1
|
La Manna S, Cugudda A, Mercurio FA, Leone M, Fortuna S, Di Natale C, Lagreca E, Netti PA, Panzetta V, Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int J Nanomedicine 2024; 19:7237-7251. [PMID: 39050870 PMCID: PMC11268778 DOI: 10.2147/ijn.s441205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | - Alessia Cugudda
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, 80131, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, 16152, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Elena Lagreca
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Valeria Panzetta
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
2
|
Huang X, Lei S, Xiong X, Wang X, Zhao L, Wang N, Wan N, Li B. Unveiling the Therapeutic Potential of Herba Epimedii: Enhancing Bone Healing Through Cytoskeletal Regulation of RhoA/Rock1 Pathway. Chem Biodivers 2024; 21:e202301383. [PMID: 38212902 DOI: 10.1002/cbdv.202301383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Herba Epimedii is widely used to promote bone healing, and their active ingredients are total flavonoids of Epimedium (TFE). Ras homolog gene family member A / Rho-associated protein kinase (RhoA/Rock), an important pathway regulating the cytoskeleton, has been proven to affect bone formation. However, whether TFE promotes bone healing via this pathway remains unclear. In this study, the therapeutic effects of TFE were estimated using micro-computed tomography and hematoxylin and eosin staining of pathological sections. F-actin in osteoblasts was stained to investigate the protective effects of TFE on the cytoskeleton. Its regulatory effects on the RhoA/Rock1 pathway were explored using RT-qPCR and Western blot analysis. Besides, flow cytometry, alkaline phosphatase and nodule calcification staining were performed to evaluate the effects on osteogenesis. The bone healing in rats was improved, the cytoskeletal damage in osteoblasts was reduced, the RhoA/Rock1 pathway was downregulated, and osteogenesis was enhanced after TFE treatment. Thus, TFE can promote bone formation at least partially by regulating the expression of key genes and proteins in the cytoskeleton. The findings of this study provided evidence for clinical applications and would contribute to a better understanding of Epimedium's mechanisms in treating bone defects.
Collapse
Affiliation(s)
- Xiaowen Huang
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Shanshan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Xuefeng Xiong
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, P. R. China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
3
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
4
|
Liu W, Wang X. Research Advances on Suppressor of Cytokine Signaling 3 (SOCS3) in Animal Carbohydrate and Lipid Metabolism Processes. Pak J Biol Sci 2022; 25:1100-1108. [PMID: 36978278 DOI: 10.3923/pjbs.2022.1100.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The SOCS3 proteins played important roles in regulating the energy metabolism processes. They are crucial intracellular inhibitors related to animal obesity, immunity and inflammation. This makes SOCS3 genes very important in animal genetics and breeding. The research was conducted to investigate and explore the recent advance in the present studies on SOCS3 in animal energy and lipid metabolism processes. All the references were carefully retrieved from the PubMed database by searching key words "suppressor of cytokine signaling (SOCS)", "SOCS3", "animal carbohydrate metabolism", "animal lipid metabolism", "animal energy metabolism", "insulin resistance", "leptin", "obesity", "SOCS*" and "AMPK". All the related references retrieved were initially screened and fully reviewed for manual inspection. This effort intends to get a quick understanding and make insights into the mechanisms of Suppressor of Cytokine Signaling 3 (SOCS3) and their molecular interactions with the other cellular proteins. In this review, it was found that SOCS3 proteins could regulate cytokine receptors' signal transduction mainly through the JAK/STAT and GH/IGF-I and mTOR-STAT3-SOCS3 signaling pathways, whereas the genetic mutations or knockouts of SOCS3 genes had significant effects on animal energy metabolism. The review summarized all the relevant research reports on SOCS3 in the animal carbohydrate and lipid metabolism processes, which can provide practical reference for the genetic breeding of high-quality domestic animal breeds. It is also of great significance to further research on the genetic regulation mechanism of SOCS3 genes affecting energy metabolism and the well development of the animal breeding system.
Collapse
|
5
|
An J, Tan R, Hu X, Cai Z, Sun M, Ge Q, Ma W, Li H, Lu H. Kinase inhibit region of SOCS3 attenuates IL6-induced proliferation and astrocytic differentiation of neural stem cells via cross talk between signaling pathways. CNS Neurosci Ther 2022; 29:168-180. [PMID: 36217678 PMCID: PMC9804055 DOI: 10.1111/cns.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions. METHODS NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and β tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting. RESULTS Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression. CONCLUSION TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs.
Collapse
Affiliation(s)
- Jing An
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Ruo‐Lan Tan
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiao‐Xuan Hu
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Zhen‐Lu Cai
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Mei‐Qi Sun
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Qian Ge
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Wen Ma
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Hui‐Liang Li
- Faculty of Medical Sciences, Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Hai‐Xia Lu
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
6
|
Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27:molecules27144660. [PMID: 35889539 PMCID: PMC9319717 DOI: 10.3390/molecules27144660] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.
Collapse
Affiliation(s)
| | - Venkata Prakash Annamneedi
- Convergence Science Research Center, College of Pharmacy and Institute of Chronic Diseases, Sahmyook University, Seoul 01795, Korea;
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27381, Korea
- Correspondence:
| |
Collapse
|
7
|
Santos MRG, Queiroz-Junior CM, Madeira MFM, Machado FS. Suppressors of cytokine signaling (SOCS) proteins in inflammatory bone disorders. Bone 2020; 140:115538. [PMID: 32730926 DOI: 10.1016/j.bone.2020.115538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are significant regulators of cellular immune responses. Therefore, the role of SOCS in bone-inflammatory disorders, including arthritis and periodontitis, has been investigated in experimental and clinical conditions. Recent evidence shows that SOCS proteins are expressed in major bone-related cells, including osteoblasts, osteoclasts, chondrocytes and synoviocytes, although their direct role in these cells is not fully described. These signaling molecules, especially SOCS1, 2 and 3, were shown to play critical roles in the control of bone resorption associated to inflammation. This review focuses on the involvement of SOCS proteins in inflammatory bone remodeling, including their direct and indirect role in the control of osteoclast hyperactivation, during arthritis and periodontitis. The description of the roles of SOCS proteins in inflammatory bone diseases highlights the pathways involved in the pathophysiology of these conditions and, thus, may contribute to the development and improvement of potential therapeutic interventions.
Collapse
Affiliation(s)
- Mariana Rates Gonzaga Santos
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Yan C, Zhang L, Yang L, Zhang Q, Wang X. C/EBPγ is a critical negative regulator of LPS-/IgG immune complex-induced acute lung injury through the downregulation of C/EBPβ-/C/EBPδ-dependent C/EBP transcription activation. FASEB J 2020; 34:13696-13710. [PMID: 32786052 DOI: 10.1096/fj.202001402r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome are life-threatening diseases. Despite recent advances in intensive care medicine, the mortality is still as high as 50%, which stems from our insufficient understanding of the underlying mechanisms of the diseases. The roles of C/EBPβ and C/EBPδ have been extensively investigated in LPS- and IgG immune complexes-stimulated acute lung injury. However, the effect of C/EBPγ, belonging to the same family as C/EBPβ and C/EBPδ, on ALI has not been elucidated. Our previous data have shown that during LPS-/IgG immune complexes-induced ALI, the DNA binding activities of C/EBPγ are obviously reduced. In the present study, we determine whether ALI induced by LPS and IgG immune complexes is affected by C/EBPγ. We find that adenovirus-mediated C/EBPγ expression in the lung tissue alleviates LPS-/IgG immune complexes-stimulated acute pulmonary damage through reducing vascular permeability changes and recruitment of neutrophils into alveolar spaces, which might be linked to a decrease in the production of pro-inflammatory mediators, such as TNF-α and IL-6. Moreover, our data obtained from macrophages in vitro are consistent with the in vivo results. In terms of mechanisms, C/EBPγ might inhibit LPS-/IgG immune complexes-mediated inflammation via alleviating C/EBPβ and C/EBPδ transcription activities as reflected by luciferase assays. However, the NF-κB-dependent production of pro-inflammatory mediators is not affected by C/EBPγ. Taken together, C/EBPγ suppresses LPS- and IgG immune complexes-induced pro-inflammatory mediators' production through the downregulation of C/EBP but not NF-κB activation, leading to the subsequent attenuation of ALI. Collectively, our data provide an insight into the critical role of C/EBPγ in acute lung injury.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanqiu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Lei Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Qi Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Aziz SGG, Aziz SGG, Khabbazi A, Alipour S. The methylation status of TNF-α and SOCS3 promoters and the regulation of these gene expressions in patients with Behçet's disease. Biomarkers 2020; 25:384-390. [PMID: 32475174 DOI: 10.1080/1354750x.2020.1754912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: The aim of this study was to evaluate the methylation status of TNF-α and SOCS3 promoters in patients with BD and compare them with a healthy group.Method: This was a case-control study, in which 47 subjects with BD and 61 individuals as the control participated. Blood samples were collected from all the participants. Then, PBMCs were isolated using the Ficoll method and methylation of considered sites was investigated using the qMS-PCR technique after DNA extraction by the rapid genomic DNA extraction method and its analysis with Nano-drop.Results: The methylation and expression of TNF-α showed that the methylation level significantly declined in the patient in comparison with the healthy (p < 0.05). Moreover, the results on the mean expression showed that it significantly increased in the patient group, as compared with the healthy group (p < 0.05). In addition, the expression of the SOCS3 gene was not significantly different between the patients and healthy subjects while the level of SOCS3 methylation was significantly higher in the patient group than that in the healthy group (p < 0.05).Discussion: The present study revealed that the gene expression of TNF-alpha increased in BD patients, suggesting that TNF-alpha likely has a role in the pathogenesis of BD.
Collapse
Affiliation(s)
| | - Sara Gholizadeh-Ghaleh Aziz
- Department of Food Science and Technology, College of Agriculture, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Disease, Tabriz University of Medical Science, Tabriz, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Fujii M, Kawashima N, Tazawa K, Hashimoto K, Nara K, Noda S, Kuramoto M, Orikasa S, Nagai S, Okiji T. HIF1α inhibits LPS-mediated induction of IL-6 synthesis via SOCS3-dependent CEBPβ suppression in human dental pulp cells. Biochem Biophys Res Commun 2019; 522:308-314. [PMID: 31767145 DOI: 10.1016/j.bbrc.2019.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1α) is a transcriptional factor that plays a key role in the regulation of various molecules expressed in hypoxic conditions. Ischemic/hypoxic conditions are regarded as a distinct characteristic of dental pulp inflammation due to the encasement of pulp tissue within the rigid tooth structure. This study was performed to examine the role of HIF1α in the regulation of interleukin (IL)-6, a proinflammatory cytokine expressed in inflamed dental pulp, in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). LPS stimulation promoted the expression of IL-6 in hDPCs, while HIF1α suppressed the expression of IL-6. Moreover, HIF1α induced suppressor of cytokine signaling 3 (SOCS3) expression in LPS-stimulated hDPCs, and SOCS3 activity led to downregulate expression of CCAAT enhancer-binding protein beta (CEBPβ), an inducer of IL-6. LPS stimulation promoted HIF1α expression in hDPCs and mouse pulp tissue explants cultured under hypoxic conditions. These findings suggest that HIF1α negatively regulates IL-6 synthesis in LPS-stimulated hDPCs via upregulation of SOCS3 and subsequent downregulation of CEBPβ.
Collapse
Affiliation(s)
- Mayuko Fujii
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Nara
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masashi Kuramoto
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shion Orikasa
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shigenori Nagai
- Department of Molecular Immunology, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
11
|
Tsai CH, Lee Y, Li CH, Cheng YW, Kang JJ. Down-regulation of aryl hydrocarbon receptor intensifies carcinogen-induced retinal lesion via SOCS3-STAT3 signaling. Cell Biol Toxicol 2019; 36:223-242. [DOI: 10.1007/s10565-019-09499-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
12
|
Huang X, Wang X, Zhang Y, Shen L, Wang N, Xiong X, Zhang L, Cai X, Shou D. Absorption and utilisation of epimedin C and icariin from Epimedii herba, and the regulatory mechanism via the BMP2/ Runx2 signalling pathway. Biomed Pharmacother 2019; 118:109345. [DOI: 10.1016/j.biopha.2019.109345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
|
13
|
Gao J, Guo Y, Chen Y, Zhou J, Liu Y, Su P. Adeno-associated virus 9-mediated RNA interference targeting SOCS3 alleviates diastolic heart failure in rats. Gene 2019; 697:11-18. [PMID: 30763670 DOI: 10.1016/j.gene.2019.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore the effect of adeno-associated virus 9-mediated RNA interference targeting SOCS3 (AAV9-SOCS3 siRNA) on the treatment of diastolic heart failure (DHF). METHOD A rat DHF model was established, and cardiac function and hemodynamic changes were measured. HE, Sirius red and TUNEL staining were applied to observe the pathological changes in the myocardium. Immunoblotting and immunohistochemical staining were utilized to detect SOCS3 expression. The expression levels of various factors, including fibrosis-related factors (collagen I, collagen II, α-SMA and TGF-β), inflammatory-related factors (IL-1β, IL-6, TNF-α, p-p65 and ICAM-1) and factors related to the JAK/STAT signal pathway were analyzed by immunoblotting and/or qPCR. The serum levels of IL-1β, IL-6, and TNF-α were measured using ELISA. RESULTS SOCS3 expression was significantly downregulated in the DHF rat model by SOCS3 siRNA delivery. In the successfully established DHF rat model, cardiac function was clearly decreased, and cardiomyocyte apoptosis and myocardial fibrosis were significantly increased. These changes were ameliorated by treatment with AAV9-SOCS3 siRNA. The expression levels of p-JAK2 and p-STAT3 were significantly upregulated in the AAV9-SOCS3 siRNA group compared with the sham and AAV9-siRNA control groups, indicating that SOCS3 is a negative regulator of this signaling pathway. The expression levels of collagen I/III, α-SMA and TGF-β were also decreased at both the mRNA and protein levels. In addition, the serum and myocardial tissue expression levels of inflammatory-related factors, such as IL-6, IL-1β, and TNF-α, were also reduced by the administration of AAV9-SOCS3 siRNA compared with the AAV9-siRNA control. CONCLUSIONS SOCS3 gene silencing by AAV9-SOCS3 siRNA administration in a DHF rat model significantly reduced myocardial fibrosis and the inflammatory response and improved heart function. Therefore, this treatment is a potential therapeutic method for treating DHF.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yulin Guo
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingqi Chen
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pixiong Su
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019; 11:v11010025. [PMID: 30609802 PMCID: PMC6357148 DOI: 10.3390/v11010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.
Collapse
Affiliation(s)
- Tamsin B Gordon
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Glenn A Marsh
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3010, Australia.
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
15
|
Yan C, Deng C, Liu X, Chen Y, Ye J, Cai R, Shen Y, Tang H. TNF-α induction of IL-6 in alveolar type II epithelial cells: Contributions of JNK/c-Jun/AP-1 element, C/EBPδ/C/EBP binding site and IKK/NF-κB p65/κB site. Mol Immunol 2018; 101:585-596. [PMID: 29887504 DOI: 10.1016/j.molimm.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 10/14/2022]
Abstract
Although participation of IL-6 in lung inflammation has been widely elucidated, the transcriptional regulation of its generation in alveolar type II cells stimulated by TNF-α remain unclear. Here, we find that TNF-α significantly induces IL-6 production, and TNF-α induction of IL-6 is mainly regulated at transcriptional level. Upon stimulated by TNF-α, Activator Protein-1 (AP-1)-mediated transcriptional activity is apparently increased in alveolar type II epithelial cells, which might be derived from elevated phosphorylation of JNK and subsequent activation of c-Jun. Either down-regulation of c-Jun or the AP-1 site mutation leads to significant reduction of IL-6 expression. In contrast, ectopic expression of c-Jun notably increases IL-6 generation. So, c-Jun, one of the AP-1 family members, plays a pivotal role in TNF-α-induced IL-6 generation. CCAAT/enhancer binding protein δ (C/EBPδ) expression is significantly amplified by TNF-α, which may contribute to the rise of C/EBP activity in alveolar type II cells. C/EBPδ shRNA treatment results in attenuation of IL-6 expression in the cells, which is consistent with data by introduction of mutations into the C/EBP site in the promoter. However, overexpression of C/EBPδ greatly increases the IL-6 promoter activity. In addition, data regarding another transactivator in the family-C/EBPβ show that it does not affect IL-6 production. We also find that the IKK/NF-κB p65 pathway is activated in TNF-α-treated alveolar type II epithelial cells, and plays an essential role in positive regulation of IL-6 expression in TNF-α-treated alveolar type II epithelial cells via knockdown or forced expression of NF-κB p65, or elimination of κB sites in the IL-6 promoter. Notably, IL-6 promoter-driven luciferase production in primary alveolar type II epithelial cells can also be increased by the ectopic expression of c-Jun, C/EBPδ, and NF-κB p65, respectively. Collectively, our data provide insights into molecular mechanism involved in IL-6 expression in alveolar type II epithelial cells on TNF-α treatment, which provides a theoretical basis for specific inhibition of IL-6 production at the transcriptional level.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Chunmin Deng
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Yutong Chen
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jiawei Ye
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Rentian Cai
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yanfei Shen
- Department of Bioengineering, Medical School of Southeast University, Nanjing, 210009, China
| | - Huifang Tang
- Zhejiang Respiratory Drugs Research Laboratory of the State Food and Drug Administration of China, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review. Front Microbiol 2017; 8:2431. [PMID: 29312162 PMCID: PMC5733031 DOI: 10.3389/fmicb.2017.02431] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs), especially the toll-like receptors (TLRs). TLRs recognize distinct pathogen-associated molecular patterns (PAMPs) that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS) family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
17
|
Noh KT, Jung ID, Cha GS, Han MK, Park YM. Platelet-activating Factor Mediates Endotoxin Tolerance by Regulating Indoleamine 2,3-Dioxygenase-dependent Expression of the Suppressor of Cytokine Signaling 3. J Biol Chem 2017; 292:3290-3298. [PMID: 28077574 DOI: 10.1074/jbc.m116.764464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/25/2016] [Indexed: 11/06/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) mediates immune tolerance, and suppressor of cytokine signaling 3 (SOCS3) negatively regulates the JAK/STAT signal transduction pathway. We determined previously that platelet-activating factor (PAF) protects mice against LPS-induced endotoxic shock, but its detailed mechanism of action was unknown. We performed survival experiments in IDO+/+ and IDO-/- mice using an LPS-induced endotoxemia model and rated organ injury (neutrophil infiltration and liver function). Using ELISA and Western blotting, we also investigated the mechanism of PAF-mediated endotoxin tolerance during endotoxemia. PAF-mediated endotoxin tolerance was dependent on IDO in vivo and in vitro and was not observed in IDO-/- mice. JAK/STAT signaling, crucial for SOCS3 expression, was also impaired in the absence of IDO. In an IDO- and STAT-dependent manner, PAF mediated a decrease in IL-12 and a dramatic increase in IL-10 and reduced mouse mortality. In addition, PAF attenuated LPS-mediated neutrophil infiltration into the lungs and interactions between neutrophil-like (THP-1) and endothelial cells (human umbilical vein endothelial cells). These results indicate that PAF-mediated endotoxin tolerance is initiated via IDO- and JAK/STAT-dependent expression of SOCS3. Our study has revealed a novel tolerogenic mechanism of IDO action and an important association between IDO and SOCS3 with respect to endotoxin tolerance.
Collapse
Affiliation(s)
- Kyung Tae Noh
- Department of Infectious Diseases, Armed Forces Medical Research Institute, 90bun, Jaunro, Yuseong-gu, Daejeon 305-878, South Korea
| | - In Duk Jung
- Department of Immunology, College of Medicine, Konkuk University, Seoul 143-701, South Korea
| | - Gil Sun Cha
- Department of Immunology, College of Medicine, Konkuk University, Seoul 143-701, South Korea
| | - Myung-Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, Jeonju 561-182, South Korea.
| | - Yeong-Min Park
- Department of Immunology, College of Medicine, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
18
|
Rendina-Ruedy E, Graef JL, Davis MR, Hembree KD, Gimble JM, Clarke SL, Lucas EA, Smith BJ. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. J Bone Miner Metab 2016; 34:380-94. [PMID: 26058493 DOI: 10.1007/s00774-015-0685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however, bone turnover was decreased in the C57BL/6 with prolonged hyperglycemia. Further investigation is needed to understand how hyperglycemia and hyperinsulinemia suppress bone turnover in the context of T2DM and the role of TLR-4 in this response.
Collapse
Affiliation(s)
- Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jennifer L Graef
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - McKale R Davis
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kelsey D Hembree
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
19
|
Talaei F. Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide. Basic Clin Neurosci 2016; 7:121-36. [PMID: 27303607 PMCID: PMC4892317 DOI: 10.15412/j.bcn.03070206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to produce myelin, prevent the formation of fibronectin aggregates by astrocytes to inhibit scar formation, and enhance function of healthy endothelial cells (ECs). Methods: To determine if an increase in sulfur contents through H2S, a potent antioxidant known to induce protective autophagy in cells, could provide the above desired outcomes, peripheral blood mononuclear cells (PBMNCs), OCPs, astrocytes, and ECs were treated with NaHS (50 μM) in vitro. Results: Transmigration assay using EC monolayer showed that serotonin increased migration of PBMNC while pretreatment of EC with NaHS inhibited the migration induced by serotonin treatment. NaHS upregulated proteins involved in immune system response and downregulated PBMNCs- and EC-related adhesion molecules (LFA-1 and VCAM-1). Furthermore, it had a cell expansion inducing effect, altering EC morphology. The effects of NaHS on OPCs and astrocytes were studied compared to mTOR inhibitor rapamycin. In NaHS treated astrocytes the induced fibronectin production was partially inhibited while rapamycin almost fully inhibited fibronectin production. NaHS slowed but did not inhibit the differentiation of OCPs or the production of myelin compared to rapamycin. Conclusion: The in vitro results point to the potential therapeutic application of hydrogen sulfide releasing molecules or health-promoting sulfur compounds in MS.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Novel Drug Delivery Systems Lab, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Papathanasiou E, Kantarci A, Konstantinidis A, Gao H, Van Dyke TE. SOCS-3 Regulates Alveolar Bone Loss in Experimental Periodontitis. J Dent Res 2016; 95:1018-25. [PMID: 27126447 DOI: 10.1177/0022034516645332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The host immune response plays a key role in bacteria-induced alveolar bone resorption. Endogenous control of the magnitude and duration of inflammatory signaling is considered an important determinant of the extent of periodontal pathology. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine signaling pathways and may play a role in restraining periodontal inflammation. We hypothesized that SOCS-3 regulates alveolar bone loss in experimental periodontitis. Periodontal bone loss was induced in 16-wk-old myeloid-specific SOCS-3-knockout and wild-type (WT) C57Bl6-B.129 mice by oral inoculation 9 times with 10(9) colony-forming units of Porphyromonas gingivalis A7436 through an oral gavage model for periodontitis. Sham controls for both types of mice received vehicle without bacteria. The mice were euthanized 6 wk after the last oral inoculation. Increased bone loss was demonstrated in P. gingivalis-infected SOCS-3-knockout mice as compared with P. gingivalis-infected WT mice by direct morphologic measurements, micro-computed tomography analyses, and quantitative histology. Loss of SOCS-3 function resulted in an increased number of alveolar bone osteoclasts and increased RANKL expression after P. gingivalis infection. SOCS-3 deficiency in myeloid cells also promotes a higher P. gingivalis lipopolysaccharide-induced inflammatory response with higher secretion of IL-1β, IL-6, and KC (IL-8) by peritoneal macrophages as compared with WT controls. Our data implicate SOCS-3 as a critical negative regulator of alveolar bone loss in periodontitis.
Collapse
Affiliation(s)
- E Papathanasiou
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, MA, USA Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Kantarci
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, MA, USA
| | - A Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - H Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - T E Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
21
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
22
|
Yin Y, Liu W, Dai Y. SOCS3 and its role in associated diseases. Hum Immunol 2015; 76:775-80. [DOI: 10.1016/j.humimm.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/03/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
|
23
|
Crémet L, Broquet A, Brulin B, Jacqueline C, Dauvergne S, Brion R, Asehnoune K, Corvec S, Heymann D, Caroff N. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis 2015; 73:ftv065. [PMID: 26333570 DOI: 10.1093/femspd/ftv065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts.
Collapse
Affiliation(s)
- Lise Crémet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Alexis Broquet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Bénédicte Brulin
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Cédric Jacqueline
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Sandie Dauvergne
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Régis Brion
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Karim Asehnoune
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, F-44000 Nantes, France
| | - Stéphane Corvec
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Nathalie Caroff
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| |
Collapse
|
24
|
Yan C, Liu Y, Gao H, Wang X. Suppressors of cytokine signaling 3 is essential for FcγR-mediated inflammatory response via enhancing CCAAT/enhancer-binding protein δ transcriptional activity in macrophages. Exp Cell Res 2015. [PMID: 26209606 DOI: 10.1016/j.yexcr.2015.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compelling evidence indicates that suppressor of cytokine signaling 3 (SOCS3) plays a pivotal regulatory role in inflammation. However, the function of SOCS3 in inflammatory responses mediated by Fcγ receptor (FcγR) remains largely unknown. In the current study, we found that SOCS3 expression was greatly enhanced in peritoneal macrophages treated with IgG immune complex (IgG IC). By over-expressing SOCS3 in macrophages, we observed that SOCS3 promoted IgG immune complex-induced production of inflammatory mediators, including IL-6, TNF-α, MIP-2, and MIP-1α. In contrast, SOCS3-defective peritoneal macrophages generated less inflammatory cytokines and chemokines when compared with their wild type counterparts during IgG IC-induced inflammatory responses. We further demonstrated that CCAAT/enhancer-binding protein (C/EBP) δ transcription factor was the major downstream target of SOCS3 in macrophages. These data suggested that SOCS3 was an inflammatory enhancer in IgG IC-treated macrophages by increasing C/EBPδ activity. To elucidate the role for myeloid-derived SOCS3 in IgG IC-induced inflammation in vivo, LysM-cre SOCS3(fl/fl) mice lacking SOCS3 in macrophages and neutrophils were generated. We found that SOCS3 deficiency greatly alleviated IgG IC-induced generation of pro-inflammatory mediators in lungs, consistent with the in vitro data. Our current findings may provide a new theoretical basis for designing drugs for treatment of IgG IC-associated diseases.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing 210009, China; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Yanlan Liu
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Department of Surgery, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| |
Collapse
|
25
|
Liu Z, Liu W, Huang Y, Guo J, Zhao R, Yang X. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs. Lipids Health Dis 2015; 14:64. [PMID: 26121977 PMCID: PMC4495945 DOI: 10.1186/s12944-015-0064-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder which will finally influence animals' growth. In this study, we investigated the effect of acute inflammation on the triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms. METHODS Twelve male growing pigs were randomly divided into two groups, a control group (received saline) and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP). RESULTS LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS), Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore, ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter. CONCLUSION LPS infection has a profound impact on hepatic TG metabolism. This impact is mainly demonstrated by the significantly deceased de novo lipogenesis, and GR may involve in its regulation.
Collapse
Affiliation(s)
- Zhiqing Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Weifeng Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
26
|
Martinez D, Palmer C, Simar D, Cameron BA, Nguyen N, Aggarwal V, Lloyd AR, Zekry A. Characterisation of the cytokine milieu associated with the up-regulation of IL-6 and suppressor of cytokine 3 in chronic hepatitis C treatment non-responders. Liver Int 2015; 35:463-72. [PMID: 24461080 DOI: 10.1111/liv.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 01/16/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS In chronic hepatitis C virus infection (CHC), expression of suppressor of cytokine signalling-3 (SOCS3) has been shown to be associated with obesity and non-response to antiviral therapy. In this study, we aimed to determine the effect of SOCS3 induction on the cytokine response in patients receiving Pegylated interferon (PegIFN) and ribavirin (RBV) therapy. METHODS Peripheral blood mononuclear cells (PBMC) collected at baseline and at 12 weeks from CHC patients receiving PegIFN/RBV therapy were examined for mRNA and protein SOCS3 expression. Immunological assays were employed to examine cytokine production. RESULTS There was increased expression of SOCS3 in PBMC of non-responders at week 12 of therapy, when compared to treatment responders (P = 0.0001). The expression of SOCS3 correlated with body mass index (BMI) (r = 0.54; P = 0.01). Patients with low SOCS3 expression at week 12 of therapy had lower HCV-specific IFN-γ production in enzyme-linked immunosorbent spot (ELISpot) assays (P = 0.01), and reduced ex-vivo production of the anti-HCV effector cytokines interleukin (IL)-2 and tumour necrosis factor (TNF)-α(P = 0.01 and P = 0.04 respectively). Analysis of serum cytokine levels revealed higher levels of IL-6 at week 12 in the high SOCS3 expression group (P = 0.02) while IL-6 levels correlated with SOCS3 expression in the entire cohort (P = 0.04). Ex-vivo studies confirmed that IL-6 induced SOCS3, and neutralisation of IL-6 reduced levels of SOCS3. CONCLUSION In subjects with increased BMI and non-response to antiviral therapy, the IL-6/SOCS3 axis appears to play a crucial role in altering the anti-HCV-cytokine response associated with antiviral therapy.
Collapse
Affiliation(s)
- Danica Martinez
- School of Medical Sciences, Inflammation and Infection Research Centre (IIRC), Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Phillips NA, Welc SS, Wallet SM, King MA, Clanton TL. Protection of intestinal injury during heat stroke in mice by interleukin-6 pretreatment. J Physiol 2015; 593:739-52; discussion 753. [PMID: 25433073 DOI: 10.1113/jphysiol.2014.283416] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Heat stroke afflicts thousands of humans each year, worldwide. The immune system responds to hyperthermia exposure resulting in heat stroke by producing an array of immunological proteins, such as interleukin-6 (IL-6). However, the physiological functions of IL-6 and other cytokines in hyperthermia are poorly understood. We hypothesized that IL-6 plays a protective role in conditions of heat stroke. To test this, we gave small IL-6 supplements to mice prior to exposing them to hot environments sufficient to induce conditions of heat stroke. Pretreatment with IL-6 resulted in improved ability to withstand heat exposure in anaesthetized mice, it protected the intestine from injury, reducing the permeability of the intestinal barrier, and it attenuated the release of other cytokines involved in inflammation. The results support the hypothesis that IL-6 is a 'physiological stress hormone' that plays an important role in survival during acute life-threatening conditions such as heat stroke. ABSTRACT The role of interleukin-6 (IL-6) in hyperthermia and heat stroke is poorly understood. Plasma IL-6 is elevated following hyperthermia in animals and humans, and IL-6 knockout mice are more intolerant of severe hyperthermia. We evaluated the effect of IL-6 supplementation on organ injury following severe hyperthermia exposure in anaesthetized mice. Two hours prior to hyperthermia, mice were treated with 0.6 μg intraperitoneal IL-6, or identical volumes of saline in controls. Mice were anaesthetized, gavaged with FITC-dextran for measures of gastrointestinal permeability, and exposed to incremental (0.5°C every 30 min) increases in temperature. Heating stopped when maximum core temperature (Tc) of 42.4°C was attained (Tc,max). The mice recovered at room temperature (≈22°C) for 30 or 120 min, at which time plasma and tissues were collected. IL-6-treated mice, on average, required ≈25 min longer to attain Tc,max . Injury and swelling of the villi in the duodenum was present in untreated mice after 30 min of recovery. These changes were blocked by IL-6 treatment. IL-6 also reduced gastrointestinal permeability, assayed by the accumulation of FITC-dextran in plasma. Plasma cytokines were also attenuated in IL-6-treated animals, including significant reductions in TNFα, MCP-1 (CXCL2), RANTES (CCL5) and KC (CCL5). The results demonstrate that IL-6 has a protective influence on the pattern of physiological responses to severe hyperthermia, suggesting that early endogenous expression of IL-6 may provide a protection from the development of organ damage and inflammation.
Collapse
Affiliation(s)
- Neil A Phillips
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
28
|
Comparison of periprosthetic tissues in knee and hip joints: differential expression of CCL3 and DC-STAMP in total knee and hip arthroplasty and similar cytokine profiles in primary knee and hip osteoarthritis. Osteoarthritis Cartilage 2014; 22:1851-60. [PMID: 25151085 DOI: 10.1016/j.joca.2014.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/11/2014] [Accepted: 08/03/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify expression profiles (EP) associated with aseptic loosening of total knee arthroplasty (TKA) and to compare them with EP observed in total hip arthroplasty (THA), and primary knee and hip osteoarthritis (OA). DESIGN Gene EP of TNF, IL-6, IL-8, CHIT1, BMP4, CCL3, CCL18, MMP9, RANKL, OPG, DC-STAMP and SOCS3 were assessed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on tissues retrieved from patients with aseptically failed TKA (n = 21), THA (n = 41) and primary knee (n = 20) and hip (n = 17) OA. Immunohistochemistry was applied to localize the proteins. RESULTS When compared to knee OA, the pseudosynovial tissue in TKA exhibit (1) elevation of alternative macrophage activation marker (CHIT1), chemokine (IL-8), and a proteolytic enzyme (MMP9); (2) downregulation of pro-inflammatory cytokine (TNF), osteoclastic regulator (OPG) and a stimulator of bone formation (BMP4); (3) no difference in IL-6, CCL3, CCL18, RANKL, DC-STAMP and SOCS3. The EP in TKA differed from EP in aseptically failed THA by lower CCL3 and DC-STAMP mRNA and protein expression. EP of all studied inflammatory and osteoclastogenic molecules were similar in knee and hip OA. CONCLUSIONS Comparing to OA, aseptic loosening of TKA is associated with upregulated expression of CHIT1, IL-8 and MMP9, dysregulated RANKL:OPG ratio and low levels of inflammatory cytokines. Similar cytokine profiles were associated with primary knee and hip OA. Further research is required to explain the differences in CCL3 and DC-STAMP expression between failed TKA and THA.
Collapse
|
29
|
Gao A, Van Dyke TE. Role of suppressors of cytokine signaling 3 in bone inflammatory responses. Front Immunol 2014; 4:506. [PMID: 24454312 PMCID: PMC3887271 DOI: 10.3389/fimmu.2013.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a potent regulator of cytokine signaling in macrophages and T cells. In recent studies, evidence has been provided for SOCS3 activation in all major bone cells including osteoclasts, chondrocytes, synoviocytes, and osteoblasts. The investigation of SOCS3 function in bone remodeling systems implicates SOCS3 as a key signaling molecule in bone cell-mediated inflammatory responses. Both pro- and anti-inflammatory functions of SOCS3 have been demonstrated in different types of bone cells. This review provides an overview of the important role of SOCS3 in inflammatory responses of various bone cells and in bone inflammatory disorders such as periodontal disease and arthritis. Understanding the roles of SOCS3 in inflammatory diseases of bone and joints such as arthritis, osteomyelitis, and periodontal diseases is critical to revealing insights into signaling pathways that can be manipulated in potential therapeutic approaches.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Applied Oral Sciences, The Forsyth Institute , Cambridge, MA , USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute , Cambridge, MA , USA
| |
Collapse
|
30
|
Yan C, Ward PA, Wang X, Gao H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. FASEB J 2013; 27:2967-76. [PMID: 23585399 DOI: 10.1096/fj.12-225797] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3(fl/fl)). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3(fl/fl) mice and the wild-type (WT) mice (SOCS3(fl/fl)). LysM-cre SOCS3(fl/fl) mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.
Collapse
Affiliation(s)
- Chunguang Yan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck St., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Liang X, He M, Chen T, Liu Y, Tian YL, Wu YL, Zhao Y, Shen Y, Yuan ZY. Multiple roles of SOCS proteins: differential expression of SOCS1 and SOCS3 in atherosclerosis. Int J Mol Med 2013; 31:1066-74. [PMID: 23545584 DOI: 10.3892/ijmm.2013.1323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 11/06/2022] Open
Abstract
Pro-inflammatory cytokines play a key pathogenic role in atherosclerosis, which are induced by the Janus kinase/signal transducer and activator of transduction (JAK/STAT) pathway. Furthermore, the JAK/STAT pathway is negatively regulated by the suppressor of cytokine signaling (SOCS) proteins. However, the change in SOCS expression levels and the correlation between SOCS expression and cholesterol levels in atherosclerosis is not yet well understood. To this end, a mouse model of atherosclerosis was established using apolipoprotein-deficient (ApoE(-/-)) mice. The mice were fed either a chow or high-fat diet. The mRNA and protein expression of SOCS1 and SOCS3 in plaque and vessels were determined at different time points. Furthermore, SOCS1 and SOCS3 mRNA expression was detected in the peripheral blood mononuclear cells (PBMCs) obtained from 18 male subjects with no coronary heart disease (non-CHD) population. The expression of SOCS1 in the ApoE(-/-) mice first increased and then decreased and the high-fat diet accelerated the appearance of the peak; the expression of SOCS3 increased with the increased feeding duration, and this trend was more pronounced in the mice fed the high-fat diet. SOCS1/CD68 and SOCS3/CD68 showed opposite trends in expression with the increased duration of the high-fat diet. Interleukin-6 (IL-6) expression in the main aorta of the ApoE(-/-) mice fed the high-fat diet also increased with the increased feeding duration. In the non-CHD population, the total serum cholesterol levels positively correlated with SOCS3 mRNA expression in the PBMCs (r=0.433, P=0.012). These results demonstrate the differential expression of SOCS1 and SOCS3 in atherosclerosis and suggest that SOCS3, together with IL-6 may promote the formation and development of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gao A, Kantarci A, Herrera BS, Gao H, Van Dyke TE. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts. PeerJ 2013; 1:e51. [PMID: 23638389 PMCID: PMC3628613 DOI: 10.7717/peerj.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2013] [Indexed: 01/16/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Periodontology, The Forsyth Institute , Cambridge , MA , United States
| | | | | | | | | |
Collapse
|
33
|
Ishizawa M, Ogura M, Kato S, Makishima M. Impairment of bilirubin clearance and intestinal interleukin-6 expression in bile duct-ligated vitamin D receptor null mice. PLoS One 2012; 7:e51664. [PMID: 23240054 PMCID: PMC3519857 DOI: 10.1371/journal.pone.0051664] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/06/2012] [Indexed: 01/06/2023] Open
Abstract
The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androstane receptor, an understanding of the role of VDR in xenobiotic metabolism remains limited. We examined the effect of VDR deletion in a mouse model of cholestasis. We performed bile duct ligation (BDL) on VDR-null mice and compared blood biochemistry, mRNA expression of genes involved in bile acid and bilirubin metabolism, cytokine production, and expression of inflammatory regulators with those of wild-type mice. VDR-null mice had elevated plasma conjugated bilirubin levels three days after BDL compared with wild-type mice. Urine bilirubin levels and renal mRNA and/or protein expression of multidrug resistance-associated proteins 2 and 4 were decreased in VDR-null mice, suggesting impaired excretion of conjugated bilirubin into urine. While VDR-null kidney showed mRNA expression of interleukin-6 (IL-6) after BDL and VDR-null macrophages had higher IL-6 protein levels after lipopolysaccharide stimulation, the induction of intestinal Il6 mRNA expression and plasma IL-6 protein levels after BDL was impaired in VDR-null mice. Immunoblotting analysis showed that expression of an immune regulator, IκBα, was elevated in the jejunum of VDR-null mice, a possible mechanism for the attenuated induction of Il6 expression in the intestine after BDL. Increased expression of IκBα may be a consequence of compensatory mechanisms for VDR deletion. These results reveal a role of VDR in bilirubin clearance during cholestasis. VDR is also suggested to contribute to tissue-selective immune regulation.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Michitaka Ogura
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
34
|
Demirel I, Säve S, Kruse R, Persson K. Expression of suppressor of cytokine signalling 3 (SOCS3) in human bladder epithelial cells infected with uropathogenic Escherichia coli. APMIS 2012; 121:158-67. [PMID: 23030674 DOI: 10.1111/j.1600-0463.2012.02951.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/27/2012] [Indexed: 11/29/2022]
Abstract
Suppressor of cytokine signalling (SOCS) proteins inhibit pro-inflammatory signalling mediated by Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathways. To evade the immune response some pathogens appear to modify the host SOCS proteins. Uropathogenic Escherichia coli (UPEC) are able to subvert the host response evoked by bladder epithelial cells, but the mechanisms are not fully understood. The objective of this study was to investigate whether UPEC can modify the host SOCS and STAT3 response. Real time RT-PCR studies demonstrated an increased SOCS1 and SOCS3 expression in the isolated human bladder epithelial cell lines (RT-4 and 5637) in response to cytokines. UPEC strain IA2 increased SOCS3, but not SOCS1, mRNA levels with a peak at 6 h after infection. The increase of SOCS3 was confirmed at the protein level by Western blotting. The UPEC strain IA2 caused a time-dependent decrease in the phosphorylation of STAT3. This study demonstrates that UPEC are able to affect SOCS3 and STAT3 signalling in human uroepithelial cells. The finding that UPEC are able to induce mediators involved in suppression of host cytokine signalling may help to elucidate how UPEC may circumvent the host response during urinary tract infection.
Collapse
Affiliation(s)
- Isak Demirel
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Sweden.
| | | | | | | |
Collapse
|
35
|
Dentesano G, Straccia M, Ejarque-Ortiz A, Tusell JM, Serratosa J, Saura J, Solà C. Inhibition of CD200R1 expression by C/EBP β in reactive microglial cells. J Neuroinflammation 2012; 9:165. [PMID: 22776069 PMCID: PMC3414764 DOI: 10.1186/1742-2094-9-165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 11/12/2022] Open
Abstract
Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system),is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ)-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS)). Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP). The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD200R1 promoter in LPS-treated glial cells. Moreover, histone deacetylase 1 inhibitors reversed the decrease in CD200R1 expression induced by LPS treatment. Conclusions CD200R1 expression decreases in microglial cells in the presence of a pro-inflammatory stimulus, an effect that is regulated, at least in part, by C/EBPβ. Histone deacetylase 1 may mediate C/EBPβ inhibition of CD200R1 expression, through a direct effect on C/EBPβ transcriptional activity and/or on chromatin structure.
Collapse
Affiliation(s)
- Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Ghosh A, Pahan K. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders. J Biol Chem 2012; 287:27189-203. [PMID: 22685291 DOI: 10.1074/jbc.m112.346932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
37
|
Yan C, Wang X, Cao J, Wu M, Gao H. CCAAT/enhancer-binding protein γ is a critical regulator of IL-1β-induced IL-6 production in alveolar epithelial cells. PLoS One 2012; 7:e35492. [PMID: 22558159 PMCID: PMC3338717 DOI: 10.1371/journal.pone.0035492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/19/2012] [Indexed: 01/19/2023] Open
Abstract
CCAAT/enhancer binding protein γ (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBPγ was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBPγ augments the C/EBPβ stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBPγ in regulating gene expression. Furthermore, the expression and function of C/EBPγ during inflammation are still largely unknown. In this study, we demonstrate that C/EBPγ activation was induced by IL-1β treatment in lung epithelial cells. Importantly, we demonstrate for the first time that C/EBPγ plays a critical role in regulating IL-1β-induced IL-6 expression in both mouse primary alveolar type II epithelial cells and a lung epithelial cell line, MLE12. We further provide the evidence that C/EBPγ inhibits IL-6 expression by inhibiting C/EBPβ but not NF-κB stimulatory activity in MLE12 cells. These findings suggest that C/EBPγ is a key transcription factor that regulates the IL-6 expression in alveolar epithelial cells, and may play an important regulatory role in lung inflammatory responses.
Collapse
Affiliation(s)
- Chunguang Yan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ximo Wang
- Department of Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jay Cao
- Agricultural Research Service, Grand Forks Human Nutrition Research Center, United States Department of Agriculture, Grand Forks, North Dakota, United States of America
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail: (HG); (MW)
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (HG); (MW)
| |
Collapse
|
38
|
Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 2011; 286:21814-25. [PMID: 21515682 DOI: 10.1074/jbc.m111.237628] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.
Collapse
Affiliation(s)
- Kefei Yuan
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|