1
|
Zaater MA, El Kerdawy AM, Mahmoud WR, Abou-Seri SM. Going beyond ATP binding site as a novel inhibitor design strategy for tau protein kinases in the treatment of Alzheimer's disease: A review. Int J Biol Macromol 2025; 307:142141. [PMID: 40090653 DOI: 10.1016/j.ijbiomac.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is among the top mortality causing diseases worldwide. The presence of extracellular β-amyloidosis, as well as intraneuronal neurofibrillary aggregates of the abnormally hyperphosphorylated tau protein are two major characteristics of AD. Targeting protein kinases that are involved in the disease pathways has been a common approach in the fight against AD. Unfortunately, most kinase inhibitors currently available target the adenosine triphosphate (ATP)- binding site, which has proven unsuccessful due to issues with selectivity and resistance. As a result, a pressing need to find other alternative sites beyond the ATP- binding site has profoundly evolved. In this review, we will showcase some case studies of inhibitors of tau protein kinases acting beyond ATP binding site which have shown promising results in alleviating AD.
Collapse
Affiliation(s)
- Marwa A Zaater
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt; School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom.
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| |
Collapse
|
2
|
Hall B, Amin N, Veeranna, Hisanaga SI, Kulkarni AB. A Retrospective Tribute to Dr. Harish Pant (1938-2023) and His Seminal Work on Cyclin Dependent Kinase 5. Neurochem Res 2024; 49:3181-3186. [PMID: 39235580 PMCID: PMC11502590 DOI: 10.1007/s11064-024-04234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Dr. Harish Chandra Pant was Chief of the Section on Neuronal Cytoskeletal Protein Regulation within the National Institute of Neurological Disorders and Stroke at the NIH. A main focus of his group was understanding the mechanisms regulating neuronal cytoskeletal phosphorylation. Phosphorylation of neurofilaments can increase filament stability and confer resistance to proteolysis, but aberrant hyperphosphorylation of neurofilaments can be found in the neurofibrillary tangles that are seen with neurodegenerative diseases like Alzheimer disease (AD). Through his work, Harish would inevitably come across cyclin dependent kinase 5 (Cdk5), a key kinase that can phosphorylate neurofilaments at KSPXK motifs. Cdk5 differs from other Cdks in that its activity is mainly in post-mitotic neurons rather than being involved in the cell cycle in dividing cells. With continued interest in Cdk5, Harish and his group were instrumental in identifying important roles for this neuronal kinase in not only neuronal cytoskeleton phosphorylation but also in neuronal development, synaptogenesis, and neuronal survival. Here, we review the accomplishments of Harish in characterizing the functions of Cdk5 and its involvement in neuronal health and disease.
Collapse
Affiliation(s)
- Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA
| | - Niranjana Amin
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Veeranna
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Oduro-Kwateng E, Ali M, Kehinde IO, Zhang Z, Soliman MES. De Novo Rational Design of Peptide-Based Protein-Protein Inhibitors (Pep-PPIs) Approach by Mapping the Interaction Motifs of the PP Interface and Physicochemical Filtration: A Case on p25-Cdk5-Mediated Neurodegenerative Diseases. J Cell Biochem 2024; 125:e30633. [PMID: 39148280 DOI: 10.1002/jcb.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
4
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Investigation of the Effect of Peptide p5 Targeting CDK5-p25 Hyperactivity on Munc18-1 (P67) Regulating Neuronal Exocytosis Using Molecular Simulations. Biochemistry 2024; 63:1837-1857. [PMID: 38953497 DOI: 10.1021/acs.biochem.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental in vivo and in vitro studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the in vitro validation of our findings to improve therapeutic efficacy and safety of p5.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | | | | | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | | | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Luo H, Yang L, Zhang G, Bao X, Ma D, Li B, Cao L, Cao S, Liu S, Bao L, E J, Zheng Y. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Genes Genomics 2024; 46:621-635. [PMID: 38536617 DOI: 10.1007/s13258-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.
Collapse
Affiliation(s)
- Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lirong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Shilu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shunyao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing E
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China.
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
6
|
Atiya A, Batra S, Mohammad T, Alorfi NM, Abdulmonem WA, Alhumaydhi FA, Ashraf GM, Baeesa SS, Elasbali AM, Shahwan M. Desmodin and isopongachromene as potential inhibitors of cyclin-dependent kinase 5: phytoconstituents targeting anticancer and neurological therapy. J Biomol Struct Dyn 2023; 41:8042-8052. [PMID: 36184739 DOI: 10.1080/07391102.2022.2128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Shivani Batra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Moyad Shahwan
- College of Pharmacy, Ajman University, Abha, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Abha, United Arab Emirates
| |
Collapse
|
7
|
Pao PC, Seo J, Lee A, Kritskiy O, Patnaik D, Penney J, Raju RM, Geigenmuller U, Silva MC, Lucente DE, Gusella JF, Dickerson BC, Loon A, Yu MX, Bula M, Yu M, Haggarty SJ, Tsai LH. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 2023; 120:e2217864120. [PMID: 37043533 PMCID: PMC10120002 DOI: 10.1073/pnas.2217864120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain Sciences, Daegu Gyeongbuk Institute for Science and Technology, Daegu42988, South Korea
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ute Geigenmuller
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - M. Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Diane E. Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Bradford C. Dickerson
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Margaret X. Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Melody Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
8
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
9
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Computational Study of the Allosteric Effects of p5 on CDK5-p25 Hyperactivity as Alternative Inhibitory Mechanisms in Neurodegeneration. J Phys Chem B 2022; 126:5033-5044. [PMID: 35771127 DOI: 10.1021/acs.jpcb.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclin-dependent kinase (CDK5) forms a stable complex with its activator p25, leading to the hyperphosphorylation of tau proteins and to the formation of plaques and tangles that are considered to be one of the typical causes of Alzheimer's disease (AD). Hence, the pathological CDK5-p25 complex is a promising therapeutic target for AD. Small peptides, obtained from the truncation of CDK5 physiological activator p35, have shown promise in inhibiting the pathological complex effectively while also crossing the blood-brain barrier. One such small 24-residue peptide, p5, has shown selective inhibition toward the pathological complex in vivo. Our previous research focused on the characterization of a computationally predicted CDK5-p5 binding mode and of its pharmacophore, which was consistent with competitive inhibition. In continuation of our previous work, herein, we investigate four additional binding modes to explore other possible mechanisms of interaction between CDK5 and p5. The quantitative description of the pharmacophore is consistent with both competitive and allosteric p5-induced inhibition mechanisms of CDK5-p25 pathology. The gained insights can direct further in vivo/in vitro tests and help design small peptides, linear or cyclic, or peptidomimetic compounds as adjuvants of orthosteric inhibitors or as part of a cocktail of drugs with enhanced effectiveness and lower side effects.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Walid Keyrouz
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ram D Sriram
- Software and Systems Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | - Antonio Cardone
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Cho A, Hall BE, Limaye AS, Wang S, Chung MK, Kulkarni AB. Nociceptive signaling through transient receptor potential vanilloid 1 is regulated by Cyclin Dependent Kinase 5-mediated phosphorylation of T407 in vivo. Mol Pain 2022; 18:17448069221111473. [PMID: 35726573 PMCID: PMC9251968 DOI: 10.1177/17448069221111473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclin dependent kinase 5 (Cdk5) is a key neuronal kinase whose activity can modulate thermo-, mechano-, and chemo-nociception. Cdk5 can modulate nociceptor firing by phosphorylating pain transducing ion channels like the transient receptor potential vanilloid 1 (TRPV1), a thermoreceptor that is activated by noxious heat, acidity, and capsaicin. TRPV1 is phosphorylated by Cdk5 at threonine-407 (T407), which then inhibits Ca2+ dependent desensitization. To explore the in vivo implications of Cdk5-mediated TRPV1 phosphorylation on pain perception, we engineered a phospho-null mouse where we replaced T407 with alanine (T407A). The T407A point mutation did not affect the expression of TRPV1 in nociceptors of the dorsal root ganglia and trigeminal ganglia (TG). However, behavioral tests showed that the TRPV1T407A knock-in mice have reduced aversion to oral capsaicin along with a trend towards decreased facial displays of pain after a subcutaneous injection of capsaicin into the vibrissal pad. In addition, the TRPV1T407A mice display basal thermal hypoalgesia with increased paw withdrawal latency while tested on a hot plate. These results indicate that phosphorylation of TRPV1 by Cdk5 can have important consequences on pain perception, as loss of the Cdk5 phosphorylation site reduced capsaicin- and heat-evoked pain behaviors in mice.
Collapse
Affiliation(s)
- Andrew Cho
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Advait S Limaye
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Ashok B Kulkarni
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and Optimization of Highly Selective Inhibitors of CDK5. J Med Chem 2022; 65:3575-3596. [PMID: 35143203 DOI: 10.1021/acs.jmedchem.1c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.
Collapse
Affiliation(s)
- Matthew H Daniels
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Goran Malojcic
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Susan L Clugston
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Brett Williams
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Xin-Ru Pan-Zhou
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Mark Ledeboer
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
12
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
16
|
Huang Y, Huang W, Huang Y, Song P, Zhang M, Zhang HT, Pan S, Hu Y. Cdk5 Inhibitory Peptide Prevents Loss of Neurons and Alleviates Behavioral Changes in p25 Transgenic Mice. J Alzheimers Dis 2021; 74:1231-1242. [PMID: 32144987 DOI: 10.3233/jad-191098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Accumulation of p25 is thought to be a causative risk factor for Alzheimer's disease (AD). As a cleaved product of p35, p25 binds to cyclin-dependent kinase 5 (Cdk5) and leads to the hyperactivity of Cdk5. Then, Cdk5/p25 phosphorylates many pathological substrates related to neurodegenerative diseases. p25 transgenic (Tg) mouse model recaptures some pathological changes of AD, including tau hyperphosphorylation, neurofibrillary tangles, neuroinflammation, and neuronal death, which can be prevented by transgenic expression of Cdk5 inhibitory peptide (CIP) before the insult of p25. OBJECTIVE In the present study, we would like to know whether adeno-associated virus serotype-9 (AAV9)-mediated CIP can protect neurons after insult of p25 in p25Tg mice. METHODS Administration of AAV9-CIP or control virus were delivered in the brain of p25Tg mice via intracerebroventricular infusions following the induction of p25. Western blotting, immunohistochemistry and immunofluorescence assessment, and animal behavioral evaluation were performed. RESULTS Brain atrophy, neuronal death, tau phosphorylation and inflammation in the hippocampus, and cognitive decline were observed in p25Tg mice. Administration of CIP but not the control virus in p25Tg mice reduced levels of tau phosphorylation and inflammation in the hippocampus, which is correlated with inhibition of brain atrophy and neuronal apoptosis in the hippocampus, and improvement of cognitive decline. CONCLUSION Our results provide further evidence that the neurotoxicity of p25 can be alleviated by CIP.
Collapse
Affiliation(s)
- Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Wei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, P. R. China
| | - Yingwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Pingping Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Neurology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Melanie Zhang
- Department of Neurobiology Northwestern University, Feinberg School of Medicine, Evanston, IL, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine & Psychiatry, Physiology & Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
17
|
Goel B, Tripathi N, Bhardwaj N, Jain SK. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer. Curr Top Med Chem 2021; 20:1535-1563. [PMID: 32416692 DOI: 10.2174/1568026620666200516152756] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are a group of multifunctional enzymes consisting of catalytic and regulatory subunits. The regulatory subunit, cyclin, remains dissociated under normal circumstances, and complexation of cyclin with the catalytic subunit of CDK leads to its activation for phosphorylation of protein substrates. The primary role of CDKs is in the regulation of the cell cycle. Retinoblastoma protein (Rb) is one of the widely investigated tumor suppressor protein substrates of CDK, which prevents cells from entering into cell-cycle under normal conditions. Phosphorylation of Rb by CDKs causes its inactivation and ultimately allows cells to enter a new cell cycle. Many cancers are associated with hyperactivation of CDKs as a result of mutation of the CDK genes or CDK inhibitor genes. Therefore, CDK modulators are of great interest to explore as novel therapeutic agents against cancer and led to the discovery of several CDK inhibitors to clinics. This review focuses on the current progress and development of anti-cancer CDK inhibitors from preclinical to clinical and synthetic to natural small molecules.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
18
|
Zhang J, Zhang Y, Xu M, Miao Z, Tian Y. Inhibition of the CDK5/caspase-3 Pathway by p5-TAT Protects Hippocampal Neurogenesis and Alleviates Radiation-induced Cognitive Dysfunction. Neuroscience 2021; 463:204-215. [PMID: 33838288 DOI: 10.1016/j.neuroscience.2021.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022]
Abstract
Radiation-induced cognitive dysfunction is a common complication associated with cranial radiation therapy. Inhibition of hippocampal neurogenesis and proliferation plays a critical role in this complication. Relieving hippocampal apoptosis may significantly protect hippocampal neurogenesis and proliferation. Previous studies have demonstrated that hyperactivity of cyclin-dependent kinase 5 (Cdk5) is closely related to apoptosis. The exact molecular changes and function of Cdk5 in radiation-induced cognitive dysfunction are still not clear. Whether inhibition of Cdk5 and the relevant caspase-3 could improve hippocampal neurogenesis and ameliorate radiation-induced cognitive dysfunction needs further exploration. We hypothesized that inhibition of the Cdk5/caspase-3 pathway by p5-TAT could protect hippocampal neurogenesis and alleviate radiation-induced cognitive dysfunction. In our study, we reported that radiation induced hyperactivity of Cdk5 accompanied by elevation of the levels of cleaved caspase-3, a marker of neuronal apoptosis. Inhibition of hippocampal neurogenesis and proliferation as well as cognitive dysfunction was also observed. p5-TAT, a specific inhibitor of Cdk5, decreased the overactivation of Cdk5 without affecting the levels of Cdk5 activators. Additionally, this treatment suppressed the expression of cleaved caspase-3. We further demonstrated that p5-TAT treatment reduced hippocampal dysfunction and improved behavioral performance. Therefore, Cdk5 inhibition by the small peptide p5-TAT is a promising therapeutic strategy for radiation-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Junjun Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, China; Institute of Radiotherapy and Oncology, Soochow University, China; Suzhou Key Laboratory for Radiation Oncology, China
| | - Yujuan Zhang
- Experiment Center, Medicine College of Soochow University, Suzhou City, China
| | - Meiling Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, China; Institute of Radiotherapy and Oncology, Soochow University, China; Suzhou Key Laboratory for Radiation Oncology, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China.
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, China; Institute of Radiotherapy and Oncology, Soochow University, China; Suzhou Key Laboratory for Radiation Oncology, China.
| |
Collapse
|
19
|
Paudyal A, Ghinea FS, Driga MP, Fang WH, Alessandri G, Combes L, Degens H, Slevin M, Hermann DM, Popa-Wagner A. p5 Peptide-Loaded Human Adipose-Derived Mesenchymal Stem Cells Promote Neurological Recovery After Focal Cerebral Ischemia in a Rat Model. Transl Stroke Res 2021; 12:125-135. [PMID: 32378028 PMCID: PMC7803698 DOI: 10.1007/s12975-020-00805-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Adipose-derived mesenchymal stem cells markedly attenuated brain infarct size and improved neurological function in rats. The mechanisms for neuronal cell death have previously been defined in stress states to suggest that an influx of calcium ions into the neurons activates calpain cleavage of p35 into p25 forming a hyperactive complex that induces cell death. Now we report that p5, a 24-residue peptide derived from p35, offers protection to neurons and endothelial cells in vitro. In vivo administration of human adipose-derived mesenchymal stem cells (hADMSCs) loaded with this therapeutic peptide to post-stroke rats had no effect on the infarct volume. Nevertheless, the treatment led to improvement in functional recovery in spatial learning and memory (water maze), bilateral coordination and sensorimotor function (rotating pole), and asymmetry of forelimb usage (cylinder test). However, the treatment may not impact on cutaneous sensitivity (adhesive tape removal test). In addition, the double immunofluorescence with human cell-specific antibodies revealed that the number of surviving transplanted cells was higher in the peri-infarcted area of animals treated with hADMSCs + P5 than that in hADMSC-treated or control animals, concomitant with reduced number of phagocytic, annexin3-positive cells in the peri-infarcted region. However, the combination therapy did not increase the vascular density in the peri-infarcted area after stroke. In conclusion, administration of hADMSC-loaded p5 peptide to post-stroke rats created conditions that supported survival of drug-loaded hADMSCs after cerebral ischemia, suggesting its therapeutic potential in patients with stroke.
Collapse
Affiliation(s)
- Arjun Paudyal
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, UK
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije University Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Flavia Semida Ghinea
- Doctoral School, Department of Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Mircea Popescu Driga
- Doctoral School, Department of Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Wen-Hui Fang
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, UK
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, 20133, Milan, Italy
| | - Laura Combes
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, UK
| | - Hans Degens
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, UK
- University of Medicine and Pharmacy, Targu Mures, Romania
- Lithuanian Sports University, Kaunas, Lithuania
| | - Mark Slevin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, UK.
- University of Medicine and Pharmacy, Targu Mures, Romania.
- Institute of Dementia and Neurological Aging, Weifang Medical University, Weifang, China.
| | - Dirk M Hermann
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany
| | - Aurel Popa-Wagner
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, 20133, Milan, Italy.
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany.
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
20
|
Tran J, Taylor SK, Gupta A, Amin N, Pant H, Gupta BP, Mishra RK. Therapeutic effects of TP5, a Cdk5/p25 inhibitor, in in vitro and in vivo models of Parkinson’s disease. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100006. [PMID: 36246507 PMCID: PMC9559888 DOI: 10.1016/j.crneur.2021.100006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s Disease (PD) is a chronic progressive neurodegenerative disease. Current treatments for PD are symptomatic and only increase striatal dopamine levels. Proactive neuroprotective approaches that slow the progression of PD and maintain appropriate dopamine neuron populations are needed to treat the disease. One suggested mechanism contributing to the pathology of PD involves the binding of cyclin-dependent kinase 5 (Cdk5) to p25, creating a hyperactivated complex to induce cell death. The objective of this study is to investigate the neuroprotective and neurorestorative properties of Truncated Peptide 5 (TP5), a derivative of the p35 activator involved in Cdk5 regulation, via the inhibition of Cdk5/p25 complex function. SH-SY5Y cell line and the nematode Caenorhabditis elegans were exposed to paraquat (PQ), an oxidative stressor, to induce Parkinsonian phenotypes. TP5 was administered prior to PQ exposure to determine its neuroprotective effects and, in further experiments, after PQ exposure to examine its neurorestorative effects. In the SH-SY5Y cell line, TP5 was found to have neuroprotective effects using a cell viability assay and demonstrated neuroprotective and neurorestorative effects in C. elegans by examining dopaminergic neurons and dopamine-dependent behaviour. TP5 decreased elevated Cdk5 activation in worms that were exposed to PQ. TP5’s inhibition of Cdk5/p25 hyperactivity led to the protection of dopamine neurons in these PD models. This suggests that TP5 can act as a potential therapeutic drug towards PD. Truncated Peptide 5 (TP5) is tested in SH-SY5Y culture cells and the worm C. elegans. TP5 protects and/or restores dopaminergic neurons in both Parkinson’s disease models. TP5 shows promising therapeutic effects in the worm system. Beneficial effects of TP5 are likely due to the reduced Cdk5/p25 hyperactivity.
Collapse
|
21
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
22
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
23
|
Peyressatre M, Arama DP, Laure A, González-Vera JA, Pellerano M, Masurier N, Lisowski V, Morris MC. Identification of Quinazolinone Analogs Targeting CDK5 Kinase Activity and Glioblastoma Cell Proliferation. Front Chem 2020; 8:691. [PMID: 32974274 PMCID: PMC7466635 DOI: 10.3389/fchem.2020.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/03/2020] [Indexed: 11/15/2022] Open
Abstract
CDK5/p25 kinase plays a major role in neuronal functions, and is hyperactivated in several human cancers including glioblastoma and neurodegenerative pathologies such as Alzheimer's and Parkinson's. CDK5 therefore constitutes an attractive pharmacological target. Since the successful discovery and development of Roscovitine, several ATP-competitive inhibitors of CDK5 and peptide inhibitors of CDK5/p25 interface have been developed. However, these compounds suffer limitations associated with their mechanism of action and nature, thereby calling for alternative targeting strategies. To date, few allosteric inhibitors have been developed for successful targeting of protein kinases. Indeed, although this latter class of inhibitors are believed to be more selective than compounds targeting the active site, they have proven extremely difficult to identify in high throughput screens. By implementing a fluorescent biosensor that discriminates against ATP-pocket binding compounds to screen for allosteric inhibitors that target conformational activation of CDK5, we have identified a novel family of quinazolinones. Characterization of these hits and several of their derivatives revealed their inhibitory potential toward CDK5 kinase activity in vitro and to inhibit glioblastoma cell proliferation. The quinazolinone derivatives described in this study are the first small molecules reported to target CDK5 at a site other than the ATP pocket, thereby constituting attractive leads for glioblastoma therapeutics and providing therapeutic perspectives for neurodegenerative diseases. These compounds offer alternatives to conventional ATP-competitive inhibitors or peptides targeting CDK5/p25 interface with the potential of bypassing their limitations.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Dominique Patomo Arama
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Arthur Laure
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Juan A González-Vera
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Morgan Pellerano
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Vincent Lisowski
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - May C Morris
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| |
Collapse
|
24
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins in cancer: New kids on the block? Semin Cell Dev Biol 2020; 107:46-53. [PMID: 32417219 DOI: 10.1016/j.semcdb.2020.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Atypical cyclins have recently emerged as a new subfamily of cyclins characterized by common structural features and interactor pattern. Interestingly, atypical cyclins are phylogenetically close to canonical cyclins, which have well-established roles in cell cycle regulation and cancer. Therefore, although the function of atypical cyclins is still poorly characterized, it seems likely that they are involved in cancer pathogenesis as well. Here, we coupled gene expression and prognostic significance analysis to bibliographic search in order to provide new insights into the role of atypical cyclins in cancer. The information gathered suggests that atypical cyclins intervene in critical processes to sustain cancer growth and have potential to become novel prognostic markers and drug targets in cancer.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| |
Collapse
|
25
|
Bk B, Skuntz S, Prochazkova M, Kesavapany S, Amin ND, Shukla V, Grant P, Kulkarni AB, Pant HC. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Hum Mol Genet 2020; 28:3175-3187. [PMID: 31189016 DOI: 10.1093/hmg/ddz118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau. Here, we tested the hypothesis that inhibition of Cdk5/p25 hyperactivation in vivo is a neuroprotective factor during ALS pathogenesis by crossing the new transgenic mouse line that overexpresses Cdk5 inhibitory peptide (CIP) in motor neurons with the SOD1G37R, ALS mouse model (TriTg mouse line). The overexpression of CIP in the motor neurons significantly improves motor deficits, extends survival and delays pathology in brain and spinal cord of TriTg mice. In addition, overexpression of CIP in motor neurons significantly delays neuroinflammatory responses in TriTg mouse. Taken together, these data suggest that CIP may serve as a novel therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Binukumar Bk
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Susan Skuntz
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sashi Kesavapany
- National Institute of Health Technologies, Nanyang Technological University, Singapore
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Varsha Shukla
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
27
|
Le ST, Morris MA, Cardone A, Guros NB, Klauda JB, Sperling BA, Richter CA, Pant HC, Balijepalli A. Rapid, quantitative therapeutic screening for Alzheimer's enzymes enabled by optimal signal transduction with transistors. Analyst 2020; 145:2925-2936. [PMID: 32159165 PMCID: PMC7443690 DOI: 10.1039/c9an01804b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that commercially sourced n-channel silicon field-effect transistors (nFETs) operating above their threshold voltage with closed loop feedback to maintain a constant channel current allow a pH readout resolution of (7.2 ± 0.3) × 10-3 at a bandwidth of 10 Hz, or ≈3-fold better than the open loop operation commonly employed by integrated ion-sensitive field-effect transistors (ISFETs). We leveraged the improved nFET performance to measure the change in solution pH arising from the activity of a pathological form of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, and showed quantitative agreement with previous measurements. The improved pH resolution was realized while the devices were operated in a remote sensing configuration with the pH sensing element off-chip and connected electrically to the FET gate terminal. We compared these results with those measured by using a custom-built dual-gate 2D field-effect transistor (dg2DFET) fabricated with 2D semi-conducting MoS2 channels and a signal amplification of 8. Under identical solution conditions the nFET performance approached the dg2DFETs pH resolution of (3.9 ± 0.7) × 10-3. Finally, using the nFETs, we demonstrated the effectiveness of a custom polypeptide, p5, as a therapeutic agent in restoring the function of Cdk5. We expect that the straight-forward modifications to commercially sourced nFETs demonstrated here will lower the barrier to widespread adoption of these remote-gate devices and enable sensitive bioanalytical measurements for high throughput screening in drug discovery and precision medicine applications.
Collapse
Affiliation(s)
- Son T. Le
- Alternative Computing Group, Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037
| | - Michelle A. Morris
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Antonio Cardone
- Information Systems Group, Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Nicholas B. Guros
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Brent A. Sperling
- Chemical Process and Nuclear Measurements Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Alternative Computing Group, Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arvind Balijepalli
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
28
|
Xu M, Huang Y, Song P, Huang Y, Huang W, Zhang HT, Hu Y. AAV9-Mediated Cdk5 Inhibitory Peptide Reduces Hyperphosphorylated Tau and Inflammation and Ameliorates Behavioral Changes Caused by Overexpression of p25 in the Brain. J Alzheimers Dis 2019; 70:573-585. [PMID: 31256130 DOI: 10.3233/jad-190099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yingwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Pingping Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Wei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Department of Neurology, the First People’s Hospital of Shunde, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry and Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
29
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
30
|
Reinhardt L, Kordes S, Reinhardt P, Glatza M, Baumann M, Drexler HCA, Menninger S, Zischinsky G, Eickhoff J, Fröb C, Bhattarai P, Arulmozhivarman G, Marrone L, Janosch A, Adachi K, Stehling M, Anderson EN, Abo-Rady M, Bickle M, Pandey UB, Reimer MM, Kizil C, Schöler HR, Nussbaumer P, Klebl B, Sterneckert JL. Dual Inhibition of GSK3β and CDK5 Protects the Cytoskeleton of Neurons from Neuroinflammatory-Mediated Degeneration In Vitro and In Vivo. Stem Cell Reports 2019; 12:502-517. [PMID: 30773488 PMCID: PMC6409486 DOI: 10.1016/j.stemcr.2019.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a hallmark of neurological disorders and is accompanied by the production of neurotoxic agents such as nitric oxide. We used stem cell-based phenotypic screening and identified small molecules that directly protected neurons from neuroinflammation-induced degeneration. We demonstrate that inhibition of CDK5 is involved in, but not sufficient for, neuroprotection. Instead, additional inhibition of GSK3β is required to enhance the neuroprotective effects of CDK5 inhibition, which was confirmed using short hairpin RNA-mediated knockdown of CDK5 and GSK3β. Quantitative phosphoproteomics and high-content imaging demonstrate that neurite degeneration is mediated by aberrant phosphorylation of multiple microtubule-associated proteins. Finally, we show that our hit compound protects neurons in vivo in zebrafish models of motor neuron degeneration and Alzheimer's disease. Thus, we demonstrate an overlap of CDK5 and GSK3β in mediating the regulation of the neuronal cytoskeleton and that our hit compound LDC8 represents a promising starting point for neuroprotective drugs. Phenotypic screening identifies CDK inhibitors protecting neurons from inflammation Inhibition of CDK5 is involved in neuroprotection but is not sufficient Dual inhibition of CDK5 and GSK3β is neuroprotective in vitro and in vivo Quantitative phosphoproteomics links neuroprotection to microtubule dynamics
Collapse
Affiliation(s)
- Lydia Reinhardt
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Susanne Kordes
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Peter Reinhardt
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Michael Glatza
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Sascha Menninger
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Gunther Zischinsky
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Claudia Fröb
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany
| | - Prabesh Bhattarai
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Guruchandar Arulmozhivarman
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany
| | - Lara Marrone
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany
| | - Antje Janosch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Eric N Anderson
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Masin Abo-Rady
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michell M Reimer
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany
| | - Caghan Kizil
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; University of Münster, Medical Faculty, Domagkstrasse 3, 48149 Münster, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Jared L Sterneckert
- Technische Universität Dresden, DFG-Research Center for Regenerative Therapies Dresden (CRTD), Fetscherstrasse 105, 01307 Dresden, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
31
|
Man A, Slevin M, Petcu E, Fraefel C. The Cyclin-Dependent Kinase 5 Inhibitor Peptide Inhibits Herpes Simplex Virus Type 1 Replication. Sci Rep 2019; 9:1260. [PMID: 30718749 PMCID: PMC6362106 DOI: 10.1038/s41598-018-37989-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
In order to evaluate the influence of CDK5 inhibitory peptide (CIP) on Human alphaherpesvirus 1 (HSV-1) replication, we constructed two recombinant adeno-associated-virus 2 (rAAV2) vectors encoding CIP fused with cyan-fluorescent-protein (CFP), with or without nuclear localization signal. A third vector encoding non-fused CIP and CFP was also constructed. HeLa and HEK 293T cells were infected with the rAAV-CIP vectors at multiplicity of infection (MOI) of 5000, in the absence or presence of a recombinant HSV-1 that encodes a yellow-fluorescent-protein (rHSV48Y; MOI = 1). Cells co-infected with rHSV48Y and rAAV vectors that did not express the CIP gene (rAAV-CFP-Neo) served as controls. At 24 h after infection, the effect of CIP on rHSV48Y replication was assessed by PCR, qRT-PCR, Western-blot, flow-cytometry, epifluorescence and confocal microscopy. We show that in cultures co-infected with rAAV-CFP-Neo, 27% of the CFP-positive cells present rHSV48Y replication compartments. By contrast, in cultures co-infected with CIP-encoding rAAV2 vectors and rHSV48Y only 6-20% of the cells positive for CIP showed rHSV48Y replication compartments, depending on the CIP variant. Flow-cytometry showed that less than 40% of the rHSV48Y/rAAV-CIP, and more than 75% of rHSV48Y/rAAV-CFP-Neo co-infected cells were positive for both transgene products. The microscopy and flow-cytometry data support the hypothesis that CIP is inhibiting HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Man
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania
| | - Mark Slevin
- University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania.
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.
| | - Eugen Petcu
- Griffith University, Gold Coast, Brisbane, Australia
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Perinatal Hypoxic-Ischemic Encephalopathy and Neuroprotective Peptide Therapies: A Case for Cationic Arginine-Rich Peptides (CARPs). Brain Sci 2018; 8:brainsci8080147. [PMID: 30087289 PMCID: PMC6119922 DOI: 10.3390/brainsci8080147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is only used for term infants (>36 weeks gestation) in tertiary hospitals and improves outcomes in only 30% of patients. For these reasons, a more effective and easily administrable pharmacological therapeutic agent, that can be used in combination with hypothermia or alone when hypothermia cannot be applied, is urgently needed to treat pre-term (≤36 weeks gestation) and term infants suffering HIE. Several recent studies have demonstrated that cationic arginine-rich peptides (CARPs), which include many cell-penetrating peptides [CPPs; e.g., transactivator of transcription (TAT) and poly-arginine-9 (R9; 9-mer of arginine)], possess intrinsic neuroprotective properties. For example, we have demonstrated that poly-arginine-18 (R18; 18-mer of arginine) and its D-enantiomer (R18D) are neuroprotective in vitro following neuronal excitotoxicity, and in vivo following perinatal hypoxia-ischemia (HI). In this paper, we review studies that have used CARPs and other peptides, including putative neuroprotective peptides fused to TAT, in animal models of perinatal HIE. We critically evaluate the evidence that supports our hypothesis that CARP neuroprotection is mediated by peptide arginine content and positive charge and that CARPs represent a novel potential therapeutic for HIE.
Collapse
|
33
|
He R, Huang W, Huang Y, Xu M, Song P, Huang Y, Xie H, Hu Y. Cdk5 Inhibitory Peptide Prevents Loss of Dopaminergic Neurons and Alleviates Behavioral Changes in an MPTP Induced Parkinson's Disease Mouse Model. Front Aging Neurosci 2018; 10:162. [PMID: 29910724 PMCID: PMC5992349 DOI: 10.3389/fnagi.2018.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most affected neurodegenerative diseases in the world. Deregulation of cyclin-dependent kinase 5 (Cdk5) is believed to play an important role in neurodegenerative diseases including PD. p25 is a cleavage peptide of p35, a physiologic activator of Cdk5. p25 combines to Cdk5 and leads to the hyperactivity of Cdk5, which in turn hyperphosphorylates downstream substrates and leads to neuroinflammation and apoptosis of neurons. Previously, we have demonstrated that adeno-associated virus serotype-9 (AAV9) mediated Cdk5 inhibitory peptide (CIP) inhibits the activity of Cdk5/p25 complex and alleviates pathologic and behavioral changes in Alzheimer’s disease mouse model. In this study, we evaluated whether AAV9-CIP protected dopaminergic (DA) neurons in 1-methyl-4-phe-nyl-1,2,3,6-tetrahydropyridine-probenecid (MPTP/p) induced PD mouse model. The data showed that administration of AAV9-CIP by intracerebroventricular injection 1 week before MPTP/p exposure protected loss of DA neurons in substantia nigra compact of the model mice. Importantly, AAV9-CIP also alleviated the motor and anxiety-like symptoms of the disease animals. In summary, AAV9 mediated CIP might be a potential intervention for PD.
Collapse
Affiliation(s)
- Rongni He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2018; 27:349-361. [PMID: 29602288 DOI: 10.1080/13543784.2018.1460356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Our understanding of the pathological basis of progressive supranuclear palsy (PSP), as the most common atypical parkinsonian syndrome, has greatly increased in recent years and a number of disease-modifying therapies are under evaluation as a result of these advances. AREAS COVERED In this review, we discuss disease-modifying therapeutic options which are currently under evaluation or have been evaluated in preclinical or clinical trials based on their targeted pathophysiologic process. The pathophysiologic mechanisms are broadly divided into three main categories: genetic mechanisms, abnormal post-translational modifications of tau protein, and transcellular tau spread. EXPERT OPINION Once the best therapeutic approaches are identified, it is likely that some combination of interventions will need to be evaluated, but this will take time. It is critical to treat patients at early stages, and development of the Movement Disorder Society PSP diagnostic criteria is an important step in this direction. In addition, development of biological biomarkers such as tau PET and further refinement of tau ligands may help both diagnose early and measure disease progression. In the meantime, a comprehensive, personalized interdisciplinary approach to this disease is absolutely necessary.
Collapse
Affiliation(s)
- Ali Shoeibi
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Nahid Olfati
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Irene Litvan
- b UC San Diego Department of Neurosciences , Parkinson and Other Movement Disorder Center , La Jolla , CA , USA
| |
Collapse
|
35
|
MultiBacMam Bimolecular Fluorescence Complementation (BiFC) tool-kit identifies new small-molecule inhibitors of the CDK5-p25 protein-protein interaction (PPI). Sci Rep 2018; 8:5083. [PMID: 29572554 PMCID: PMC5865166 DOI: 10.1038/s41598-018-23516-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
Protein-protein interactions (PPIs) are at the core of virtually all biological processes in cells. Consequently, targeting PPIs is emerging at the forefront of drug discovery. Cellular assays which closely recapitulate native conditions in vivo are instrumental to understand how small molecule drugs can modulate such interactions. We have integrated MultiBacMam, a baculovirus-based mammalian gene delivery tool we developed, with bimolecular fluorescence complementation (BiFC), giving rise to a highly efficient system for assay development, identification and characterization of PPI modulators. We used our system to analyze compounds impacting on CDK5-p25 PPI, which is implicated in numerous diseases including Alzheimer’s. We evaluated our tool-kit with the known inhibitor p5T, and we established a mini-screen to identify compounds that modulate this PPI in dose-response experiments. Finally, we discovered several compounds disrupting CDK5-p25 PPI, which had not been identified by other screening or structure-based methods before.
Collapse
|
36
|
Shoeibi A, Litvan I. Therapeutic options for Progressive Supranuclear Palsy including investigational drugs. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1335596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ali Shoeibi
- Movement Disorder Center, UC San Diego Department of Neurosciences, La Jolla, CA, USA
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- Movement Disorder Center, UC San Diego Department of Neurosciences, La Jolla, CA, USA
| |
Collapse
|
37
|
Bhounsule AS, Bhatt LK, Prabhavalkar KS, Oza M. Cyclin dependent kinase 5: A novel avenue for Alzheimer’s disease. Brain Res Bull 2017; 132:28-38. [DOI: 10.1016/j.brainresbull.2017.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
38
|
Liu W, Li J, Song YS, Li Y, Jia YH, Zhao HD. Cdk5 links with DNA damage response and cancer. Mol Cancer 2017; 16:60. [PMID: 28288624 PMCID: PMC5348798 DOI: 10.1186/s12943-017-0611-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/05/2017] [Indexed: 12/17/2022] Open
Abstract
As an atypical member of cyclin dependent kinase family, Cyclin dependent kinase 5 (Cdk5) is considered as a neuron-specific kinase in the past decade due to the abundant existence of its activator p35 in post-mitotic neurons. Recent studies show that Cdk5 participates in a series of biological and pathological processes in non-neuronal cells, and is generally dysregulated in various cancer cells. The inhibition or knockdown of Cdk5 has been proven to play an anti-cancer role through various mechanisms, and can synergize the killing effect of chemotherapeutics. DNA damage response (DDR) is a series of regulatory events including DNA damage, cell-cycle arrest, regulation of DNA replication, and repair or bypass of DNA damage to ensure the maintenance of genomic stability and cell viability. Here we describe the regulatory mechanisms of Cdk5, its controversial roles in apoptosis and focus on its links to DDR and cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Jun Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Shu Song
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yue Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Hong Jia
- Department of Pathophysiology, Dalian Medical University, Lvshun South Road West 9, Dalian, 116044, China.
| | - Hai-Dong Zhao
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China.
| |
Collapse
|
39
|
Ji YB, Zhuang PP, Ji Z, Huang KB, Gu Y, Wu YM, Pan SY, Hu YF. TFP5 is comparable to mild hypothermia in improving neurological outcomes in early-stage ischemic stroke of adult rats. Neuroscience 2017; 343:337-345. [DOI: 10.1016/j.neuroscience.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/19/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
|
40
|
Ji YB, Zhuang PP, Ji Z, Wu YM, Gu Y, Gao XY, Pan SY, Hu YF. TFP5 peptide, derived from CDK5-activating cofactor p35, provides neuroprotection in early-stage of adult ischemic stroke. Sci Rep 2017; 7:40013. [PMID: 28045138 PMCID: PMC5206714 DOI: 10.1038/srep40013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a multifaceted protein shown to play important roles in the central nervous system. Abundant evidence indicates that CDK5 hyperactivities associated with neuronal apoptosis and death following ischemic stroke. CDK5 activity increases when its cofactor p35 cleaves into p25 during ischemia. Theoretically, inhibition of CDK5/p25 activity or reduction of p25 would be neuroprotective. TFP5, a modified 24-aa peptide (Lys254-Ala277) derived from p35, was found to effectively inhibit CDK5 hyperactivity and improve the outcomes of Alzheimer's disease and Parkinson's disease in vivo. Here, we showed that intraperitoneal injection of TFP5 significantly decreased the size of ischemia in early-stage of adult ischemic stroke rats. Relative to controls, rats treated with TFP5 displayed reduced excitotoxicity, neuroinflammation, apoptosis, astrocytes damage, and blood-brain barrier disruption. Our findings suggested that TFP5 might serve as a potential therapeutic candidate for acute adult ischemic stroke.
Collapse
Affiliation(s)
- Ya-Bin Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei-Pei Zhuang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Ming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Shukla V, Seo J, Binukumar B, Amin ND, Reddy P, Grant P, Kuntz S, Kesavapany S, Steiner J, Mishra SK, Tsai LH, Pant HC. TFP5, a Peptide Inhibitor of Aberrant and Hyperactive Cdk5/p25, Attenuates Pathological Phenotypes and Restores Synaptic Function in CK-p25Tg Mice. J Alzheimers Dis 2017; 56:335-349. [PMID: 28085018 PMCID: PMC10020940 DOI: 10.3233/jad-160916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide's efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5.
Collapse
Affiliation(s)
- Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B.K. Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Preethi Reddy
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Susan Kuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Santosh K. Mishra
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Correspondence to: Dr. Harish C. Pant, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Chien MY, Chuang CH, Chern CM, Liou KT, Liu DZ, Hou YC, Shen YC. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic Biol Med 2016; 99:508-519. [PMID: 27609227 DOI: 10.1016/j.freeradbiomed.2016.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection.
Collapse
Affiliation(s)
- Mei-Yin Chien
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Ko Da Pharmaceutical Co., Taoyuan, Taiwan
| | | | - Chang-Ming Chern
- Division of Neurovascular Disease, Neurological Institute, Taipei Veterans General Hospital & Taipei Municipal Gan-Dau Hospital, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kou-Tong Liou
- Department of Combat Sports and Chinese Martial Arts, Chinese Culture University, Taipei, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Center for General Education, Hsuan Chuang University, Hsinchu, Taiwan.
| | - Yu-Chang Hou
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taiwan; Department of Bioscience Technology, Chuan-Yuan Christian University, Taoyuan, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan; National Taipei University of Nursing and Health Science, Taipei, Taiwan.
| |
Collapse
|
43
|
Amin ND, Zheng Y, Bk B, Shukla V, Skuntz S, Grant P, Steiner J, Bhaskar M, Pant HC. The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35. Mol Biol Cell 2016; 27:3221-3232. [PMID: 27630261 PMCID: PMC5170856 DOI: 10.1091/mbc.e15-12-0857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/07/2016] [Indexed: 11/11/2022] Open
Abstract
In a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.g., tubulin and actin) as a membrane-bound multimeric complex that favors p35 binding to Cdk5 and catalysis. To test this hypothesis, we focused on Munc 18, a key synapse-associated neuronal protein, one of many proteins copurifying with Cdk5/p35 in membrane-bound multimeric complexes. Here we show that, in vitro, the addition of p67 protects Cdk5/p35 and has no effect on Cdk5/p25 activity in the presence of TFP5. In cortical neurons transfected with p67siRNA, we also show that TFP5 inhibits Cdk5/p35 activity, whereas in the presence of p67 the activity is protected. It does so without affecting any other kinases of the Cdk family of cyclin kinases. This difference may be of significant therapeutic value because the accumulation of the deregulated, hyperactive Cdk5/p25 complex in human brains has been implicated in pathology of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yali Zheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Binukumar Bk
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Binukumar B, Pelech SL, Sutter C, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Profiling of p5, a 24 Amino Acid Inhibitory Peptide Derived from the CDK5 Activator, p35 CDKR1 Against 70 Protein Kinases. J Alzheimers Dis 2016; 54:525-33. [DOI: 10.3233/jad-160458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B.K. Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Steven L. Pelech
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Catherine Sutter
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Zhang QS, Liao YG, Ji Z, Gu Y, Jiang HS, Xie ZS, Pan SY, Hu YF. TFP5 prevents 1-methyl-4-phenyl pyridine ion-induced neurotoxicity in mouse cortical neurons. Exp Ther Med 2016; 12:2594-2598. [PMID: 27698762 PMCID: PMC5038479 DOI: 10.3892/etm.2016.3658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the protective effect of a modified p5 peptide, TFP5, on 1-methyl-4-phenyl pyridine ion (MPP+)-induced neurotoxicity in cortical neurons and explore the therapeutic effect of TFP5 on Parkinson's disease (PD). MPP+ was applied to a primary culture of mouse cortical neurons to establish the cell model of PD. Neurons were divided into four groups: Control, model (MPP+), scrambled peptide (Scb) (Scb + MPP+) and TFP5 (TFP5 + MPP+) groups. Pretreatment with Scb or TFP5 was applied to the latter two groups, respectively, for 3 h, while phosphate-buffered saline was applied to the control and model groups. MPP+ was then applied to all groups, with the exception of the control group, and neurons were cultured for an additional 24 h. Neuron viability was evaluated using a Cell Counting kit-8 (CCK8) assay. To explore the mechanism underlying the protective effects of TFP5, the expression levels of p35, p25 and phosphorylated myocyte enhancer factor 2 (p-MEF2D) were determined by western blotting. Fluorescence microscopy showed that TFP5 was able to pass through cell membranes and distribute around the nucleus. CCK8 assay showed that neuronal apoptosis was dependent on MPP+ concentration and exposure time. Cell viability decreased significantly in the model group compared with the control group (55±7 vs. 100±0%; P<0.01), and increased significantly in the TFP5 group compared with the model group (98±2 vs. 55±5%; P<0.01) and Scb group (98±2 vs. 54±4%; P<0.01). Scb exhibited no protective effect. Western blotting results showed that MPP+ induced p25 and p-MEF2D expression, TFP5 and Scb did not affect MPP+-induced p25 expression, but TFP5 reduced MPP+-induced p-MEF2D expression. In summary, TFP5 protects against MPP+-induced neurotoxicity in mouse cortical neurons, possibly through inhibiting the MPP+-induced formation and elevated kinase activity of a cyclin-dependent kinase 5/p25 complex.
Collapse
Affiliation(s)
- Qi-Shan Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Neurology, Chenzhou First People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Yuan-Gao Liao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Neurology, Chenzhou First People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Shan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zuo-Shan Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
46
|
Mesenchymal Stem Cells Loaded with p5, Derived from CDK5 Activator p35, Inhibit Calcium-Induced CDK5 Activation in Endothelial Cells. Stem Cells Int 2016; 2016:2165462. [PMID: 27651795 PMCID: PMC5019892 DOI: 10.1155/2016/2165462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 11/23/2022] Open
Abstract
The potential use of stem cells as therapeutics in disease has gained momentum over the last few years and recently phase-I clinical trials have shown favourable results in treatment of a small cohort of acute stroke patients. Similarly, they have been used in preclinical models drug-loaded for the effective treatment of solid tumours. Here we have characterized uptake and release of a novel p5-cyclin-dependent kinase 5 (CDK5) inhibitory peptide by mesenchymal stem cells and showed release levels capable of blocking aberrant cyclin-dependent kinase 5 (CDK5) signaling pathways, through phosphorylation of cyclin-dependent kinase 5 (CDK5) and p53. These pathways represent the major acute mechanism stimulating apoptosis after stroke and hence its modulation could benefit patient recovery. This work indicates a potential use for drug-loaded stem cells as delivery vehicles for stroke therapeutics and in addition as anticancer receptacles particularly, if a targeting and/or holding mechanism can be defined.
Collapse
|
47
|
Zhou X, Huang J, Pan S, Xu M, He R, Ji Z, Hu Y. Neurodegeneration-Like Pathological and Behavioral Changes in an AAV9-Mediated p25 Overexpression Mouse Model. J Alzheimers Dis 2016; 53:843-55. [PMID: 27258419 DOI: 10.3233/jad-160191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Xiao Zhou
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianou Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- 421 Hospital, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongni He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Binukumar BK, Shukla V, Amin ND, Bhaskar M, Skuntz S, Steiner J, Winkler D, Pelech SL, Pant HC. Analysis of the Inhibitory Elements in the p5 Peptide Fragment of the CDK5 Activator, p35, CDKR1 Protein. J Alzheimers Dis 2016; 48:1009-17. [PMID: 26444778 PMCID: PMC4927891 DOI: 10.3233/jad-150412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles, it is well documented that cyclin-dependent kinase 5 (CDK5), a critical neuronal protein kinase in nervous system development, function, and survival, when deregulated and hyperactivated induces Alzheimer's disease (AD) and amyotrophic lateral sclerosis and Parkinson's disease-like phenotypes in mice. In a recent study, we demonstrated that p5, a small, truncated fragment of 24 amino acid residues derived from the CDK5 activator protein 35 (NCK5A, p35), selectively inhibited deregulated CDK5 hyperactivity and ameliorated AD phenotypes in model mice. In this study, we identified the most inhibitory elements in the p5 peptide fragment. Each amino acid residue in p5 was systematically replaced with its homologous residues that may still be able to functionally substitute. The effects of these p5 peptide analogs were studied on the phosphotransferase activities of CDK5/p35, CDK5/p25, ERK1, and GSK3β. The mimetic p5 peptide (A/V substitution at the C-terminus of the peptide) in the sequence, KNAFYERALSIINLMTSKMVQINV (p5-MT) was the most effective inhibitor of CDK5 kinase activity of 79 tested mimetic peptides including the original p5 peptide, KEAFWDRCLSVINLMSSKMLQINA (p5-WT). Replacement of the residues in C-terminus end of the peptide affected CDK5 phosphotransferase activity most significantly. These peptides were strong inhibitors of CDK5, but not the related proline-directed kinases, ERK1 and GSK3β.
Collapse
Affiliation(s)
- B K Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Dirk Winkler
- Kinexus Bioinformatics Corporation, and Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Steven L Pelech
- Kinexus Bioinformatics Corporation, and Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Harish C Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Cardone A, Brady M, Sriram R, Pant HC, Hassan SA. Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore. J Comput Aided Mol Des 2016; 30:513-21. [PMID: 27387995 DOI: 10.1007/s10822-016-9922-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/25/2016] [Indexed: 01/29/2023]
Abstract
The hyperactivity of the cyclic dependent kinase 5 (CDK5) induced by the activator protein p25 has been linked to a number of pathologies of the brain. The CDK5-p25 complex has thus emerged as a major therapeutic target for Alzheimer's disease (AD) and other neurodegenerative conditions. Experiments have shown that the peptide p5 reduces the CDK5-p25 activity without affecting the endogenous CDK5-p35 activity, whereas the peptide TFP5, obtained from p5, elicits similar inhibition, crosses the blood-brain barrier, and exhibits behavioral rescue of AD mice models with no toxic side effects. The molecular basis of the kinase inhibition is not currently known, and is here investigated by computer simulations. It is shown that p5 binds the kinase at the same CDK5/p25 and CDK5/p35 interfaces, and is thus a non-selective competitor of both activators, in agreement with available experimental data in vitro. Binding of p5 is enthalpically driven with an affinity estimated in the low µM range. A quantitative description of the binding site and pharmacophore is presented, and options are discussed to increase the binding affinity and selectivity in the design of drug-like compounds against AD.
Collapse
Affiliation(s)
- A Cardone
- Software and System Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
- Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA.
| | - M Brady
- Software and System Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - R Sriram
- Software and System Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - H C Pant
- Laboratory of Neurochemistry, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - S A Hassan
- Center for Molecular Modeling, Division of Computational Bioscience, CIT, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
50
|
Binukumar BK, Pant HC. TFP5/TP5 peptide provides neuroprotection in the MPTP model of Parkinson's disease. Neural Regen Res 2016; 11:698-701. [PMID: 27335538 PMCID: PMC4904445 DOI: 10.4103/1673-5374.182681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the serine-threonine kinase family of cyclin-dependent kinases. Cdk5 is critical to normal mammalian nervous system development and plays important regulatory roles in multiple cellular functions. Recent evidence indicates that Cdk5 is inappropriately activated in several neurodegenerative conditions, including Parkinson's disease (PD). PD is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. During neurotoxicity, p35 is cleaved to form p25. Binding of p25 with Cdk5 leads deregulation of Cdk5 resulting in number of neurodegenerative pathologies. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Here we show that inhibition of p25/Cdk5 hyperactivation through TFP5/TP5, truncated 24-aa peptide derived from the Cdk5 activator p35 rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show inhibition of Cdk5/p25-hyperactivation by TFP5/TP5 peptide, which identifies Cdk5/p25 as a potential therapeutic target to reduce neurodegeneration in PD.
Collapse
Affiliation(s)
- B K Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|