1
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Krasikova YS, Maltseva EA, Khodyreva SN, Evdokimov AN, Rechkunova NI, Lavrik OI. Does the XPA-FEN1 Interaction Concern to Nucleotide Excision Repair or Beyond? Biomolecules 2024; 14:814. [PMID: 39062528 PMCID: PMC11274875 DOI: 10.3390/biom14070814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Nucleotide excision repair (NER) is the most universal repair pathway, which removes a wide range of DNA helix-distorting lesions caused by chemical or physical agents. The final steps of this repair process are gap-filling repair synthesis and subsequent ligation. XPA is the central NER scaffolding protein factor and can be involved in post-incision NER stages. Replication machinery is loaded after the first incision of the damaged strand that is performed by the XPF-ERCC1 nuclease forming a damaged 5'-flap processed by the XPG endonuclease. Flap endonuclease I (FEN1) is a critical component of replication machinery and is absolutely indispensable for the maturation of newly synthesized strands. FEN1 also contributes to the long-patch pathway of base excision repair. Here, we use a set of DNA substrates containing a fluorescently labeled 5'-flap and different size gap to analyze possible repair factor-replication factor interactions. Ternary XPA-FEN1-DNA complexes with each tested DNA are detected. Furthermore, we demonstrate XPA-FEN1 complex formation in the absence of DNA due to protein-protein interaction. Functional assays reveal that XPA moderately inhibits FEN1 catalytic activity. Using fluorescently labeled XPA, formation of ternary RPA-XPA-FEN1 complex, where XPA accommodates FEN1 and RPA contacts simultaneously, can be proposed. We discuss possible functional roles of the XPA-FEN1 interaction in NER related DNA resynthesis and/or other DNA metabolic processes where XPA can be involved in the complex with FEN1.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Alexey N. Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
da Silva RB, Bertoldo WDR, Naves LL, de Vito FB, Damasceno JD, Tosi LRO, Machado CR, Pedrosa AL. Specific Human ATR and ATM Inhibitors Modulate Single Strand DNA Formation in Leishmania major Exposed to Oxidative Agent. Front Cell Infect Microbiol 2022; 11:802613. [PMID: 35059327 PMCID: PMC8763966 DOI: 10.3389/fcimb.2021.802613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Bernadelli de Vito
- Departamento de Clínica Médica, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luiz Ricardo Orsini Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Deshmukh AL, Caron MC, Mohiuddin M, Lanni S, Panigrahi GB, Khan M, Engchuan W, Shum N, Faruqui A, Wang P, Yuen RKC, Nakamori M, Nakatani K, Masson JY, Pearson CE. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Rep 2021; 37:110078. [PMID: 34879276 DOI: 10.1016/j.celrep.2021.110078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Mahreen Khan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Worrawat Engchuan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Natalie Shum
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aisha Faruqui
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peixiang Wang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ryan K C Yuen
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Donati E, Genna V, De Vivo M. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases. J Am Chem Soc 2020; 142:2823-2834. [PMID: 31939291 PMCID: PMC7993637 DOI: 10.1021/jacs.9b10656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Enzymes of the 5′ structure-specific
nuclease family are crucial for DNA repair, replication, and recombination.
One such enzyme is the human exonuclease 1 (hExo1) metalloenzyme,
which cleaves DNA strands, acting primarily as a processive 5′-3′
exonuclease and secondarily as a 5′-flap endonuclease. Recently,
in crystallo reaction intermediates have elucidated how hExo1 exerts
hydrolysis of DNA phosphodiester bonds. These hExo1 structures show
a third metal ion intermittently bound close to the two-metal-ion
active site, to which recessed ends or 5′-flap substrates bind.
Evidence of this third ion has been observed in several nucleic-acid-processing
metalloenzymes. However, there is still debate over what triggers
the (un)binding of this transient third ion during catalysis and whether
this ion has a catalytic function. Using extended molecular dynamics
and enhanced sampling free-energy simulations, we observed that the
carboxyl side chain of Glu89 (located along the arch motif in hExo1)
flips frequently from the reactant state to the product state. The
conformational flipping of Glu89 allows one metal ion to be recruited
from the bulk and promptly positioned near the catalytic center. This
is in line with the structural evidence. Additionally, our simulations
show that the third metal ion assists the departure, through the mobile
arch, of the nucleotide monophosphate product from the catalytic site.
Structural comparisons of nuclease enzymes suggest that this Glu(Asp)-mediated
mechanism for third ion recruitment and nucleic acid hydrolysis may
be shared by other 5′ structure-specific nucleases.
Collapse
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Vito Genna
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
7
|
Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I. Proc Natl Acad Sci U S A 2017; 114:6010-6015. [PMID: 28533382 DOI: 10.1073/pnas.1704845114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'-3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.
Collapse
|
8
|
Abstract
RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in replication restart mechanisms. Cellular phenotypes of RECQ1 deficiency are indicative of aberrant repair of stalled replication forks, but the molecular functions of RECQ1, the most abundant of the five known human RecQ homologues, have remained poorly understood. We show that RECQ1 associates with FEN-1 (flap endonuclease-1) in nuclear extracts and exhibits direct protein interaction in vitro. Recombinant RECQ1 significantly stimulated FEN-1 endonucleolytic cleavage of 5'-flap DNA substrates containing non-telomeric or telomeric repeat sequence. RECQ1 and FEN-1 were constitutively present at telomeres and their binding to the telomeric chromatin was enhanced following DNA damage. Telomere residence of FEN-1 was dependent on RECQ1 since depletion of RECQ1 reduced FEN-1 binding to telomeres in unperturbed cycling cells. Our results confirm a conserved collaboration of human RecQ helicases with FEN-1 and suggest both overlapping and specialized roles of RECQ1 in the processing of DNA structure intermediates proposed to arise during replication, repair and recombination.
Collapse
|
9
|
Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res 2014; 42:13749-63. [PMID: 25428354 PMCID: PMC4267656 DOI: 10.1093/nar/gku1239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Zhongliang Jiang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy Institute of Nanoscience and Nanotechnology, N.C.S.R. 'Demokritos', 15341 Agia, Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| |
Collapse
|
10
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
11
|
Xu M, Lai Y, Torner J, Zhang Y, Zhang Z, Liu Y. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion. Nucleic Acids Res 2014; 42:3675-91. [PMID: 24423876 PMCID: PMC3973345 DOI: 10.1093/nar/gkt1372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA, Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abnormal base excision repair at trinucleotide repeats associated with diseases: a tissue-selective mechanism. Genes (Basel) 2013; 4:375-87. [PMID: 24705210 PMCID: PMC3924826 DOI: 10.3390/genes4030375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER) are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.
Collapse
|
13
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
14
|
Lai Y, Xu M, Zhang Z, Liu Y. Instability of CTG repeats is governed by the position of a DNA base lesion through base excision repair. PLoS One 2013; 8:e56960. [PMID: 23468897 PMCID: PMC3582642 DOI: 10.1371/journal.pone.0056960] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/16/2013] [Indexed: 01/03/2023] Open
Abstract
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 5'-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 3'-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase β and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, People’s Republic of China
| | - Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kantartzis A, Williams GM, Balakrishnan L, Roberts RL, Surtees JA, Bambara RA. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions. Cell Rep 2012; 2:216-22. [PMID: 22938864 DOI: 10.1016/j.celrep.2012.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.
Collapse
Affiliation(s)
- Athena Kantartzis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
16
|
Goula AV, Pearson CE, Della Maria J, Trottier Y, Tomkinson AE, Wilson DM, Merienne K. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats. Biochemistry 2012; 51:3919-32. [PMID: 22497302 PMCID: PMC3357312 DOI: 10.1021/bi300410d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Expansion of CAG/CTG repeats is the underlying cause of >14 genetic disorders, including Huntington's disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases, the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights into how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, the repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely because of the lower level of APE1, FEN1, and LIG1. Damage located toward the 5' end of the repeat tract was poorly repaired, with the accumulation of incompletely processed intermediates as compared to an AP lesion in the center or at the 3' end of the repeats or within control sequences. Moreover, repair of lesions at the 5' end of CAG or CTG repeats involved multinucleotide synthesis, particularly at the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that the BER stoichiometry, nucleotide sequence, and DNA damage position modulate repair outcome and suggest that a suboptimal long-patch BER activity promotes CAG/CTG repeat instability.
Collapse
Affiliation(s)
- Agathi-Vasiliki Goula
- Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, TMDT Building 101 College St., 15th Floor, Room 15-312 East Tower, Toronto, ON, M5G 1L7
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Julie Della Maria
- Department of Radiation Oncology and the Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yvon Trottier
- Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Alan E. Tomkinson
- Department of Radiation Oncology and the Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA)/ National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Karine Merienne
- Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| |
Collapse
|
17
|
Liu Y, Wilson SH. DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends Biochem Sci 2012; 37:162-72. [PMID: 22285516 DOI: 10.1016/j.tibs.2011.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 12/16/2022]
Abstract
The expansion of trinucleotide repeat (TNR) sequences in human DNA is considered to be a key factor in the pathogenesis of more than 40 neurodegenerative diseases. TNR expansion occurs during DNA replication and also, as suggested by recent studies, during the repair of DNA lesions produced by oxidative stress. In particular, the oxidized guanine base 8-oxoguanine within sequences containing CAG repeats may induce formation of pro-expansion intermediates through strand slippage during DNA base excision repair (BER). In this article, we describe how oxidized DNA lesions are repaired by BER and discuss the importance of the coordinated activities of the key repair enzymes, such as DNA polymerase β, flap endonuclease 1 (FEN1) and DNA ligase, in preventing strand slippage and TNR expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | | |
Collapse
|
18
|
Orans J, McSweeney EA, Iyer RR, Hast MA, Hellinga HW, Modrich P, Beese LS. Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 2011; 145:212-23. [PMID: 21496642 DOI: 10.1016/j.cell.2011.03.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/25/2011] [Accepted: 03/01/2011] [Indexed: 11/16/2022]
Abstract
Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5' structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5' ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exonucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing.
Collapse
Affiliation(s)
- Jillian Orans
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 2010; 39:781-94. [PMID: 20929870 PMCID: PMC3035468 DOI: 10.1093/nar/gkq884] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5′-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein–protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models.
Collapse
Affiliation(s)
- Li Zheng
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|