1
|
Gupta D, Shalvarjian KE, Nayak DD. An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans. eLife 2022; 11:76970. [PMID: 35380107 PMCID: PMC9084895 DOI: 10.7554/elife.76970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
c-Type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions. Archaea are single-celled organisms that were discovered over half a century ago. Recently, there has been a renewed interest in these microbes because theyplay a key role in climate change by controlling greenhouse gas emissions, like methane. Indeed, methane-producing Archaea generate nearly 70% of the methane gas released into the atmosphere. A group of proteins called c-type cytochromes are essential to energy generation in several methane-producing archaea. However, it is a mystery how Archaea assemble their c-type cytochromes. In fact, genomic studies suggest that Archaea are missing some of the c-type cytochrome assembly machinery that bacteria use. This has led scientists to suspect that Archaea have an alternate mechanism for building these essential components. To solve this mystery, Gupta, Shalvarjian, and Nayak used CRISPR-Cas9 gene-editing tools to characterize which proteins are essential for c-type cytochrome production in Methanosarcina acetivorans, a species of Archaea that produces methane. These experiments showed that M. acetivorans discarded a few parts of the process used by bacteria to generate c-type cytochromes, streamlining the assembly of these proteins. By comparing the genes of different Archaeal species, Gupta, Shalvarjian and Nayak were able to determine that Archaea acquired the genes for producing c-type cytochromes from bacteria via horizontal gene transfer, a process in which genes move directly from one organism into another. The streamlining of the process took place later, as different Archaeal species evolved independently, but losing the same parts of the process. Gupta Shalvajiran and Nayak’s experiments also showed that c-type cytochromes are essential for the growth and fitness of methane-producing Archaea like M. acetivorans. The role of c-type cytochromes in methane production varies in different species of Archaea depending on their growth substrate or where they live. These results provide vital information about how Archaea produce methane, and the tools and techniques developed will aid further investigation of the role of Archaea in climate change.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Katie E Shalvarjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dipti D Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
2
|
Giglio KM, Keohane CE, Stodghill PV, Steele AD, Fetzer C, Sieber SA, Filiatrault MJ, Wuest WM. Transcriptomic Profiling Suggests That Promysalin Alters the Metabolic Flux, Motility, and Iron Regulation in Pseudomonas putida KT2440. ACS Infect Dis 2018; 4:1179-1187. [PMID: 29801413 DOI: 10.1021/acsinfecdis.8b00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Promysalin, a secondary metabolite produced by P. putida RW10S1, is a narrow-spectrum antibiotic that targets P. aeruginosa over other Pseudomonas spp. P. putida KT2440, a nonproducing strain, displays increased swarming motility and decreased pyoverdine production in the presence of exogenous promysalin. Herein, proteomic and transcriptomic experiments were used to provide insight about how promysalin elicits responses in PPKT2440 and rationalize its species selectivity. RNA-sequencing results suggest that promysalin affects PPKT2440 by (1) increasing swarming in a flagella-independent manner; (2) causing cells to behave as if they were experiencing an iron-deficient environment, and (3) shifting metabolism away from glucose conversion to pyruvate via the Entner-Doudoroff pathway. These findings highlight nature's ability to develop small molecules with specific targets, resulting in exquisite selectivity.
Collapse
Affiliation(s)
- Krista M. Giglio
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
| | - Colleen E. Keohane
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Paul V. Stodghill
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
| | - Andrew D. Steele
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christian Fetzer
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Melanie J. Filiatrault
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Yuan X, Hamza I. Cys Links Heme: Stereo-orientation of Heme Transfer in Cytochrome c Biogenesis. J Mol Biol 2018; 430:1081-1083. [PMID: 29510174 DOI: 10.1016/j.jmb.2018.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaojing Yuan
- Department of Animal & Avian Sciences, University of Maryland, Bldg. 142, Rm. 2410, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, Bldg. 142, Rm. 2410, College Park, MD 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, Bldg. 142, Rm. 2410, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, Bldg. 142, Rm. 2410, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
5
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. An extended active-site motif controls the reactivity of the thioredoxin fold. J Biol Chem 2014; 289:8681-96. [PMID: 24469455 PMCID: PMC3961690 DOI: 10.1074/jbc.m113.513457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | | | | | | | | | | |
Collapse
|
6
|
Mavridou DAI, Clark MN, Choulat C, Ferguson SJ, Stevens JM. Probing heme delivery processes in cytochrome c biogenesis System I. Biochemistry 2013; 52:7262-70. [PMID: 24044352 PMCID: PMC3806149 DOI: 10.1021/bi400398t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Cytochromes c comprise
a diverse and widespread
family of proteins containing covalently bound heme that are central
to the life of most organisms. In many bacteria and in certain mitochondria,
the synthesis of cytochromes c is performed by a
complex post-translational modification apparatus called System I
(or cytochrome c maturation, Ccm, system). In Escherichia coli, there are eight maturation proteins,
several of which are involved in heme handling, but the mechanism
of heme transfer from one protein to the next is not known. Attachment
of the heme to the apocytochrome occurs via a novel covalent bond
to a histidine residue of the heme chaperone CcmE. The discovery of
a variant maturation system (System I*) has provided a new tool for
studying cytochrome c assembly because the variant
CcmE functions via a cysteine residue in the place of the histidine
of System I. In this work, we use site-directed mutagenesis on both
maturation systems to probe the function of the individual component
proteins as well as their concerted action in transferring heme to
the cytochrome c substrate. The roles of CcmA, CcmC,
CcmE, and CcmF in the heme delivery process are compared between Systems
I and I*. We show that a previously proposed quinone-binding site
on CcmF is not essential for either system. Significant differences
in the heme chemistry involved in the formation of cytochromes c in the variant system add new pieces to the cytochrome c biogenesis puzzle.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Preimesberger MR, Wenke BB, Gilevicius L, Pond MP, Lecomte JTJ. Facile heme vinyl posttranslational modification in a hemoglobin. Biochemistry 2013; 52:3478-88. [PMID: 23607716 DOI: 10.1021/bi400289e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-protoporphyrin IX, or b heme, is utilized as such by a large number of proteins and enzymes. In some cases, notably the c-type cytochromes, this group undergoes a posttranslational covalent attachment to the polypeptide chain, which adjusts the physicochemical properties of the holoprotein. The hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 (GlbN), contrary to the archetypical hemoglobin, modifies its b heme covalently. The posttranslational modification links His117, a residue that does not coordinate the iron, to the porphyrin 2-vinyl substituent and forms a hybrid b/c heme. The reaction is an electrophilic addition that occurs spontaneously in the ferrous state of the protein. This apparently facile type of heme modification has been observed in only two cyanobacterial GlbNs. To explore the determinants of the reaction, we examined the behavior of Synechocystis GlbN variants containing a histidine at position 79, which is buried against the porphyrin 4-vinyl substituent. We found that L79H/H117A GlbN bound the heme weakly but nevertheless formed a cross-link between His79 Nε2 and the heme 4-Cα. In addition to this linkage, the single variant L79H GlbN also formed the native His117-2-Cα bond yielding an unprecedented bis-alkylated protein adduct. The ability to engineer the doubly modified protein indicates that the histidine-heme modification in GlbN is robust and could be engineered in different local environments. The rarity of the histidine linkage in natural proteins, despite the ease of reaction, is proposed to stem from multiple sources of negative selection.
Collapse
Affiliation(s)
- Matthew R Preimesberger
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | |
Collapse
|
8
|
Di Silvio E, Di Matteo A, Malatesta F, Travaglini-Allocatelli C. Recognition and binding of apocytochrome c to P. aeruginosa CcmI, a component of cytochrome c maturation machinery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1554-61. [PMID: 23648553 DOI: 10.1016/j.bbapap.2013.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/13/2023]
Abstract
The biogenesis of c-type cytochromes (Cytc) is a process that in Gram-negative bacteria demands the coordinated action of different periplasmic proteins (CcmA-I), whose specific roles are still being investigated. Activities of Ccm proteins span from the chaperoning of heme b in the periplasm to the specific reduction of oxidized apocytochrome (apoCyt) cysteine residues and to chaperoning and recognition of the unfolded apoCyt before covalent attachment of the heme to the cysteine thiols can occur. We present here the functional characterization of the periplasmic domain of CcmI from the pathogen Pseudomonas aeruginosa (Pa-CcmI*). Pa-CcmI* is composed of a TPR domain and a peculiar C-terminal domain. Pa-CcmI* fulfills both the ability to recognize and bind to P. aeruginosa apo-cytochrome c551 (Pa-apoCyt) and a chaperoning activity towards unfolded proteins, as it prevents citrate synthase aggregation in a concentration-dependent manner. Equilibrium and kinetic experiments with Pa-CcmI*, or its isolated domains, with peptides mimicking portions of Pa-apoCyt sequence allow us to quantify the molecular details of the interaction between Pa-apoCyt and Pa-CcmI*. Binding experiments show that the interaction occurs at the level of the TPR domain and that the recognition is mediated mainly by the C-terminal sequence of Pa-apoCyt. The affinity of Pa-CcmI* to full-length Pa-apoCyt or to its C-terminal sequence is in the range expected for a component of a multi-protein complex, whose task is to receive the apoCyt and to deliver it to other components of the apoCyt:heme b ligation protein machinery.
Collapse
Affiliation(s)
- Eva Di Silvio
- Department of Biochemical Sciences, Università di Roma La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
9
|
Mavridou DAI, Ferguson SJ, Stevens JM. Cytochrome c assembly. IUBMB Life 2013; 65:209-16. [PMID: 23341334 DOI: 10.1002/iub.1123] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 11/08/2022]
Abstract
Cytochromes c are central proteins in energy transduction processes by virtue of their functions in electron transfer in respiration and photosynthesis. They have heme covalently attached to a characteristic CXXCH motif via protein-catalyzed post-translational modification reactions. Several systems with diverse constituent proteins have been identified in different organisms and are required to perform the heme attachment and associated functions. The necessary steps are translocation of the apocytochrome polypeptide to the site of heme attachment, transport and provision of heme to the appropriate compartment, reduction and chaperoning of the apocytochrome, and finally, formation of the thioether bonds between heme and two cysteines in the cytochrome. Here we summarize the established classical models for these processes and present recent progress in our understanding of the individual steps within the different cytochrome c biogenesis systems.
Collapse
|
10
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
11
|
Ferguson SJ. New perspectives on assembling c-type cytochromes, particularly from sulphate reducing bacteria and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1754-8. [PMID: 22609324 DOI: 10.1016/j.bbabio.2012.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 12/18/2022]
Abstract
Some recent new developments emerging from studies of the Systems I and III for c-type cytochrome biogenesis are discussed, particularly in regard to developments in studying System I in sulphate reducing bacteria. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
12
|
Mavridou DAI, Ferguson SJ, Stevens JM. The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli. FEBS Lett 2012; 586:1702-7. [PMID: 22569094 PMCID: PMC3420020 DOI: 10.1016/j.febslet.2012.04.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Heme attachment to c-type cytochromes in bacteria requires cysteine thiols in the CXXCH motif of the protein. The involvement of the periplasmic disulfide generation system in this process remains unclear. We undertake a systematic evaluation of the role of DsbA and DsbD in cytochrome c biogenesis in Escherichia coli and show unequivocally that DsbA is not essential for holocytochrome production under aerobic or anaerobic conditions. We also prove that DsbD is important but not essential for maturation of c-type cytochromes. We discuss the findings in the context of a model in which heme attachment to, and oxidation of, the apocytochrome are competing processes.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
13
|
Aramini JM, Hamilton K, Rossi P, Ertekin A, Lee HW, Lemak A, Wang H, Xiao R, Acton TB, Everett JK, Montelione GT. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris. Biochemistry 2012; 51:3705-7. [PMID: 22497251 DOI: 10.1021/bi300457b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.
Collapse
Affiliation(s)
- James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lobo SAL, Warren MJ, Saraiva LM. Sulfate-reducing bacteria reveal a new branch of tetrapyrrole metabolism. Adv Microb Physiol 2012; 61:267-95. [PMID: 23046956 DOI: 10.1016/b978-0-12-394423-8.00007-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulfate-reducing microorganisms are a diverse group of bacteria and archaea that occupy important environmental niches and have potential for significant biotechnological impact. Desulfovibrio, the most studied genus among the sulfate-reducing microorganisms, contains proteins with a wide variety of tetrapyrrole-derived cofactors, including some unique derivatives such as uroporphyrin I and coproporphyrin III. Herein, we review tetrapyrrole metabolism in Desulfovibrio spp., including the production of sirohaem and cobalamin, and compare and contrast the biochemical properties of the enzymes involved in these biosynthetic pathways. Furthermore, we describe a novel pathway used by Desulfovibrio to synthesize haem b, which provides a previously unrecognized link between haem, sirohaem, and haem d(1). Finally, the organization and regulation of genes involved in the tetrapyrrole biosynthetic pathway is discussed.
Collapse
Affiliation(s)
- Susana A L Lobo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República EAN, Oeiras, Portugal
| | | | | |
Collapse
|
15
|
Mavridou DAI, Stevens JM, Mönkemeyer L, Daltrop O, di Gleria K, Kessler BM, Ferguson SJ, Allen JWA. A pivotal heme-transfer reaction intermediate in cytochrome c biogenesis. J Biol Chem 2011; 287:2342-52. [PMID: 22121193 PMCID: PMC3268396 DOI: 10.1074/jbc.m111.313692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cytochromes c are widespread respiratory proteins characterized by the covalent attachment of heme. The formation of c-type cytochromes requires, in all but a few exceptional cases, the formation of two thioether bonds between the two cysteine sulfurs in a –CXXCH– motif in the protein and the vinyl groups of heme. The vinyl groups of the heme are not particularly activated and therefore the addition reaction does not physiologically occur spontaneously in cells. There are several diverse post-translational modification systems for forming these bonds. Here, we describe the complex multiprotein cytochrome c maturation (Ccm) system (in Escherichia coli comprising the proteins CcmABCDEFGH), also called System I, that performs the heme attachment. System I is found in plant mitochondria, archaea and many Gram-negative bacteria; the systems found in other organisms and organelles are described elsewhere in this minireview series.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
17
|
Richard-Fogal CL, San Francisco B, Frawley ER, Kranz RG. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:911-9. [PMID: 21945855 DOI: 10.1016/j.bbabio.2011.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
Abstract
The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
18
|
Stevens JM, Zhang Y, Muthuvel G, Sam KA, Allen JWA, Ferguson SJ. The mitochondrial cytochrome c N-terminal region is critical for maturation by holocytochrome c synthase. FEBS Lett 2011; 585:1891-6. [PMID: 21570394 DOI: 10.1016/j.febslet.2011.04.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022]
Abstract
The covalent attachment of heme to mitochondrial cytochrome c is catalysed by holocytochrome c synthase (HCCS, also called heme lyase). How HCCS functions and recognises the substrate apocytochrome is unknown. Here we have examined HCCS recognition of a chimeric substrate comprising a short mitochondrial cytochrome c N-terminal region with the C-terminal sequence, including the CXXCH heme-binding motif, of a bacterial cytochrome c that is not otherwise processed by HCCS. Heme attachment to the chimera demonstrates the importance of the N-terminal region of the cytochrome. A series of variants of a mitochondrial cytochrome c with amino acid replacements in the N-terminal region have narrowed down the specificity determinants, providing insight into HCCS substrate recognition.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Goddard AD, Stevens JM, Ferguson SJ, Redfield C. Oxidation state-dependent protein-protein interactions in disulfide cascades. J Biol Chem 2011; 286:24943-56. [PMID: 21543317 PMCID: PMC3137068 DOI: 10.1074/jbc.m111.236141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Kleingardner JG, Bren KL. Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis. Metallomics 2011; 3:396-403. [PMID: 21380436 PMCID: PMC3081496 DOI: 10.1039/c0mt00086h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.
Collapse
|
21
|
Nothnagel HJ, Preimesberger MR, Pond MP, Winer BY, Adney EM, Lecomte JTJ. Chemical reactivity of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 hemoglobins: covalent heme attachment and bishistidine coordination. J Biol Inorg Chem 2011; 16:539-52. [PMID: 21240532 PMCID: PMC3241212 DOI: 10.1007/s00775-011-0754-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).
Collapse
Affiliation(s)
- Henry J. Nothnagel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Matthew P. Pond
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Benjamin Y. Winer
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily M. Adney
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juliette T. J. Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
|