G. McMullen
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - S. Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- College of Agriculture, California State University Chico, Chico, CA, United States
- *Correspondence: S. Patricia Stock,
| |
Collapse
|
7
|
Eszterbauer E, Szegő D, Ursu K, Sipos D, Gellért Á. Serine protease inhibitors of the whirling disease parasite Myxobolus cerebralis (Cnidaria, Myxozoa): Expression profiling and functional predictions. PLoS One 2021; 16:e0249266. [PMID: 33780500 PMCID: PMC8007001 DOI: 10.1371/journal.pone.0249266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we studied the expression pattern and putative function of four, previously identified serine protease inhibitors (serpins) of Myxobolus cerebralis, a pathogenic myxozoan species (Cnidaria: Myxozoa) causing whirling disease of salmonid fishes. The relative expression profiles of serpins were determined at different developmental stages both in fish and in annelid hosts using serpin-specific qPCR assays. The expression of serpin Mc-S1 was similar throughout the life cycle, whereas a significant decrease was detected in the relative expression of Mc-S3 and Mc-S5 during the development in fish, and then in the sporogonic stage in the worm host. A decreasing tendency could also be observed in the expression of Mc-S4 in fish, which was, however, upregulated in the worm host. For the first time, we predicted the function of M. cerebralis serpins by the use of several bioinformatics-based applications. Mc-S1 is putatively a chymotrypsin-like inhibitor that locates extracellularly and is capable of heparin binding. The other three serpins are caspase-like inhibitors, and they are probably involved in protease and cell degradation processes during the early stage of fish invasion.
Collapse
Affiliation(s)
- Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Dóra Szegő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Dóra Sipos
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
8
|
Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. Int J Parasitol 2021; 51:321-325. [PMID: 33421438 DOI: 10.1016/j.ijpara.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
Much of the available knowledge of entomopathogenic virulence factors has been gleaned from studies in the nematode parasite Steinernema carpocapsae, but there is good reason to complement this knowledge with similar studies in Heterorhabditis bacteriophora. Three candidate virulence factors from H. bacteriophora have recently been characterised, and each was demonstrated to contribute to infection. This information can be used not only to advance efforts in the biocontrol of insect pests, but also to make inferences about the emergence of parasitism among Clade V nematodes.
Collapse
|
9
|
Kenney E, Yaparla A, Hawdon JM, O' Halloran DM, Grayfer L, Eleftherianos I. A putative lysozyme and serine carboxypeptidase from Heterorhabditis bacteriophora show differential virulence capacities in Drosophila melanogaster. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103820. [PMID: 32791175 DOI: 10.1016/j.dci.2020.103820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Nematode virulence factors are of interest for a variety of applications including biocontrol against insect pests and the alleviation of autoimmune diseases with nematode-derived factors. In silico "omics" techniques have generated a wealth of candidate factors that may be important in the establishment of nematode infections, although the challenge of characterizing these individual factors in vivo remains. Here we provide a fundamental characterization of a putative lysozyme and serine carboxypeptidase from the host-induced transcriptome of Heterorhabditis bacteriophora. Both factors accelerated the mortality rate following Drosophila melanogaster infections with Photorhabdus luminescens, and both factors suppressed phenoloxidase activity in D. melanogaster hemolymph. Furthermore, the serine carboxypeptidase was lethal to a subpopulation of flies and suppressed the upregulation of antimicrobial peptides as well as phagocytosis. Together, our findings suggest that this serine carboxypeptidase possess both toxic and immunomodulatory properties while the lysozyme is likely to confer immunomodulatory, but not toxic effects.
Collapse
Affiliation(s)
- Eric Kenney
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Damien M O' Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites. Microorganisms 2020; 8:microorganisms8101502. [PMID: 33003479 PMCID: PMC7650755 DOI: 10.3390/microorganisms8101502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/02/2023] Open
Abstract
We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25–30% only. The conserved domains (i.e., motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group.
Collapse
|
11
|
Gonadal transcriptomic analysis of the mud crab Scylla olivacea infected with rhizocephalan parasite Sacculina beauforti. Genomics 2020; 112:2959-2969. [DOI: 10.1016/j.ygeno.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
|
12
|
Eliáš S, Hurychová J, Toubarro D, Frias J, Kunc M, Dobeš P, Simões N, Hyršl P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection. INSECTS 2020; 11:insects11060353. [PMID: 32516962 PMCID: PMC7349556 DOI: 10.3390/insects11060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Collapse
Affiliation(s)
- Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Jorge Frias
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| |
Collapse
|
13
|
Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020; 16:e1008243. [PMID: 32203551 PMCID: PMC7117776 DOI: 10.1371/journal.ppat.1008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.
Collapse
Affiliation(s)
- Ayat Zawawi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Murtala Jibril
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Munirah H. Albaqshi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
14
|
Participation of the Serine Protease Jonah66Ci in the Drosophila Antinematode Immune Response. Infect Immun 2019; 87:IAI.00094-19. [PMID: 31182620 DOI: 10.1128/iai.00094-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Serine proteases and serine protease homologs form the second largest gene family in the Drosophila melanogaster genome. Certain genes in the Jonah multigene family encoding serine proteases have been implicated in the fly antiviral immune response. Here, we report the involvement of Jonah66Ci in the Drosophila immune defense against Steinernema carpocapsae nematode infection. We find that Drosophila Jonah66Ci is upregulated in response to symbiotic (carrying the mutualistic bacterium Xenorhabdus nematophila) or axenic (lacking Xenorhabdus) Steinernema nematodes and is expressed exclusively in the gut of Drosophila larvae. Inactivation of Jonah66Ci provides a survival advantage to larvae against axenic nematodes and results in differential expression of Toll and Imd pathway effector genes, specifically in the gut. Also, inactivation of Jonah66Ci increases the numbers of enteroendocrine and mitotic cells in the gut of uninfected larvae, and infection with Steinernema nematodes reduces their numbers, whereas the numbers of intestinal stem cells are unaffected by nematode infection. Jonah66Ci knockdown further reduces nitric oxide levels in response to infection with symbiotic Steinernema nematodes. Finally, we show that Jonah66Ci knockdown does not alter the feeding rates of uninfected Drosophila larvae; however, infection with axenic Steinernema nematodes lowers larval feeding. In conclusion, we report that Jonah66Ci participates in maintaining homeostasis of certain physiological processes in Drosophila larvae in the context of Steinernema nematode infection. Similar findings will take us a step further toward understanding the molecular and physiological mechanisms that take place during parasitic nematode infection in insects.
Collapse
|
15
|
Jiao Z, Wen G, Tao S, Wang J, Wang G. Induction of hemocyte apoptosis by Ovomermis sinensis: Implications for host immune suppression. J Invertebr Pathol 2018; 159:41-48. [DOI: 10.1016/j.jip.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
|
16
|
Majeed M, Soliman H, Kumar G, El-Matbouli M, Saleh M. Editing the genome of Aphanomyces invadans using CRISPR/Cas9. Parasit Vectors 2018; 11:554. [PMID: 30352624 PMCID: PMC6199749 DOI: 10.1186/s13071-018-3134-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is increasingly being used for genome editing experiments. It is a system to add, delete and/or replace parts of a gene in situ in a time- and cost-efficient manner. The genome of many organisms has been edited using this system. We tested the CRISPR/Cas9 system in Aphanomyces invadans, an oomycete, which is the causative agent of epizootic ulcerative syndrome (EUS) in many fish species. Extracellular proteases produced by this oomycete are believed to play a role in EUS virulence. METHODS We designed three single guide-RNAs (gRNA) to target A. invadans serine protease gene. These gRNAs were individually combined with the Cas9 to form ribo-nucleo-protein (RNP) complex. A. invadans protoplasts were then transfected with RNP complexes. After the transfection, the target gene was amplified and subjected to sequencing. Zoospores of A. invadans were also transfected with the RNP complex. Three groups of dwarf gourami (Trichogaster lalius) were then experimentally inoculated with (i) non-treated A. invadans zoospores; (ii) RNP-treated A. invadans zoospores; and (iii) autoclaved pond water as negative control, to investigate the effect of edited serine protease gene on the virulence of A. invadans in vivo. RESULTS Fluorescence microscopy showed sub-cellular localization of RNP complex in A. invadans protoplasts and zoospores. Sequencing results from the protoplast DNA revealed a point mutation in the target gene. A matching mutation was also detected in zoospores after similar treatment with the same RNP complex. In vivo results showed that the CRISPR/Cas9-treated A. invadans zoospores did not produce EUS clinical signs in the fish. These results were then confirmed by histopathological staining of the muscle sections using Gomori's methenamine silver nitrate and hematoxylin and eosin stains. CONCLUSIONS Results obtained in this study indicate that the RNP complex caused effective mutation in the target gene. This hindered the production of serine protease, which ultimately impeded the manifestation of EUS in the fish. Our methods thus establish a promising approach for functional genomics studies in A. invadans and provide novel avenues to develop effective strategies to control this pathogen.
Collapse
Affiliation(s)
- Muhammad Majeed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Yadav S, Eleftherianos I. The Imaginal Disc Growth Factors 2 and 3 participate in the Drosophila response to nematode infection. Parasite Immunol 2018; 40:e12581. [PMID: 30107045 DOI: 10.1111/pim.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
The Drosophila imaginal disc growth factors (IDGFs) induce the proliferation of imaginal disc cells and terminate cell proliferation at the end of larval development. However, the participation of Idgf-encoding genes in other physiological processes of Drosophila including the immune response to infection is not fully understood. Here, we show the contribution of Idgf2 and Idgf3 in the Drosophila response to infection with Steinernema carpocapsae nematodes carrying or lacking their mutualistic Xenorhabdus nematophila bacteria (symbiotic or axenic nematodes, respectively). We find that Idgf2 and Idgf3 are upregulated in Drosophila larvae infected with symbiotic or axenic Steinernema and inactivation of Idgf2 confers a survival advantage to Drosophila larvae against axenic nematodes. Inactivation of Idgf2 induces the Imd and Jak/Stat pathways, whereas inactivation of Idgf3 induces the Imd, Toll and Jak/Stat pathways. We also show that inactivation of the Imd pathway receptor PGRP-LE upregulates Idgf2 against Steinernema nematode infection. Finally, we demonstrate that inactivation of Idgf3 induces the recruitment of larval haemocytes in response to Steinernema. Our results indicate that Idgf2 and Idgf3 might be involved in different yet crucial immune functions in the Drosophila antinematode immune response. Similar findings will promote the development of new targets for species-specific pest control strategies.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
18
|
Brivio MF, Toscano A, De Pasquale SM, De Lerma Barbaro A, Giovannardi S, Finzi G, Mastore M. Surface protein components from entomopathogenic nematodes and their symbiotic bacteria: effects on immune responses of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2018; 74:2089-2099. [PMID: 29516671 DOI: 10.1002/ps.4905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND Steinernema carpocapsae is a nematocomplex widely used as an alternative to chemicals for the biological control of insect pests; this nematode is symbiotically associated with the bacterium Xenorhabdus nematophila and both contribute to host death. The architecture and functions of structures and molecular components of the surface of nematodes and their symbiont bacteria are integral to early interactions with their hosts; thus, we assessed the role of protein pools isolated from the surface of S. carpocapsae and from phase I X. nematophila against Galleria mellonella. RESULTS Using high-salt treatments, we isolated the surface proteins and assayed them on G. mellonella haemocytes; haemocyte viability and phagocytic activity were investigated in the presence of surface proteins from nematodes or bacteria. Proteins from live S. carpocapsae possessed mild cytotoxicity on the haemocytes, whereas those from live X. nematophila markedly affected the host cells' viability. Bacterial proteins inhibited phagocytic activity, although they strongly triggered the host proPO (prophenoloxidase-phenoloxidase) system. CONCLUSION Nematocomplex surface compounds play a key role in immunoevasion/depression of insect hosts, causing a severe physiological disorder. Natural compounds newly identified as active against pests could improve the pest management of species potentially harmful to plants in urban green spaces and agriculture. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Andrea Toscano
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Simone Maria De Pasquale
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Stefano Giovannardi
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanna Finzi
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Yadav S, Frazer J, Banga A, Pruitt K, Harsh S, Jaenike J, Eleftherianos I. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS One 2018; 13:e0192183. [PMID: 29466376 PMCID: PMC5821453 DOI: 10.1371/journal.pone.0192183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.
Collapse
Affiliation(s)
- Shruti Yadav
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Joanna Frazer
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Ashima Banga
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, United States of America
| | - Katherine Pruitt
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, United States of America
| | - Sneh Harsh
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
20
|
Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 2017; 13:e1006302. [PMID: 28426766 PMCID: PMC5398726 DOI: 10.1371/journal.ppat.1006302] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs) of Steinernema carpocapsae (a well-studied EPN species) release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products. Steinernema carpocapsae belongs to a special group of insect-parasitic nematodes known as entomopathogenic nematodes (EPNs). These differ from other insect parasites in at least two ways; first they kill their hosts quickly (within 2–3 days), and second they associate with bacteria to facilitate their parasitic lifestyle. The infective stage of these parasites, the infective juvenile (IJ) stage, is the only free-living stage and these IJs are developmentally arrested and only reinitiate development once they are inside a suitable host. Little is known about the early stages of parasitism and how these parasites initiate the parasitic phase of their life cycle and reinitiate development. Here we characterized the changes that occur to the nematodes' physical morphology, gene expression, and the release of protein molecules that accompany the transition from developmentally arrested IJ to active, developing parasite. We showed that contrary to long-held assumptions, the nematodes are not merely transporting pathogenic bacteria but that the nematodes contribute to parasitism by releasing toxic proteins into the host. Many of the S. carpocapsae toxins are also found in species of human-parasitic nematodes, and S. carpocapsae may serve as a valuable model for understanding the specific function of these toxins.
Collapse
Affiliation(s)
- Dihong Lu
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Marissa Macchietto
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Dennis Chang
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Mirayana M. Barros
- Department of Nematology, University of California, Riverside, California, United States of America
| | - James Baldwin
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Rougon-Cardoso A, Flores-Ponce M, Ramos-Aboites HE, Martínez-Guerrero CE, Hao YJ, Cunha L, Rodríguez-Martínez JA, Ovando-Vázquez C, Bermúdez-Barrientos JR, Abreu-Goodger C, Chavarría-Hernández N, Simões N, Montiel R. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Sci Rep 2016; 6:37536. [PMID: 27876851 PMCID: PMC5120318 DOI: 10.1038/srep37536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.
Collapse
Affiliation(s)
- Alejandra Rougon-Cardoso
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico.,Laboratory of Agrogenomic Sciences, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, León, Guanajuato, Mexico
| | - Mitzi Flores-Ponce
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Christian Eduardo Martínez-Guerrero
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - You-Jin Hao
- College of Life Science, ChongQing Normal University, ChongQing 401331, China
| | - Luis Cunha
- Cardiff School of Biosciences, Cardiff University, Park Place, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | | | - Cesaré Ovando-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - José Roberto Bermúdez-Barrientos
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av. Universidad Km 1, Rancho Universitario, Tulancingo de Bravo, Hidalgo, C.P. 43600, Mexico
| | - Nelson Simões
- CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13. 9500-321 Ponta Delgada. S. Miguel-Açores, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Lu D, Baiocchi T, Dillman AR. Genomics of Entomopathogenic Nematodes and Implications for Pest Control. Trends Parasitol 2016; 32:588-598. [PMID: 27142565 PMCID: PMC4969101 DOI: 10.1016/j.pt.2016.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
Entomopathogenic nematodes (EPNs) have been used in biological control but improvement is needed to realize their full potential for broader application in agriculture. Some improvements have been gained through selective breeding and the isolation of additional species and populations. Having genomic sequences for at least six EPNs opens the possibility of genetic improvement, either by facilitating the selection of candidate genes for hypothesis-driven studies of gene-trait relations or by genomics-assisted breeding for desirable traits. However, the genomic data will be of limited use without a more mechanistic understanding of the genes underlying traits that are important for biological control. Additionally, molecular tools are required to fully translate the genomic resources into further functional studies and better biological control.
Collapse
Affiliation(s)
- Dihong Lu
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Tiffany Baiocchi
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
24
|
Mastore M, Arizza V, Manachini B, Brivio MF. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida). INSECT SCIENCE 2015; 22:748-760. [PMID: 24846780 DOI: 10.1111/1744-7917.12141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target.
Collapse
Affiliation(s)
- Maristella Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Vincenzo Arizza
- Department of Sciences and Biological, Chemical and Pharmaceutical Technologies, University of Palermo, Palermo, Italy
| | - Barbara Manachini
- Department of Sciences and Biological, Chemical and Pharmaceutical Technologies, University of Palermo, Palermo, Italy
| | - Maurizio F Brivio
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
25
|
Noon JB, Hewezi T, Maier TR, Simmons C, Wei JZ, Wu G, Llaca V, Deschamps S, Davis EL, Mitchum MG, Hussey RS, Baum TJ. Eighteen New Candidate Effectors of the Phytonematode Heterodera glycines Produced Specifically in the Secretory Esophageal Gland Cells During Parasitism. PHYTOPATHOLOGY 2015; 105:1362-72. [PMID: 25871857 DOI: 10.1094/phyto-02-15-0049-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Heterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H. glycines produces an arsenal of effector proteins in the secretory esophageal gland cells. More than 60 H. glycines candidate effectors were identified in previous gland-cell-mining projects. However, it is likely that additional candidate effectors remained unidentified. With the goal of identifying remaining H. glycines candidate effectors, we constructed and sequenced a large gland cell cDNA library resulting in 11,814 expressed sequence tags. After bioinformatic filtering for candidate effectors using a number of criteria, in situ hybridizations were performed in H. glycines whole-mount specimens to identify candidate effectors whose mRNA exclusively accumulated in the esophageal gland cells, which is a hallmark of many nematode effectors. This approach resulted in the identification of 18 new H. glycines esophageal gland-cell-specific candidate effectors. Of these candidate effectors, 11 sequences were pioneers without similarities to known proteins while 7 sequences had similarities to functionally annotated proteins in databases. These putative homologies provided the bases for the development of hypotheses about potential functions in the parasitism process.
Collapse
Affiliation(s)
- Jason B Noon
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Tarek Hewezi
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Thomas R Maier
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Carl Simmons
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Jun-Zhi Wei
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Gusui Wu
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Victor Llaca
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Stéphane Deschamps
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Eric L Davis
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Melissa G Mitchum
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Richard S Hussey
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| | - Thomas J Baum
- First, third, and twelfth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second author: Department of Plant Sciences, University of Tennessee, Knoxville 37996; fourth, fifth, sixth, seventh, and eighth authors: DuPont Pioneer, Johnston, IA 50131; ninth author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; tenth author: Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia 65211; and eleventh author: Department of Plant Pathology, University of Georgia, Athens 30602
| |
Collapse
|
26
|
Yang Y, Wen YJ, Cai YN, Vallée I, Boireau P, Liu MY, Cheng SP. Serine proteases of parasitic helminths. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:1-11. [PMID: 25748703 PMCID: PMC4384789 DOI: 10.3347/kjp.2015.53.1.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 12/04/2022]
Abstract
Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Yun jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ya Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Isabelle Vallée
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Pascal Boireau
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Ming Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shi Peng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
27
|
Trichinella spiralis newborn larvae: characterization of a stage specific serine proteinase expression, NBL1, using monoclonal antibodies. Parasitology 2015; 142:783-90. [PMID: 25597315 DOI: 10.1017/s0031182014001851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichinella spiralis is an intracellular parasitic nematode of mammalian skeletal muscle, causing a serious zoonotic disease in humans and showing a high economic impact mainly in pig breeding. Serine proteinases of T. spiralis play important roles in the host-parasite interactions mediating host invasion. In this study, we have focused on newborn larvae (NBL-1), the first identified serine proteinase from the NBL stage of T. spiralis. Five monoclonal antibodies (mAbs) directed against the C-terminal part of NBL1, were produced. These mAbs were IgG1κ isotype and specifically recognized as a common motif of 10 amino acids (PSSGSRPTYP). Selected mAbs were further characterized using antigens from various developmental stages of T. spiralis. Western blot revealed that selected mAbs reacted with the native NBL1 at Mr 50 kDa in the adult and NBL mixed antigens and NBL stage alone. Indirect immunofluorescence analysis revealed that selected mAbs intensely stained only the embryos within the gravid females and the NBL. Thus, the produced mAbs are useful tools for the characterization of NBL1 as a major antigen of Trichinella involved in the invasion of the host but also for the development of new serological tests with an early detection of T. spiralis infection.
Collapse
|
28
|
Genome mining offers a new starting point for parasitology research. Parasitol Res 2015; 114:399-409. [PMID: 25563615 DOI: 10.1007/s00436-014-4299-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
Collapse
|
29
|
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol 2014; 6:3182-98. [PMID: 25381665 PMCID: PMC4986447 DOI: 10.1093/gbe/evu247] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host-parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans.
Collapse
Affiliation(s)
- Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fengmin Huo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuchun Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jinyong Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jinmei Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meng Wang
- Tianjin Biochip Corporation, Tianjin, People's Republic of China
| | - Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
30
|
Genome and transcriptome of the porcine whipworm Trichuris suis. Nat Genet 2014; 46:701-6. [PMID: 24929829 PMCID: PMC4105696 DOI: 10.1038/ng.3012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at ∼140-fold coverage of adult male and female T. suis and ∼80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.
Collapse
|
31
|
Toubarro D, Avila MM, Montiel R, Simões N. A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS One 2013; 8:e75691. [PMID: 24098715 PMCID: PMC3787073 DOI: 10.1371/journal.pone.0075691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
Steinernemacarpocapsae is a nematode pathogenic in a wide variety of insect species. The great pathogenicity of this nematode has been ascribed to its ability to overcome the host immune response; however, little is known about the mechanisms involved in this process. The analysis of an expressed sequence tags (EST) library in the nematode during the infective phase was performed and a highly abundant contig homologous to serine protease inhibitors was identified. In this work, we show that this contig is part of a 641-bp cDNA that encodes a BPTI-Kunitz family inhibitor (Sc-KU-4), which is up-regulated in the parasite during invasion and installation. Recombinant Sc-KU-4 protein was produced in Escherichia coli and shown to inhibit chymotrypsin and elastase activities in a dose-dependent manner by a competitive mechanism with Ki values of 1.8 nM and 2.6 nM, respectively. Sc-KU-4 also inhibited trypsin and thrombin activities to a lesser extent. Studies of the mode of action of Sc-KU-4 and its effects on insect defenses suggest that although Sc-KU-4 did not inhibit the activation of hemocytes or the formation of clotting fibers, it did inhibit hemocyte aggregation and the entrapment of foreign particles by fibers. Moreover, Sc-KU-4 avoided encapsulation and the deposition of clotting materials, which usually occurs in response to foreign particles. We show by protein-protein interaction that Sc-KU-4 targets recognition proteins of insect immune system such as masquerade-like and serine protease-like homologs. The interaction of Sc-KU-4 with these proteins explains the ability of the nematode to overcome host reactions and its large pathogenic spectrum, once these immune proteins are well conserved in insects. The discovery of this inhibitor targeting insect recognition proteins opens new avenues for the development of S. carpocapsae as a biological control agent and provides a new tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Duarte Toubarro
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mónica Martinez Avila
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nelson Simões
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|
32
|
Toubarro D, Avila MM, Hao Y, Balasubramanian N, Jing Y, Montiel R, Faria TQ, Brito RM, Simões N. A serpin released by an entomopathogen impairs clot formation in insect defense system. PLoS One 2013; 8:e69161. [PMID: 23874900 PMCID: PMC3712955 DOI: 10.1371/journal.pone.0069161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.42×10−7 M and 1.22×10−7 M, respectively. Functional analysis revealed that Sc-SRP-6 inhibits insect digestive enzymes, thus preventing the hydrolysis of ingested particles. Moreover, Sc-SRP-6 impaired the formation of hard clots at the injury site, a major insect defence mechanism against invasive pathogens. Sc-SRP-6 does not prevent the formation of clot fibres and the activation of prophenoloxidases but impairs the incorporation of the melanin into the clot. Binding assays showed a complex formation between Sc-SRP-6 and three proteins in the hemolymph of lepidopteran required for clotting, apolipophorin, hexamerin and trypsin-like, although the catalytic inhibition occurred exclusively in trypsin-like. This data allowed the conclusion that Sc-SRP-6 promotes nematode virulence by inhibiting insect gut juices and by impairing immune clot reaction.
Collapse
Affiliation(s)
- Duarte Toubarro
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Mónica M. Avila
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - YouJin Hao
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Natesan Balasubramanian
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Yingjun Jing
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nelson Simões
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|
33
|
Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K. Secretome Analysis of the Pine Wood Nematode Bursaphelenchus xylophilus Reveals the Tangled Roots of Parasitism and Its Potential for Molecular Mimicry. PLoS One 2013; 8:e67377. [PMID: 23805310 PMCID: PMC3689755 DOI: 10.1371/journal.pone.0067377] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/16/2013] [Indexed: 01/12/2023] Open
Abstract
Since it was first introduced into Asia from North America in the early 20(th) century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine's proteins. These proteins could have been acquired by host-parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | | | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Yuko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Cloning and molecular analysis of the aspartic protease Sc-ASP110 gene transcript in Steinernema carpocapsae. Parasitology 2013; 140:1158-67. [PMID: 23731543 DOI: 10.1017/s0031182013000577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many protease genes have previously been shown to be involved in parasitism and in the development of Steinernema carpocapsae, including a gene predicted to encode an aspartic protease, Sc-ASP110, which was cloned and was analysed in this study. A cDNA encoding Sc-ASP110 was cloned based on an expressed sequence tag (EST) fragment from our EST library. The full-length cDNA of Sc-ASP110 consists of 1112 nucleotides with a catalytic aspartic domain (aa18-337). The putative 341 amino acid residues have a calculated molecular mass of 37·1 kDa and a theoretical pI of 4·7. BLASTp analysis of the Sc-ASP110 amino acid sequence showed 45-77% amino acid sequence identity to parasitic and non-parasitic nematode aspartic proteases. An expression analysis showed that the sc-asp110 gene was upregulated during the late parasitic stage, L4, and 24 h after induction of in vitro nematodes. A sequence comparison revealed that Sc-ASP110 was a member of an aspartic protease family; additionally, a phylogenetic analysis indicated that Sc-ASP110 was clustered with the closely related nematode Steinernema feltiae. In situ hybridization showed that sc-asp110 was expressed in the body walls of dorsal cells. The upregulated Sc-ASP110 expression revealed that this protease could play a role in the late parasitic process. In this study, we have cloned and analysed the gene transcript of Sc-ASP110 in S. carpocapsae.
Collapse
|
35
|
Liu X, Song Y, Jiang N, Wang J, Tang B, Lu H, Peng S, Chang Z, Tang Y, Yin J, Liu M, Tan Y, Chen Q. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction. PLoS Negl Trop Dis 2012; 6:e1794. [PMID: 22953016 PMCID: PMC3429391 DOI: 10.1371/journal.pntd.0001794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/12/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva) and muscular larva (infective L1 larva). Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE) analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein families facilitate understanding of the molecular mechanisms of parasite biology and the pathological aspects of trichinellosis.
Collapse
Affiliation(s)
- Xiaolei Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dillman AR, Mortazavi A, Sternberg PW. Incorporating genomics into the toolkit of nematology. J Nematol 2012; 44:191-205. [PMID: 23482088 PMCID: PMC3578471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Indexed: 06/01/2023] Open
Abstract
The study of nematode genomes over the last three decades has relied heavily on the model organism Caenorhabditis elegans, which remains the best-assembled and annotated metazoan genome. This is now changing as a rapidly expanding number of nematodes of medical and economic importance have been sequenced in recent years. The advent of sequencing technologies to achieve the equivalent of the $1000 human genome promises that every nematode genome of interest will eventually be sequenced at a reasonable cost. As the sequencing of species spanning the nematode phylum becomes a routine part of characterizing nematodes, the comparative approach and the increasing use of ecological context will help us to further understand the evolution and functional specializations of any given species by comparing its genome to that of other closely and more distantly related nematodes. We review the current state of nematode genomics and discuss some of the highlights that these genomes have revealed and the trend and benefits of ecological genomics, emphasizing the potential for new genomes and the exciting opportunities this provides for nematological studies.
Collapse
Affiliation(s)
- Adler R. Dillman
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ali Mortazavi
- Center for Complex Biological Systems and Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
37
|
Balasubramanian N, Nascimento G, Ferreira R, Martinez M, Simões N. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Gene 2012; 500:164-71. [PMID: 22503896 DOI: 10.1016/j.gene.2012.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/17/2022]
Abstract
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. These symbiotic complexes are virulent against the insect host. Many protease genes were shown previously to be induced during parasitism, including one predicted to encode an aspartic protease, which was cloned and analyzed in this study. A cDNA encoding Sc-ASP155 was cloned based on the EST fragment. The full-length cDNA of Sc-ASP155 consists of 955 nucleotides with multiple domains, including a signal peptide (aa1-15), a pro-peptide region (aa16-45), and a typical catalytic aspartic domain (aa71-230). The putative 230 amino acid residues have a calculated molecular mass of 23,812Da and a theoretical pI of 5.01. Sc-ASP155 blastp analysis showed 40-62% amino acid sequence identity to aspartic proteases from parasitic and free-living nematodes. Expression analysis showed that the sc-asp155 gene was up-regulated during the initial parasitic stage, especially in L3 gut and 6h induced nematodes. Sequence comparison revealed that Sc-ASP155 was a member of an aspartic protease family and phylogenetic analysis indicated that Sc-ASP155 was clustered with Sc-ASP113. In situ hybridization showed that sc-asp155 was expressed in subventral cells. Additionally, we determined that sc-asp155 is a single-copy gene in S. carpocapsae. Homology modeling showed that Sc-ASP155 adopts a typical aspartic protease structure. The up-regulated Sc-ASP155 expression revealed that this protease could play a role in the parasitic process. In this study, we have cloned the gene and determined the expression of the pepsin-like aspartic protease Sc-ASP155 in S. carpocapsae.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- CIRN and Department of Biology, University of Azores, 9501-855 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
38
|
Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, deLéon L, Baum JA, Clinton WP, Forst S, Goldman BS, Krasomil-Osterfeld KC, Slater S, Stock SP, Goodrich-Blair H. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ Microbiol 2011; 14:924-39. [PMID: 22151385 DOI: 10.1111/j.1462-2920.2011.02663.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Xenorhabdus bovienii (SS-2004) bacteria reside in the intestine of the infective-juvenile (IJ) stage of the entomopathogenic nematode, Steinernema jollieti. The recent sequencing of the X. bovienii genome facilitates its use as a model to understand host - symbiont interactions. To provide a biological foundation for such studies, we characterized X. bovienii in vitro and host interaction phenotypes. Within the nematode host X. bovienii was contained within a membrane bound envelope that also enclosed the nematode-derived intravesicular structure. Steinernema jollieti nematodes cultivated on mixed lawns of X. bovienii expressing green or DsRed fluorescent proteins were predominantly colonized by one or the other strain, suggesting the colonizing population is founded by a few cells. Xenorhabdus bovienii exhibits phenotypic variation between orange-pigmented primary form and cream-pigmented secondary form. Each form can colonize IJ nematodes when cultured in vitro on agar. However, IJs did not develop or emerge from Galleria mellonella insects infected with secondary form. Unlike primary-form infected insects that were soft and flexible, secondary-form infected insects retained a rigid exoskeleton structure. Xenorhabdus bovienii primary and secondary form isolates are virulent towards Manduca sexta and several other insects. However, primary form stocks present attenuated virulence, suggesting that X. bovienii, like Xenorhabdus nematophila may undergo virulence modulation.
Collapse
Affiliation(s)
- Darby R Sugar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Balasubramanian N, Toubarro D, Nascimento G, Ferreira R, Simões N. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol Biochem Parasitol 2011; 182:37-44. [PMID: 22178695 DOI: 10.1016/j.molbiopara.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. During invasion, this nematode is able to express many proteases, including aspartic proteases. Genes encoding these aspartic proteases have been identified in the EST, and aspartic protease has been found in excretory-secretory products. The total protease was shown to digest blood hemoglobin in a zymogram gel. When the protein was partially purified by pepstatin affinity chromatography, it was observed to have high activity against both hemoglobin and the synthetic substrate Phe-Ala-Ala-Phe-(4NO(2))-Phe-Val-Leu (4-pyridylmethyl) ester. The protein was confirmed by mass spectrometry and was found to be encoded by the gene sc-asp113. A cDNA encoding aspartic protease was cloned based on the EST fragment, which was constructed in our lab. The full-length cDNA of Sc-ASP113 consists of 1257 nucleotides encoding a protein with multiple domains, including a signal peptide (aa 1-15), a propeptide region (aa 16-45), and a typical catalytic aspartic domain (aa 68-416). The cleavage site of the signal peptide is predicted to be between Ala15 and Ala16. The putative 418 amino acid residues have a calculated molecular mass of 44,742Da and a theoretical pI of 5.14. BLAST analysis showed 33-56% amino acid sequence identity to aspartic proteases from parasitic and free living nematodes. Expression analysis showed that the sc-asp113 gene was up-regulated during the initial parasitic stage, especially during L3 inside the gut. In vitro, we showed that treatment with insect homogenate for 6h is sufficient to induce the expression of this protease in treated infective juveniles. Sequence comparison and evolutionary analysis revealed that Sc-ASP113 is a member of the aspartic protease family with the potential for tissue degradation. Phylogenetic analysis indicates that Sc-ASP113 branched between Haemonchus contortus and Steinernema feltiae proteases. Homology modeling showed that Sc-ASP113 adopts a typical aspartic protease structure. The up-regulation of Sc-ASP113 expression indicates that this protease could play a role in the parasitic process. To facilitate the exploration of this protease as a virulence factor, here we describe the purification of the protease and its molecular characterization in S. carpocapsae.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- CIRN and Department of Biology, University of Azores, 9501-855 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|