1
|
Duret T, Elmallah M, Rollin J, Gatault P, Jiang LH, Roger S. Role of purinoreceptors in the release of extracellular vesicles and consequences on immune response and cancer progression. Biomed J 2024; 48:100805. [PMID: 39510381 DOI: 10.1016/j.bj.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Cell-to-cell communication is a major process for accommodating cell functioning to changes in the environments and to preserve tissue and organism homeostasis. It is achieved by different mechanisms characterized by the origin of the message, the molecular nature of the messenger, its speed of action and its reach. Purinergic signalling is a powerful mechanism initiated by extracellular nucleotides, such as ATP, acting on plasma membrane purinoreceptors. Purinergic signalling is tightly controlled in time and space by the action of ectonucleotidases. Recent studies have highlighted the critical role of purinergic signalling in controlling the generation, release and fate of extracellular vesicles and, in this way, mediating long-distance responses. Most of these discoveries have been made in immune and cancer cells. This review is aimed at establishing the current knowledge on the way which purinoreceptors control extracellular vesicle-mediated communications and consequences for recipient cells.
Collapse
Affiliation(s)
- Thomas Duret
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Mohammed Elmallah
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France
| | - Jérôme Rollin
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service d'Hématologie-Hémostase, CHRU de Tours, Tours, France
| | - Philippe Gatault
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service de Néphrologie, Hypertension, Dialyse et Transplantation Rénale, Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; School of Basic Medical Sciences, Xinxiang Medical University, Henan, China; School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France.
| |
Collapse
|
2
|
Maldifassi MC, Guerra-Fernández MJ, Ponce D, Alfonso-Bueno S, Maripillán J, Vielma AH, Báez-Matus X, Marengo FD, Acuña-Castillo C, Sáez JC, Martínez AD, Cárdenas AM. Autocrine activation of P2X7 receptors mediates catecholamine secretion in chromaffin cells. Br J Pharmacol 2024; 181:2905-2922. [PMID: 38679932 DOI: 10.1111/bph.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.
Collapse
Affiliation(s)
- María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Ponce
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|
6
|
Cui X, Lai W, Zhao Y, Chen C. The Exosome-Mediated Cascade Reactions for the Transfer and Inflammatory Responses of Fine Atmospheric Particulate Matter in Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7891-7901. [PMID: 37163641 DOI: 10.1021/acs.est.3c01436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exposure to atmospheric particulate matter (PM) is a frequent occurrence to humans, and their adverse outcomes have become a global concern. Although PM-induced inflammation is a common phenomenon, a clear picture of the mechanisms underlying exosome-mediated inflammation of PM has not yet emerged. Here, we show that exosomes can mediate the cascade reactions for the transfer of PM and inflammatory responses of macrophages. Specifically, two fine PM2.5, namely F1 (<0.49 μm) and F2 (0.95-1.5 μm), stimulated a substantial release of exosomes from macrophages (THP-1 cells) with the order of F1 > F2, via regulation of the P2X7 receptor (P2X7R). Inhibiting P2X7R with a specific inhibitor largely prevented the secretion of exosomes. In particular, we found that exosomes served as a mediator for the transfer of PM2.5 to the recipient macrophages and activated NF-κB signaling through toll-like receptor 4 (TLR-4), thereby stimulating inflammatory cytokine release and altering the inflammatory phenotype of recipients. Importantly, the exosomes derived from PM2.5-treated macrophages induced the inflammatory responses of lung in mice. Our results highlight that exosomes undergo a secretion-particle transfer-adverse outcome chain in macrophages treated with PM2.5. Given the ubiquitous atmospheric particulate matter, these new findings underscore an urgent need for assessing the secretion of exosomes and their impact on human health via exosome-centric physiological pathways.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yao Zhao
- National Center for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| |
Collapse
|
7
|
Pislyagin EA, Menchinskaya ES, Gladkikh IN, Kvetkina AN, Sintsova OV, Popkova DV, Kozlovskiy SA, Gorpenchenko TY, Likhatskaya GN, Kaluzhskiy LA, Ivanov AS, Andreev YA, Kozlov SA, Dmitrenok PS, Aminin DL, Leychenko EV. Recombinant Analogs of Sea Anemone Kunitz-Type Peptides Influence P2X7 Receptor Activity in Neuro-2a Cells. Mar Drugs 2023; 21:md21030192. [PMID: 36976241 PMCID: PMC10053369 DOI: 10.3390/md21030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Purinergic P2X7 receptors (P2X7) have now been proven to play an important role and represent an important therapeutic target in many pathological conditions including neurodegeneration. Here, we investigated the impact of peptides on purinergic signaling in Neuro-2a cells through the P2X7 subtype in in vitro models. We have found that a number of recombinant peptides, analogs of sea anemone Kunitz-type peptides, are able to influence the action of high concentrations of ATP and thereby reduce the toxic effects of ATP. The influx of calcium, as well as the fluorescent dye YO-PRO-1, was significantly suppressed by the studied peptides. Immunofluorescence experiments confirmed that the peptides reduce the P2X7 expression level in neuronal Neuro-2a cells. Two selected active peptides, HCRG1 and HCGS1.10, were found to specifically interact with the extracellular domain of P2X7 and formed stable complexes with the receptor in surface plasmon resonance experiments. The molecular docking approach allowed us to establish the putative binding sites of the most active HCRG1 peptide on the extracellular domain of the P2X7 homotrimer and propose a mechanism for regulating its function. Thus, our work demonstrates the ability of the Kunitz-type peptides to prevent neuronal death by affecting signaling through the P2X7 receptor.
Collapse
Affiliation(s)
- Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Irina N Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Aleksandra N Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | | | - Darya V Popkova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergei A Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Galina N Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Leonid A Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia
| | - Alexis S Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Elena V Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| |
Collapse
|
8
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
9
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
10
|
Santos SACS, Persechini PM, Henriques-Santos BM, Bello-Santos VG, Castro NG, Costa de Sousa J, Genta FA, Santiago MF, Coutinho-Silva R, Savio LEB, Kurtenbach E. P2X7 Receptor Triggers Lysosomal Leakage Through Calcium Mobilization in a Mechanism Dependent on Pannexin-1 Hemichannels. Front Immunol 2022; 13:752105. [PMID: 35222364 PMCID: PMC8863609 DOI: 10.3389/fimmu.2022.752105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor is a critical purinergic receptor in immune cells. Its activation was associated with cathepsin release into macrophage cytosol, suggesting its involvement in lysosomal membrane permeabilization (LMP) and leakage. Nevertheless, the mechanisms by which P2X7 receptor activation induces LMP and leakage are unclear. This study investigated cellular mechanisms associated with endosomal and lysosomal leakage triggered by P2X7 receptor activation. We found that ATP at 500 μM and 5 mM (but not 50 μM) induced LMP in non-stimulated peritoneal macrophages. This effect was not observed in P2X7-deficient or A740003-pretreated macrophages. We found that the P2X7 receptor and pannexin-1 channels mediate calcium influx that might be important for activating specific ion channels (TRPM2 and two-pore channels) on the membranes of late endosomes and lysosomes leading to LMP leakage and consequent cathepsin release. These findings suggest the critical role of the P2X7 receptor in inflammatory and infectious diseases via lysosomal dysfunction.
Collapse
Affiliation(s)
- Stephanie Alexia Cristina Silva Santos
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Muanis Persechini
- Laboratory of Immuno-Biophysics, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Monteiro Henriques-Santos
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Victória Gabriela Bello-Santos
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Newton G Castro
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlia Costa de Sousa
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcelo Felippe Santiago
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
12
|
Evaluating methods and protocols of ferritin-based magnetogenetics. iScience 2021; 24:103094. [PMID: 34622149 PMCID: PMC8479696 DOI: 10.1016/j.isci.2021.103094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
FeRIC (Ferritin iron Redistribution to Ion Channels) is a magnetogenetic technique that uses radiofrequency (RF) alternating magnetic fields to activate the transient receptor potential channels, TRPV1 and TRPV4, coupled to cellular ferritins. In cells expressing ferritin-tagged TRPV, RF stimulation increases the cytosolic Ca2+ levels via a biochemical pathway. The interaction between RF and ferritin increases the free cytosolic iron levels that, in turn, trigger chemical reactions producing reactive oxygen species and oxidized lipids that activate the ferritin-tagged TRPV. In this pathway, it is expected that experimental factors that disturb the ferritin expression, the ferritin iron load, the TRPV functional expression, or the cellular redox state will impact the efficiency of RF in activating ferritin-tagged TRPV. Here, we examined several experimental factors that either enhance or abolish the RF control of ferritin-tagged TRPV. The findings may help optimize and establish reproducible magnetogenetic protocols.
Collapse
|
13
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Peng Y, Chu S, Yang Y, Zhang Z, Pang Z, Chen N. Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Front Pharmacol 2021; 12:671734. [PMID: 33967814 PMCID: PMC8103160 DOI: 10.3389/fphar.2021.671734] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo. While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Naihong Chen
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front Pharmacol 2021; 12:654023. [PMID: 33790800 PMCID: PMC8006391 DOI: 10.3389/fphar.2021.654023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It acts as danger signal that promotes inflammation by activating both P2X and P2Y purinergic receptors expressed in immune cells, including microglia, and tumor cells. One of the most important receptors implicated in ATP-induced inflammation is P2X7 receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are membrane structures released by all cells, which contain a selection of donor cell components, including proteins, lipids, RNA and ATP itself, and are able to transfer these molecules to target cells. ATP stimulation not only promotes EV production from microglia but also influences EV composition and signaling to the environment. In the present review, we will discuss the current knowledge on the role of ATP in the biogenesis and dynamics of EVs, which exert important functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Marta Lombardi
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Gabrielli
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
16
|
P2X7 receptors in the central nervous system. Biochem Pharmacol 2021; 187:114472. [PMID: 33587917 DOI: 10.1016/j.bcp.2021.114472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.
Collapse
|
17
|
Diabetic bladder dysfunction in T2D KK-Ay mice and its changes in the level of relevant gene expression. Biomed Pharmacother 2020; 131:110706. [PMID: 33152907 DOI: 10.1016/j.biopha.2020.110706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Diabetic bladder dysfunction (DBD) is one of the most common and bothersome complications of diabetes mellitus (DM). The purpose of the present study is to investigate DBD in KK-Ay mice, and to identify the expression of relative genes. METHOD Totally twenty-seven KK-Ay mice and thirty C57BL/6 J mice, respectively, were randomly divided into 12-, 18-, and 25-week old groups. The weight, water intake, voided volume, the frequency of micturition, fasting blood glucose (FBG), oral glucose tolerance test (OGTT) were measured at varying time points. Maximum bladder volume (MBC), residual volume (RV), bladder compliance (BC), micturition efficiency (VE) and maximum micturition pressure (MVP) were assessed by urodynamic test, and contractile responses to α, β-methylene ATP, KCl, electrical-field stimulation, carbachol were performed by detrusor smooth muscle strips contractility test. The bladders were stained with hematoxylin and eosin (H&E) and Masson's trichrome to determine bladder wall thickness. Additionally, the mRNA expression of Myosin Va, SLC17A9, P2X1, M3 and M2 were then verified by qRT-PCR. RESULT The weight, water intake, voided volumes, micturition frequency, FBG, the blood glucose AUC0-2h of KK-Ay mice were significantly increased at three time points. MBC, RV and BC were significantly increased; VE was significantly lower at the age of 18 and 25 weeks in KK-Ay mice; MVP was significantly increased at the age of 25 weeks in KK-Ay mice. In DSM strips contractility test, the amplitude of the spontaneous activity in KK-Ay mice significant increased at 12 weeks and 18 weeks, while both the amplitude and frequency were significantly decreased at the age of 25 weeks. The level of Myosin Va, SLC17A9 and M3 receptor significantly decreased in KK-Ay mice at 12 weeks, while Myosin Va markedly increased at 18 weeks; P2X1 and M2 receptors of KK-Ay mice was significantly increased at all three time points. CONCLUSION Taken together, this study demonstrates that KK-Ay mice can be a proper model to investigate DBD whose transformation from compensatory state to decompensated state may ascribe to the time-dependent alternations of Myosin Va, SLC17A9, P2X1, M3 and M2 expression levels.
Collapse
|
18
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
19
|
Yang X, Wang J, Rui‐Wang, Xu Y, Chen F, Tang L, Ren W, Fu L, Tan B, Huang P, Cao H. Time-dependent functional, morphological, and molecular changes in diabetic bladder dysfunction in streptozotocin-induced diabetic mice. Neurourol Urodyn 2019; 38:1266-1277. [PMID: 31006139 PMCID: PMC6850069 DOI: 10.1002/nau.24008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
AIM Diabetic bladder dysfunction (DBD) is one of the most common and bothersome complications of diabetes mellitus (DM). This study aimed to investigate the functional, structural, and molecular changes of the bladder at 0, 3, 6, 9, and 12 weeks after DM induction by streptozotocin (STZ) in male C57BL/6 mice. METHODS Male C57BL/6J mice were injected with STZ (130 mg/kg). Then, diabetic general characteristics, cystometry test, histomorphometry, and contractile responses to α, β-methylene ATP, KCl, electrical-field stimulation, carbachol were performed at 0, 3, 6, 9, and 12 weeks after induction. Finally, protein and messenger RNA (mRNA) expressions of myosin Va and SLC17A9 were quantified. RESULTS DM mice exhibited lower body weight, voiding efficiency and higher water intake, urine production, fasting blood glucose, oral glucose tolerance test, bladder wall thickness, maximum bladder capacity, residual volume, bladder compliance. In particular, nonvoiding contractions has increased more than five times at 6 weeks. And the amplitudes of spontaneous activity, contractile responses to all stimulus was about two times higher at 6 weeks but cut almost in half at 12 weeks. The protein and mRNA expressions of myosin Va and SLC17A9 were about two times higher at 6 weeks, but myosin Va was reverted nearly 40% while SLC17A9 is still higher at 12 weeks. CONCLUSIONS DBD transitioned from a compensated state to a decompensated state in STZ-induced DM mice at 9 to 12 weeks after DM induction. Our molecular data suggest that the transition may be closely related to the alterations of myosin Va and SLC17A9 expression levels in the bladder with time.
Collapse
Affiliation(s)
- Xu‐feng Yang
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Wang
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Rui‐Wang
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yi‐fei Xu
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fang‐jun Chen
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Li‐yao Tang
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Wen‐kang Ren
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Li‐jun Fu
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bo Tan
- School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ping Huang
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
- Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese MedicineGuangzhou University of Chinese MedicineDongguanChina
| | - Hong‐ying Cao
- Department of pharmacology of Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
- Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese MedicineGuangzhou University of Chinese MedicineDongguanChina
| |
Collapse
|
20
|
Winkelmann VE, Thompson KE, Neuland K, Jaramillo AM, Fois G, Schmidt H, Wittekindt OH, Han W, Tuvim MJ, Dickey BF, Dietl P, Frick M. Inflammation-induced upregulation of P2X 4 expression augments mucin secretion in airway epithelia. Am J Physiol Lung Cell Mol Physiol 2018; 316:L58-L70. [PMID: 30358443 DOI: 10.1152/ajplung.00157.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucus clearance provides an essential innate defense mechanism to keep the airways and lungs free of particles and pathogens. Baseline and stimulated mucin secretion from secretory airway epithelial cells need to be tightly regulated to prevent mucus hypersecretion and mucus plugging of the airways. It is well established that extracellular ATP is a potent stimulus for regulated mucus secretion. Previous studies revealed that ATP acts via metabotropic P2Y2 purinoreceptors on goblet cells. Extracellular ATP, however, is also a potent agonist for ionotropic P2X purinoreceptors. Expression of several P2X isoforms has been reported in airways, but cell type-specific expression and the function thereof remained elusive. With this study, we now provide evidence that P2X4 is the predominant P2X isoform expressed in secretory airway epithelial cells. After IL-13 treatment of either human primary tracheal epithelial cells or mice, P2X4 expression is upregulated in vitro and in vivo under conditions of chronic inflammation, mucous metaplasia, and hyperplasia. Upregulation of P2X4 is strongest in MUC5AC-positive goblet cells. Moreover, activation of P2X4 by extracellular ATP augments intracellular Ca2+ signals and mucin secretion, whereas Ca2+ signals and mucin secretion are dampened by inhibition of P2X4 receptors. These data provide new insights into the purinergic regulation of mucin secretion and add to the emerging picture that P2X receptors modulate exocytosis of large secretory organelles and secretion of macromolecular vesicle cargo.
Collapse
Affiliation(s)
| | - Kristin E Thompson
- Centre de Recherche Saint-Antoine, INSERM, Université Pierre et Marie Curie-Université Paris 06, Sorbonne Universités, Paris , France
| | - Kathrin Neuland
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Giorgio Fois
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Hanna Schmidt
- Institute of General Physiology, Ulm University , Ulm , Germany
| | | | - Wei Han
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Michael J Tuvim
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Paul Dietl
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University , Ulm , Germany
| |
Collapse
|
21
|
Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice. Purinergic Signal 2018; 14:459-469. [PMID: 30362043 DOI: 10.1007/s11302-018-9630-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023] Open
Abstract
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1-/-) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1-/- mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.
Collapse
|
22
|
Ye XC, Hu JX, Li L, Li Q, Tang FL, Lin S, Sun D, Sun XD, Cui GY, Mei L, Xiong WC. Astrocytic Lrp4 (Low-Density Lipoprotein Receptor-Related Protein 4) Contributes to Ischemia-Induced Brain Injury by Regulating ATP Release and Adenosine-A 2AR (Adenosine A2A Receptor) Signaling. Stroke 2018; 49:165-174. [PMID: 29212737 PMCID: PMC5742060 DOI: 10.1161/strokeaha.117.018115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Lrp4 (low-density lipoprotein receptor-related protein 4) is predominantly expressed in astrocytes, where it regulates glutamatergic neurotransmission by suppressing ATP release. Here, we investigated Lrp4's function in ischemia/stroke-induced brain injury response, which includes glutamate-induced neuronal death and reactive astrogliosis. METHODS The brain-specific Lrp4 conditional knockout mice (Lrp4GFAP-Cre), astrocytic-specific Lrp4 conditional knockout mice (Lrp4GFAP-creER), and their control mice (Lrp4f/f) were subjected to photothrombotic ischemia and the transient middle cerebral artery occlusion. After ischemia/stroke, mice or their brain samples were subjected to behavior tests, brain histology, immunofluorescence staining, Western blot, and quantitative real-time polymerase chain reaction. In addition, primary astrocytes and neurons were cocultured with or without oxygen and glucose deprivation and in the presence or absence of the antagonist for adenosine-A2AR (adenosine A2A receptor) or ATP-P2X7R (P2X purinoceptor 7) signaling. Gliotransmitters, such as glutamate, d-serine, ATP, and adenosine, in the condition medium of cultured astrocytes were also measured. RESULTS Lrp4, largely expressed in astrocytes, was increased in response to ischemia/stroke. Both Lrp4GFAP-Cre and Lrp4GFAP-creER mice showed less brain injury, including reduced neuronal death, and impaired reactive astrogliosis. Mechanistically, Lrp4 conditional knockout in astrocytes increased ATP release and the production of ATP derivative, adenosine, which were further elevated by oxygen and glucose deprivation. Pharmacological inhibition of ATP-P2X7R or adenosine-A2AR signaling diminished Lrp4GFAP-creER's protective effect. CONCLUSIONS The astrocytic Lrp4 plays an important role in ischemic brain injury response. Lrp4 deficiency in astrocytes seems to be protective in response to ischemic brain injury, likely because of the increased ATP release and adenosine-A2AR signaling.
Collapse
Affiliation(s)
- Xin-Chun Ye
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Jin-Xia Hu
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lei Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Qiang Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Fu-Lei Tang
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Sen Lin
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Xiang-Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Gui-Yun Cui
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lin Mei
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Wen-Cheng Xiong
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.).
| |
Collapse
|
23
|
Menéndez-Méndez A, Díaz-Hernández JI, Ortega F, Gualix J, Gómez-Villafuertes R, Miras-Portugal MT. Specific Temporal Distribution and Subcellular Localization of a Functional Vesicular Nucleotide Transporter (VNUT) in Cerebellar Granule Neurons. Front Pharmacol 2017; 8:951. [PMID: 29311945 PMCID: PMC5744399 DOI: 10.3389/fphar.2017.00951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Adenosine triphosphate (ATP) is an important extracellular neurotransmitter that participates in several critical processes like cell differentiation, neuroprotection or axon guidance. Prior to its exocytosis, ATP must be stored in secretory vesicles, a process that is mediated by the Vesicular Nucleotide Transporter (VNUT). This transporter has been identified as the product of the SLC17A9 gene and it is prominently expressed in discrete brain areas, including the cerebellum. The main population of cerebellar neurons, the glutamatergic granule neurons, depends on purinergic signaling to trigger neuroprotective responses. However, while nucleotide receptors like P2X7 and P2Y13 are known to be involved in neuroprotection, the mechanisms that regulate ATP release in relation to such events are less clearly understood. In this work, we demonstrate that cerebellar granule cells express a functional VNUT that is involved in the regulation of ATP exocytosis. Numerous vesicles loaded with this nucleotide can be detected in these granule cells and are staining by the fluorescent ATP-marker, quinacrine. High potassium stimulation reduces quinacrine fluorescence in granule cells, indicating they release ATP via calcium dependent exocytosis. Specific subcellular markers were used to assess the localization of VNUT in granule cells, and the transporter was detected in both the axonal and somatodendritic compartments, most predominantly in the latter. However, co-localization with the specific lysosomal marker LAMP-1 indicated that VNUT can also be found in non-synaptic vesicles, such as lysosomes. Interestingly, the weak co-localization between VNUT and VGLUT1 suggests that the ATP and glutamate vesicle pools are segregated, as also observed in the cerebellar cortex. During post-natal cerebellar development, VNUT is found in granule cell precursors, co-localizing with markers of immature cells like doublecortin, suggesting that this transporter may be implicated in the initial stages of granule cell development.
Collapse
Affiliation(s)
- Aida Menéndez-Méndez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan I Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - María T Miras-Portugal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
24
|
Conley JM, Radhakrishnan S, Valentino SA, Tantama M. Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor. PLoS One 2017; 12:e0187481. [PMID: 29121644 PMCID: PMC5679667 DOI: 10.1371/journal.pone.0187481] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) is a key purinergic signal that mediates cell-to-cell communication both within and between organ systems. We address the need for a robust and minimally invasive approach to measuring extracellular ATP by re-engineering the ATeam ATP sensor to be expressed on the cell surface. Using this approach, we image real-time changes in extracellular ATP levels with a sensor that is fully genetically-encoded and does not require an exogenous substrate. In addition, the sensor is ratiometric to allow for reliable quantitation of extracellular ATP fluxes. Using live-cell microscopy, we characterize sensor performance when expressed on cultured Neuro2A cells, and we measure both stimulated release of ATP and its clearance by ectonucleotidases. Thus, this proof-of-principle demonstrates a first-generation sensor to report extracellular ATP dynamics that may be useful for studying purinergic signaling in living specimens.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Saranya Radhakrishnan
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Stephen A. Valentino
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Mathew Tantama
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J Neurosci 2017; 37:7063-7072. [PMID: 28747389 DOI: 10.1523/jneurosci.3104-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.
Collapse
|
26
|
Jiang X, Mao W, Yang Z, Zeng J, Zhang Y, Song Y, Kong Y, Ren S, Zuo Y. Silencing P2X7 receptor downregulates the expression of TCP-1 involved in lymphoma lymphatic metastasis. Oncotarget 2016; 6:42105-17. [PMID: 26556873 PMCID: PMC4747213 DOI: 10.18632/oncotarget.5870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023] Open
Abstract
P2X7R is an ATP-gated cation channel that participates in cell proliferation and apoptosis. TCP-1 assists with the protein folding. According to our previous research, the P2X7R has a potential role in P388D1 lymphoid neoplasm cells dissemination to peripheral lymph nodes. In order to make a further exploration about the probable mechanism, the lymph nodes which metastasized by P2X7R-silenced P388D1 cells or non-silenced cells were analyzed by 2DE and a MALDI-TOF-based proteomics approach. In the 64 proteins which were differentially expressed between two groups, TCP-1 was found to be significantly decreased in P2X7R shRNA group compared to controls. This correlation was also found in subsequent experiments in vivo and in vitro. The positive correlation between P2X7R and TCP-1 was also proved in both lymphoma and benign lymphadenopathy tissues from patients. It indicates that TCP-1 may be a crucial downstream molecular of P2X7R and plays a novel role in lymphoid neoplasm metastasis.
Collapse
Affiliation(s)
- Xudong Jiang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Wenjuan Mao
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Ziyi Yang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia Zeng
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Yi Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China.,Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yang Song
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China.,Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Ying Kong
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuangyi Ren
- Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
27
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
28
|
Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R. Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflammation 2016; 13:91. [PMID: 27117066 PMCID: PMC4847215 DOI: 10.1186/s12974-016-0553-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. Methods ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Results Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p < 0.0336) and protein expression (*p < 0.022). Further analysis of P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p < 0.05) but decreased cytoplasmic expression after 48 h METH treatment, suggesting protein mobilization from the cytoplasm to the membrane which occurs upon microglial stimulation with METH. Forty-eight hour METH treatment increased microglial migration towards Fractalkine (CX3CL1) compared to control (****p < 0.0001). Migration toward CX3CL1 was confirmed to be P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p < 0.0001). Similarly, 48 h METH treatment increased microglial phagocytosis compared to control (****p < 0.0001), and pretreatment of P2X7R antagonist reduced METH-induced phagocytosis (****p < 0.0001). Silencing the microglial P2X7R decreased TNF-α (*p < 0.0363) and IL-10 production after 48 h of METH treatment. Additionally, our studies demonstrate increased P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. Conclusions This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0553-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep 2015; 5:18417. [PMID: 26687764 PMCID: PMC4685307 DOI: 10.1038/srep18417] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Ignacio Díaz-Hernández
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
30
|
Tan C, Han LI, Zou L, Luo C, Liu A, Sheng X, Xi D. Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells. Exp Ther Med 2015; 10:1472-1478. [PMID: 26622509 DOI: 10.3892/etm.2015.2705] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 03/05/2015] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the effects of P2X7R short hairpin (sh)RNA on the proliferation and apoptosis of MCF-7 cells, and to detect the expression of P2X7R in breast cancer and MCF-7 cells. In order to detect the expression of P2X7R in normal breast and breast cancer tissues, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot analysis and immunohistochemistry were performed. A P2X7-targeted shRNA sequence and a scrambled sequence were inserted into the pLKO.1 expression vector, and MCF-7 cells with stable transfection of P2X7R-shRNA and P2X7R-scrambled shRNA (control) were selected. qRT-PCR was used to detect the mRNA expression levels of P2X7R in the MCF-7 cells transfected with P2X7R-shRNA and scrambled shRNA. In addition, protein expression levels of P2X7R in the fresh tumor tissues were detected by western blot analysis. An MTT assay was used to detect the proliferation rate at different time points, while flow cytometry was used to detect the growth inhibition and apoptosis rate of the stably transfected MCF-7 cells. P2X7R expression levels in the breast cancer tissues were higher when compared with the normal breast tissue, and a positive correlation was observed with the estrogen receptor (ER+), as shown by qRT-PCR, western blot analysis and immunohistochemistry. Plasmids expressing P2X7 gene-specific shRNA and scrambled shRNA were constructed and transfected into MCF-7 cells. The qRT-PCR results revealed lower mRNA expression levels of P2X7 in the P2X7R-shRNA cells when compared with the scrambled shRNA cells. Furthermore, western blot analysis demonstrated that P2X7 protein was highly expressed in the MCF-7 cells transfected with scrambled shRNA, while low expression was observed in the P2X7R-shRNA-transfected cells. Following transfection of the recombinant plasmids into the MCF-7 cells, the proliferation rate in each group was analyzed. The P2X7R-shRNA and KN-62 groups were shown to have significantly reduced rates of proliferation when compared with the normal control group. In addition, flow cytometry revealed that the P2X7R-shRNA and KN-62 groups exhibited a reduced level of cell proliferation and a higher rate of apoptosis. In conclusion, P2X7R was shown to be overexpressed in breast cancer tissues and positively associated with ER expression. A P2X7R-shRNA expression vector effectively inhibited P2X7R expression in MCF-7 breast cancer cells, which subsequently induced cell apoptosis and reduced the levels of cell proliferation. These results indicated that P2X7R may serve as a potential target for breast cancer treatment and prevention.
Collapse
Affiliation(s)
- Chao Tan
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China ; First Affiliated Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - L I Han
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Lili Zou
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chunhua Luo
- First Affiliated Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Aihua Liu
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Xiejing Sheng
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Dee Xi
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
31
|
Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015; 13:28. [PMID: 26050734 PMCID: PMC4459444 DOI: 10.1186/s12964-015-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Background In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. Results Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells were not depleted of intracellular ATP with CDCA, but acinar cells lost some ATP, as detected by several methods including ATP sensor AT1.03YEMK. In duct cells, CDCA caused reversible increase in the intracellular Ca2+ concentration [Ca2 +]i, which could be significantly inhibited by antagonists of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca2+ signals, but could stimulate Na+/Ca2+ exchange in some conditions. Conclusions CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn increase [Ca2+]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca2+ conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects of BAs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna M Kowal
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Kristian A Haanes
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark. .,Present address: Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.
| | - Nynne M Christensen
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
Rodrigues RJ, Tomé AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9:148. [PMID: 25972780 PMCID: PMC4412015 DOI: 10.3389/fnins.2015.00148] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.
Collapse
Affiliation(s)
- Ricardo J Rodrigues
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Institute for Interdisciplinary Research, University of Coimbra Coimbra, Portugal
| | - Angelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Medicine, University of Coimbra Coimbra, Portugal
| |
Collapse
|
33
|
Menéndez-Méndez A, Díaz-Hernández JI, Miras-Portugal MT. The vesicular nucleotide transporter (VNUT) is involved in the extracellular ATP effect on neuronal differentiation. Purinergic Signal 2015; 11:239-49. [PMID: 25847073 PMCID: PMC4425722 DOI: 10.1007/s11302-015-9449-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Before being released, nucleotides are stored in secretory vesicles through the vesicular nucleotide transporter (VNUT). Once released, extracellular ATP participates in neuronal differentiation processes. Thus, the expression of a functional VNUT could be an additional component of the purinergic system which regulates neuronal differentiation and axonal elongation. In vitro expression of VNUT decreases neuritogenesis in N2a cells differentiated by retinoic acid treatment, whereas silencing of VNUT expression increases the number and length of neurites in these cells. These results highlight the role of VNUT in the neuritogenic process because this transporter regulates the ATP content in neurosecretory vesicles.
Collapse
Affiliation(s)
- Aida Menéndez-Méndez
- Facultad de Veterinaria, Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Ignacio Díaz-Hernández
- Facultad de Veterinaria, Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, Madrid, Spain
| | - M. Teresa Miras-Portugal
- Facultad de Veterinaria, Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Miras-Portugal MT, Diaz-Hernandez JI, Gomez-Villafuertes R, Diaz-Hernandez M, Artalejo AR, Gualix J. Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation "in vivo" by P2X7 receptor. Comput Struct Biotechnol J 2015; 13:176-81. [PMID: 25848496 PMCID: PMC4372621 DOI: 10.1016/j.csbj.2015.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 01/04/2023] Open
Abstract
Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark of Alzheimer's disease (AD). In Neuro-2a, a neuroblastoma cell line that constitutively expresses APP, activation of the P2X7 receptor leads to reduction of α-secretase activity, the opposite effect being obtained by P2Y2 receptor activation. The in vivo approach was made possible by the use of J20 mice, a transgenic mouse model of familial Alzheimer's disease (FAD) expressing human APP mutant protein. This animal exhibits prominent amyloid plaques by six months of age. In vivo inhibition of the P2X7 receptor induced a significant decrease in the number and size of hippocampal amyloid plaques. This reduction is mediated by an increase in the proteolytic processing of APP through α-secretase activity, which correlates with an increase in the phosphorylated form of GSK-3, a less active form of this enzyme. The in vivo findings corroborate the therapeutic potential of P2X7 antagonists in the treatment of FAD.
Collapse
Affiliation(s)
- M Teresa Miras-Portugal
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| | - Juan I Diaz-Hernandez
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| | - Rosa Gomez-Villafuertes
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| | - Miguel Diaz-Hernandez
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| | - Antonio R Artalejo
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| | - Javier Gualix
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain, Institute of Neurochemistry (IUIN), Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
35
|
Bilodeau MS, Arguin G, Gendron FP. C/EBPβ regulates P2X7 receptor expression in response to glucose challenge in intestinal epithelial cells. Biochem Cell Biol 2015; 93:38-46. [DOI: 10.1139/bcb-2014-0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of the ATP-dependent P2X7 receptor modulates glucose transport in intestinal epithelial cells through the downregulation of glucose transporter GLUT2. In the present study, we show that an increase in glucose concentration stimulates P2X7 receptor transcription via modulation of CCAAT/enhancer binding proteins (C/EBPs) α and β expression. The described human P2X7 receptor promoter region (GenBank Y12851) was cloned upstream of a luciferase reporter gene in pGL4.10 plasmid and used to determine whether C/EBPs, namely C/EBPα and C/EBPβ, are able to stimulate the transcription of P2X7 receptor. Results show that C/EBPβ was the main regulator of P2X7 receptor expression in response to a glucose challenge. Chromatin immunoprecipitation (ChIP) assays further revealed that C/EBPβ occupied the –213 to +6 nt P2X7 promoter region. Surprisingly, C/EBPα was also able to bind this region as revealed by ChIP assays, but without inducing receptor transcription. In fact, C/EBPα and the C/EBPβ-LIP isoform blocked the C/EBPβ-dependent regulation of P2X7 receptor transcription. These findings suggest that glucose is not only the major source of energy for cell function but may also act as a signaling molecule to stimulate the expression of regulatory proteins.
Collapse
Affiliation(s)
- Maude S. Bilodeau
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| |
Collapse
|
36
|
The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 2015; 34:5240-51. [PMID: 25619831 DOI: 10.1038/onc.2014.444] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB) is an aggressive pediatric tumor, responsible for 15% of cancer-related deaths in childhood, lacking an effective treatment in its advanced stages. The P2X7 receptor for extracellular ATP was associated to NB cell proliferation and recently emerged as a promoter of tumor engraftment, growth and vascularization. In an effort to identify new therapeutic options for neuroblastoma, we studied the role of P2X7 receptor in NB biology. We first analyzed the effect of P2X7 activation or down-modulation of the main biochemical ways involved in NB progression: the PI3K/Akt/GSK3β/MYCN and the HIF1α/VEGF pathways. In ACN human NB cells, P2X7 stimulation enhanced PI3K/Akt, while decreasing GSK3β activity. In the same model, P2X7 silencing or antagonist administration reduced the activity of PI3K/Akt and increased that of GSK3β, leading to a decrease in cellular glycogen stores. Similarly, P2X7 downmodulation caused a reduction in HIF1α levels and vascular endothelial growth factor (VEGF) secretion. Systemic administration of two different P2X7 antagonists (AZ10606120 or A740003) in nude/nude mice reduced ACN-derived tumor growth. An even stronger effect of P2X7 blockade was obtained in a syngeneic immune-competent neuroblastoma model: Neuro2A cells injected in AlbinoJ mice. Together with tumor regression, treatment with P2X7 antagonists caused downmodulation of the Akt/HIF1α axis, leading to reduced VEGF content and decreased vessel formation. Interestingly, in both experimental models, P2X7 antagonists strongly reduced the expression of the probably best-accepted oncogene in NB: MYCN. Finally, we associated P2X7 overexpression with poor prognosis in advanced-stage NB patients. Taken together, our data suggest that P2X7 receptor is an upstream regulator of the main signaling pathways involved in NB growth, metabolic activity and angiogenesis, and a promising therapeutic target for neuroblastoma treatment.
Collapse
|
37
|
Sperlágh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014; 35:537-47. [PMID: 25223574 DOI: 10.1016/j.tips.2014.08.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The ATP-sensitive homomeric P2X7 receptor (P2X7R) has received particular attention as a potential drug target because of its widespread involvement in inflammatory diseases as a key regulatory element of the inflammasome complex. However, it has only recently become evident that P2X7Rs also play a pivotal role in central nervous system (CNS) pathology. There is an explosion of data indicating that genetic deletion and pharmacological blockade of P2X7Rs alter responsiveness in animal models of neurological disorders, such as stroke, neurotrauma, epilepsy, neuropathic pain, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease. Moreover, recent studies suggest that P2X7Rs regulate the pathophysiology of psychiatric disorders, including mood disorders, implicating P2X7Rs as drug targets in a variety of CNS pathology.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary.
| | - Peter Illes
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Germany
| |
Collapse
|
38
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
39
|
P2X receptors regulate adenosine diphosphate release from hepatic cells. Purinergic Signal 2014; 10:587-93. [PMID: 25059924 DOI: 10.1007/s11302-014-9419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.
Collapse
|
40
|
Extracellular Membrane Vesicles Derived from 143B Osteosarcoma Cells Contain Pro-Osteoclastogenic Cargo: A Novel Communication Mechanism in Osteosarcoma Bone Microenvironment. Transl Oncol 2014; 7:331-40. [PMID: 25180057 PMCID: PMC4145399 DOI: 10.1016/j.tranon.2014.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/21/2014] [Accepted: 03/03/2014] [Indexed: 12/21/2022] Open
Abstract
The bone microenvironment (BME) is the main hub of all skeletal related pathological events in osteosarcoma leading to tumor induced bone destruction, and decreasing overall bone quality and bone strength. The role of extra-cellular membrane vesicles (EMVs) as mediators of intercellular communication in modulating osteosarcoma-BME is unknown, and needs to be investigated. It is our hypothesis that osteosarcoma-EMVs contain pro-osteoclastogenic cargo which increases osteoclastic activity, and dysregulated bone remodeling in the osteosarcoma-BME. In this study, EMVs were isolated from the conditioned media of 143B and HOS human osteosarcoma cell cultures using differential ultracentrifugation. Nano-particle tracking analysis determined EMVs in the size range of 50-200 nm in diameter. The EMV yield from 143B cells was relatively higher compared to HOS cells. Transmission electron microscopy confirmed the ultrastructure of 143B-EMVs and detected multivesicular bodies. Biochemical characterization of 143B-EMVs detected the expression of bioactive pro-osteoclastic cargo including matrix metalloproteinases-1 and -13 (MMP-1, -13), transforming growth factor-β (TGF-β), CD-9, and receptor activator of nuclear factor kappa-β ligand (RANKL). Detection of a protein signature that is uniquely pro-osteoclastic in 143B-EMVs is a novel finding, and is significant as EMVs represent an interesting mechanism for potentially mediating bone destruction in the osteosarcoma-BME. This study further demonstrates that 143B cells actively mobilize calcium in the presence of ionomycin, and forskolin, and induce cytoskeleton rearrangements leading to vesicular biogenesis. In conclusion, this study demonstrates that 143B osteosarcoma cells generate EMVs mainly by mechanisms involving increased intracellular calcium or cAMP levels, and contain pro-osteoclastic cargo.
Collapse
|
41
|
Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, Wandosell F, Debanne D, Garrido JJ. ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury. Cereb Cortex 2014; 25:2282-94. [PMID: 24610121 DOI: 10.1093/cercor/bhu035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ana Del Puerto
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid 28002, Spain Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laure Fronzaroli-Molinieres
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - María José Perez-Alvarez
- Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Pierre Giraud
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Edmond Carlier
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Centro de Biología Molecular, CSIC-UAM, Madrid 28049 Spain
| | - Dominique Debanne
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Juan José Garrido
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid 28002, Spain Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
42
|
Cuadra AE, Custer EE, Bosworth EL, Lemos JR. P2X7 receptors in neurohypophysial terminals: evidence for their role in arginine-vasopressin secretion. J Cell Physiol 2014; 229:333-42. [PMID: 24037803 DOI: 10.1002/jcp.24453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Arginine-vasopressin (AVP) plays a major role in maintaining cardiovascular function and related pathologies. The mechanism involved in its release into the circulation is complex and highly regulated. Recent work has implicated the purinergic receptor, P2X7R, in a role for catecholamine-enhanced AVP release in the rat hypothalamic-neurohypophysial (NH) system. However, the site of P2X7R action in this endocrine system, and whether or not it directly mediates release in secretory neurons have not been determined. We hypothesized that the P2X7R is expressed and mediates AVP release in NH terminals. P2X7R function was first examined by patch-clamp recordings in isolated NH terminals. Results revealed that subpopulations of isolated terminals displayed either high ATP-sensitivity or low ATP-sensitivity, the latter of which was characteristic of the rat P2X7R. Additional recordings showed that terminals showing sensitivity to the P2X7R-selective agonist, BzATP, were further inhibited by P2X7R selective antagonists, AZ10606120 and brilliant blue-G. In confocal micrographs from tissue sections and isolated terminals of the NH P2X7R-immunoreactivity was found to be localized in plasma membranes. Lastly, the role of P2X7R on AVP release was tested. Our results showed that BzATP evoked sustained AVP release in NH terminals, which was inhibited by AZ10606120. Taken together, our data lead us to conclude that the P2X7R is expressed in NH terminals and corroborates its role in AVP secretion.
Collapse
Affiliation(s)
- Adolfo E Cuadra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | |
Collapse
|
43
|
Miklavc P, Thompson KE, Frick M. A new role for P2X4 receptors as modulators of lung surfactant secretion. Front Cell Neurosci 2013; 7:171. [PMID: 24115920 PMCID: PMC3792447 DOI: 10.3389/fncel.2013.00171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/17/2022] Open
Abstract
In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca(2+) influx and elevation of the intracellular Ca(2+) concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca(2+) entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca(2+) influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby "activating" it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm Ulm, Germany
| | | | | |
Collapse
|
44
|
An IP3R3- and NPY-expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium. PLoS One 2013; 8:e58668. [PMID: 23516531 PMCID: PMC3596314 DOI: 10.1371/journal.pone.0058668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3(+/-), and IP3R3(-/-) mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3(-/-) mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3(-/-) mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3(-/-) mice. The reductions in both NPY release and number of progenitor cells in IP3R3(-/-) mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.
Collapse
|
45
|
Evidence for Ca(2+)-regulated ATP release in gastrointestinal stromal tumors. Exp Cell Res 2013; 319:1229-38. [PMID: 23499741 DOI: 10.1016/j.yexcr.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 01/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are thought to originate from the electrically active pacemaker cells of the gastrointestinal tract. Despite the presence of synaptic-like vesicles and proteins involved in cell secretion it remains unclear whether GIST cells possess regulated release mechanisms. The GIST tumor cell line GIST882 was used as a model cell system, and stimulus-release coupling was investigated by confocal microscopy of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i), flow cytometry, and luminometric measurements of extracellular ATP. We demonstrate that GIST cells have an intact intracellular Ca(2+)-signaling pathway that regulates ATP release. Cell viability and cell membrane integrity was preserved, excluding ATP leakage due to cell death and suggesting active ATP release. The stimulus-secretion signal transduction is at least partly dependent on Ca(2+) influx since exclusion of extracellular Ca(2+) diminishes the ATP release. We conclude that measurements of ATP release in GISTs may be a useful tool for dissecting the signal transduction pathway, mapping exocytotic components, and possibly for the development and evaluation of drugs. Additionally, release of ATP from GISTs may have importance for tumor tissue homeostasis and immune surveillance escape.
Collapse
|
46
|
Abstract
Oxidative stress is a widely recognized cause of cell death associated with neurodegeneration, inflammation, and aging. Tyrosine nitration in these conditions has been reported extensively, but whether tyrosine nitration is a marker or plays a role in the cell-death processes was unknown. Here, we show that nitration of a single tyrosine residue on a small proportion of 90-kDa heat-shock protein (Hsp90), is sufficient to induce motor neuron death by the P2X7 receptor-dependent activation of the Fas pathway. Nitrotyrosine at position 33 or 56 stimulates a toxic gain of function that turns Hsp90 into a toxic protein. Using an antibody that recognizes the nitrated Hsp90, we found immunoreactivity in motor neurons of patients with amyotrophic lateral sclerosis, in an animal model of amyotrophic lateral sclerosis, and after experimental spinal cord injury. Our findings reveal that cell death can be triggered by nitration of a single protein and highlight nitrated Hsp90 as a potential target for the development of effective therapies for a large number of pathologies.
Collapse
|
47
|
García-Huerta P, Díaz-Hernandez M, Delicado EG, Pimentel-Santillana M, Miras-Portugal MT, Gómez-Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem 2012; 287:44628-44. [PMID: 23139414 PMCID: PMC3531778 DOI: 10.1074/jbc.m112.390971] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.
Collapse
Affiliation(s)
- Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
P2X7 Receptor Function in Bone-Related Cancer. J Osteoporos 2012; 2012:637863. [PMID: 22970409 PMCID: PMC3431089 DOI: 10.1155/2012/637863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/31/2023] Open
Abstract
Modulation of tumor microenvironment by different mediators is central in determining neoplastic formation and progression. Among these molecules extracellular ATP is emerging as a good candidate in promoting cell growth, neovascularization, tumor-host interactions, and metastatization. This paper summarizes recent findings on expression and function of P2X7 receptor for extracellular ATP in primary and metastatic bone cancers. Search of mRNA expression microchip databases and literature analysis demonstrate a high expression of P2X7 in primary bone tumors as well as in other malignancies such as multiple myeloma, neuroblastoma, breast, and prostate cancer. Evidence that P2X7 triggers NFATc1, PI3K/Akt, ROCK, and VEGF pathways in osteoblasts promoting either primary tumor development or osteoblastic lesions is also reported. Moreover, P2X7 receptor is involved in osteoclast differentiation, RANKL expression, matrix metalloproteases and cathepsin secretion thus promoting bone resorption and osteolytic lesions. Taken together these data point to a pivotal role for the P2X7 receptor in bone cancer biology.
Collapse
|