1
|
Ma X, Wang Q, Chen K, Shen Y, Guan J, Xu M, Rao Z, Zhang X. Protein Engineering and Dual-Module Optimization for Efficient NMN Production in E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9174-9186. [PMID: 40172130 DOI: 10.1021/acs.jafc.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nicotinamide mononucleotide (NMN) has received widespread attention as a supplement of NAD+ in cells. In this study, a dual-module reaction system was constructed to synthesize NR using uridine and nicotinamide, and further to efficiently synthesize NMN. First, module 1 was constructed, which catalyzed the synthesis of NMN from NR using an efficient NRK and ATP regeneration system. Then module 2 was constructed by introducing pyrimidine nucleoside phosphorylase (PyNP) to synthesize NMN from uridine and NAM under the synergistic catalysis of NRK. Based on the fact that NRK has both phosphorylation and group transfer functions in the dual-module system, the mutant KlmNRKM4 with nearly 4-fold increased stability was obtained through predicted structure and evolutionary conservation analysis. At the same time, the pncC, deoD, ushA, nadR and deoB genes encoding endogenous degradative enzymes in Escherichia coli affect substrate and intermediate conversion were knocked out. Finally, by optimizing the reaction conditions of the dual-module recombination system, a high NMN conversion rate of 81.1% was achieved using 300 mM uridine and nicotinamide as substrates. This study provides a novel and efficient pathway for the biosynthesis of NMN.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kewei Chen
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingyi Guan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Kim HS, Jung S, Kim MJ, Jeong JY, Hwang IM, Lee JH. Comparative Analysis of N-Lactoyl-phenylalanine and 3-Phenyllactic Acid Production in Lactic Acid Bacteria from Kimchi: Metabolic Insights and Influencing Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27177-27186. [PMID: 39606886 DOI: 10.1021/acs.jafc.4c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-Lactoyl-phenylalanine (Lac-Phe) is a metabolite known for its appetite-suppressing and antiobesity properties, while phenyllactic acid (PLA) is recognized for its antibacterial activity. Both metabolites are derived from phenylalanine and lactic acid metabolism through peptidase and dehydrogenase activities. The aim of this study was to investigate the production of Lac-Phe and PLA in kimchi, focusing on the role of lactic acid bacteria (LAB). Ultrahigh performance liquid chromatography coupled with time-of-flight mass spectrometry was used to quantify these metabolites in homemade and commercial kimchi. Lac-Phe and PLA were detected in both kimchi sample types. Various genera, including Lactobacillus, Leuconostoc, and Weissella, were evaluated for Lac-Phe and PLA production. LAB strains exhibiting high Lac-Phe production generally showed lower PLA production, indicating an inverse relationship between these two metabolites. Analysis of dipeptidase sequences revealed that the presence of carnosine dipeptidase 2 (CNDP2)-like M20 metallopeptidase is crucial for Lac-Phe production in LAB. Additionally, phenylalanine was identified as a major factor for both Lac-Phe and PLA production, whereas lactic acid supplementation did not significantly affect their production levels.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sera Jung
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
3
|
Zhang X, Liu X, Chen X, Feng J, Zhao Q, Wu Q, Zhu D. Identification and structure-based engineering of a dipeptidase CpPepD from Clostridium perfringens for the synthesis of l-carnosine. J Biotechnol 2024; 389:86-93. [PMID: 38718874 DOI: 10.1016/j.jbiotec.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M β-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; Tibet NWS Biotechnology Co., Ltd, Tibet 854000, PR China.
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
4
|
Miyaji S, Ito T, Kitaiwa T, Nishizono K, Agake SI, Harata H, Aoyama H, Umahashi M, Sato M, Inaba J, Fushinobu S, Yokoyama T, Maruyama-Nakashita A, Hirai MY, Ohkama-Ohtsu N. N 2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1603-1618. [PMID: 38441834 DOI: 10.1111/tpj.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.
Collapse
Affiliation(s)
- Shunsuke Miyaji
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisuke Kitaiwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kosuke Nishizono
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shin-Ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Harata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Haruna Aoyama
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Minori Umahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
5
|
Liu Y, Pan X, Zhang H, Zhao Z, Teng Z, Rao Z. Combinatorial protein engineering and transporter engineering for efficient synthesis of L-Carnosine in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 387:129628. [PMID: 37549716 DOI: 10.1016/j.biortech.2023.129628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
L-Carnosine has various physiological functions and is widely used in cosmetics, medicine, food additives, and other fields. However, the yield of L-Carnosine obtained by biological methods is far from the level of industrial production. Herein, a cell factory for efficient synthesis of L-Carnosine was constructed based on transporter engineering and protein engineering. Firstly, a dipeptidase (SmpepD) was screened from Serratia marcescens through genome mining to construct a cell factory for synthesizing L-Carnosine. Subsequently, through rationally designed SmPepD, a double mutant T168S/G148D increased the L-Carnosine yield by 41.6% was obtained. Then, yeaS, a gene encoding the exporter of L-histidine, was deleted to further increase the production of L-Carnosine. Finally, L-Carnosine was produced by one-pot biotransformation in a 5 L bioreactor under optimized conditions with a yield of 133.2 mM. This study represented the highest yield of L-Carnosine synthesized in microorganisms and provided a biosynthetic pathway for the industrial production of L-Carnosine.
Collapse
Affiliation(s)
- Yunran Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zixin Teng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
6
|
Guo X, Jiang Q, Li Z, Cheng C, Feng Y, He Y, Zuo L, Ding W, Zhang D, Feng L. Crystal structural analysis and characterization for MlrC enzyme of Sphingomonas sp. ACM-3962 involved in linearized microcystin degradation. CHEMOSPHERE 2023; 317:137866. [PMID: 36642149 DOI: 10.1016/j.chemosphere.2023.137866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Microcystinase C (MlrC), one key hydrolase of the microcystinase family, plays an important role in linearized microsystin (L-MC) degradation. However, the three-dimensional structure and structural features of MlrC are still unclear. This study obtained high specific activity and high purity of MlrC by heterologous expression, and revealed that MlrC derived from Sphingomonas sp. ACM-3962 (ACM-MlrC) can degrade linearized products of MC-LR, MC-RR and MC-YR to product 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda), indicating the degradation function and significance in MC-detoxification. More importantly, this study reported the crystal structure of ACM-MlrC at 2.6 Å resolution for the first time, which provides a basis for further understanding the structural characteristics and functions of MlrC. MlrC had a dual-domain feature, namely N and C terminal domain respectively. The N-terminal domain contained a Glutamate-Aspartate-Histidine-Histidine catalytic quadruplex coordinated with zinc ion in each monomer. The importance of zinc ions and their coordinated residues was analyzed by dialysis and site-directed mutagenesis methods. Moreover, the important influence of the N/C-terminal flexible regions of ACM-MlrC was also analyzed by sequence truncation, and then the higher yield and total activity of variants were obtained, which was beneficial to study the better function and application of MlrC.
Collapse
Affiliation(s)
- Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Qinqin Jiang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zengru Li
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Ding
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Song P, Xu W, Wang K, Zhang Y, Wang F, Zhou X, Shi H, Feng W. Cloning, expression and characterization of metalloproteinase HypZn from Aspergillus niger. PLoS One 2021; 16:e0259809. [PMID: 34762700 PMCID: PMC8584677 DOI: 10.1371/journal.pone.0259809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
A predicted metalloproteinase gene, HypZn, was cloned from Aspergillus niger CGMCC 3.7193 and expressed in Pichia pastoris GS115, and the physicochemical characteristics of recombinant HypZn were investigated after separation and purification. The results showed that the specific activity of the purified HypZn reached 1859.2 U/mg, and the optimum temperature and pH value of HypZn were 35°C and 7.0, respectively. HypZn remained stable both at 40°C and at pH values between 5.0 and 8.0. The preferred substrate of HypZn was soybean protein isolates, and the Km and Vmax values were 21.5 μmol/mL and 4926.6 μmol/(mL∙min), respectively. HypZn was activated by Co2+ and Zn2+ and inhibited by Cu2+ and Fe2+. The degree of soybean protein isolate hydrolysis reached 14.7%, and the hydrolysates were of uniform molecular weight. HypZn could tolerate 5000 mM NaCl and completely lost its activity after 30 min at 50°C. The enzymological characterizations indicated that HypZn has great application potential in the food industry, especially in fermented food processing.
Collapse
Affiliation(s)
- Peng Song
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Kuiming Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yang Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiuling Zhou
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Haiying Shi
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- School of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Li J, Guo M, Cao Y, Xia Y. Disruption of a C69-Family Cysteine Dipeptidase Gene Enhances Heat Shock and UV-B Tolerances in Metarhizium acridum. Front Microbiol 2020; 11:849. [PMID: 32431687 PMCID: PMC7214794 DOI: 10.3389/fmicb.2020.00849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
In fungi, peptidases play a crucial role in adaptability. At present, the roles of peptidases in ultraviolet (UV) and thermal tolerance are still unclear. In this study, a C69-family cysteine dipeptidase of the entomopathogenic fungus Metarhizium acridum, MaPepDA, was expressed in Escherichia coli. The purified enzyme had a molecular mass of 56-kDa, and displayed a high activity to dipeptide substrate with an optimal Ala-Gln hydrolytic activity at about pH 6.0 and 55°C. It was demonstrated that MaPepDA is an intracellular dipeptidase localized in the cytosol, and that it is expressed during the whole fungal growth. Disruption of the MaPepDA gene increased conidial germination, growth rate, and significantly improved the tolerance to UV-B and heat stress in M. acridum. However, virulence and conidia production was largely unaffected in the ΔMaPepDA mutant. Digital gene expression data revealed that the ΔMaPepDA mutant had a higher UV-B and heat-shock tolerance compared to wild type by regulating transcription of sets of genes involved in cell surface component, cell growth, DNA repair, amino acid metabolism, sugar metabolism and some important signaling pathways of stimulation. Our results suggested that disruption of the MaPepDA could potentially improve the performance of fungal pesticides in the field application with no adverse effect on virulence and conidiation.
Collapse
Affiliation(s)
- Juan Li
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Mei Guo
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
9
|
Bhat SY, Qureshi IA. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129465. [DOI: 10.1016/j.bbagen.2019.129465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022]
|
10
|
Yin DY, Pan J, Zhu J, Liu YY, Xu JH. A green-by-design bioprocess forl-carnosine production integrating enzymatic synthesis with membrane separation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01622h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This simple and clean bioprocess enables the economically attractive and environmentally benign production of the bioactive dipeptidel-Car.
Collapse
Affiliation(s)
- Dong-Ya Yin
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Jie Zhu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
11
|
Liu R, Qiu L, Cheng Q, Zhang H, Wang L, Song L. Evidence for Cleavage of the Metalloprotease Vsm from Vibrio splendidus Strain JZ6 by an M20 Peptidase (PepT-like Protein) at Low Temperature. Front Microbiol 2016; 7:1684. [PMID: 27826294 PMCID: PMC5078317 DOI: 10.3389/fmicb.2016.01684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Metalloprotease Vsm is a major extracellular virulence factor of Vibrio splendidus. The toxicity of Vsm from V. splendidus strain JZ6 has been characterized, and production of this virulence factor proved to be temperature-regulated. The present study provides evidence that two forms (JZE1 and JZE2) of Vsm protein exist in extracellular products (ECPs) of strain JZ6, and a significant conversion of these two forms was detected by SDS-PAGE and immunoblotting analyses of samples obtained from cells grown at 4, 10, 16, 20, 24, and 28°C. Mass spectroscopy confirmed that JZE1 was composed only of the peptidase_M4 domain of Vsm, and JZE2 contained both the PepSY domain and the peptidase_M4 domain. An M20 peptidase T-like protein (PepTL) was screened from the transcriptome data of strain JZ6, which was considered as a crucial molecule to produce the active Vsm (JZE1) by cleavage of the propeptide. Similar to that of Vsm, PepTL mRNA accumulation was highest at 4°C (836.82-fold of that at 28°C), decreased with increasing of temperature and reached its lowest level at 28°C. Deletion of the gene encoding the PepTL resulted in a mutant strain that did not produce the JZE1 cleavage product. The peptidase activity of PepTL recombinant protein (rPepTL) was confirmed by cleaving the Vsm in ECPs with an in vitro degradation reaction. These results demonstrate that PepTL participates in activating Vsm in strain JZ6 by proteolytic cleavage at low temperature.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University Dalian, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| |
Collapse
|
12
|
Okumura N, Tamura J, Takao T. Evidence for an essential role of intradimer interaction in catalytic function of carnosine dipeptidase II using electrospray-ionization mass spectrometry. Protein Sci 2015; 25:511-22. [PMID: 26549037 DOI: 10.1002/pro.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022]
Abstract
Carnosine dipeptidase II (CN2/CNDP2) is an M20 family metallopeptidase that hydrolyses various dipeptides including β-alanyl-L-histidine (carnosine). Crystallographic analysis showed that CN2 monomer is composed of one catalytic and one dimerization domains, and likely to form homodimer. In this crystal, H228 residue of the dimerization domain interacts with the substrate analogue bestatin on the active site of the dimer counterpart, indicating that H228 is involved in enzymatic reaction. In the present study, the role of intradimer interaction of CN2 in its catalytic activity was investigated using electrospray-ionization time-of-flight mass spectrometry (ESI-TOF MS). First, a dimer interface mutant I319K was prepared and shown to be present as a folded monomer in solution as examined by using ESI-TOF MS. Since the mutant was inactive, it was suggested that dimer formation is essential to its enzymatic activity. Next, we prepared H228A and D132A mutant proteins with different N-terminal extended sequences, which enabled us to monitor dimer exchange reaction by ESI-TOF MS. The D132A mutant is a metal ligand mutant and also inactive. But the activity was partially recovered time-dependently when H228A and D132A mutant proteins were incubated together. In parallel, H228A/D132A heterodimer was formed as detected by ESI-TOF MS, indicating that interaction of a catalytic center with H228 residue of the other subunit is essential to the enzymatic reaction. These results provide evidence showing that intradimer interaction of H228 with the reaction center of the dimer counterpart is essential to the enzymatic activity of CN2.
Collapse
Affiliation(s)
- Nobuaki Okumura
- Laboratory of Homeostatic Integration, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jun Tamura
- Mass Spectrometry Business Unit, JEOL Ltd, Akishima, Tokyo, 196-8558, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Peters V, Lanthaler B, Amberger A, Fleming T, Forsberg E, Hecker M, Wagner AH, Yue WW, Hoffmann GF, Nawroth P, Zschocke J, Schmitt CP. Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids 2015; 47:2367-76. [PMID: 26081982 DOI: 10.1007/s00726-015-2024-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/04/2015] [Indexed: 01/25/2023]
Abstract
Carnosinase 1 (CN1) contributes to diabetic nephropathy by cleaving histidine-dipeptides which scavenge reactive oxygen and carbonyl species and increase nitric oxide (NO) production. In diabetic mice renal CN1 activity is increased, the regulatory mechanisms are unknown. We therefore analysed the in vitro and in vivo regulation of CN1 activity using recombinant and human CN1, and the db/db mouse model of diabetes. Glucose, leptin and insulin did not modify recombinant and human CN1 activity in vitro, glucose did not alter renal CN1 activity of WT or db/db mice ex vivo. Reactive metabolite methylglyoxal and Fenton reagent carbonylated recombinant CN1 and doubled CN1 efficiency. NO S-nitrosylated CN1 and decreased CN1 efficiency for carnosine by 70 % (p < 0.01), but not for anserine. Both CN1 cysteine residues were nitrosylated, the cysteine at position 102 but not at position 229 regulated CN1 activities. In db/db mice, renal CN1 mRNA and protein levels were similar as in non-diabetic controls, CN1 efficiency 1.9 and 1.6 fold higher for carnosine and anserine. Renal carbonyl stress was strongly increased and NO production halved, CN1 highly carbonylated and less S-nitrosylated compared to WT mice. GSH and NO2/3 concentrations were reduced and inversely related with carnosine degradation rate (r = -0.82/-0.85). Thus, reactive metabolites of diabetes upregulate CN1 activity by post-translational modifications, and thus decrease the availability of reactive metabolite-scavenging histidine dipeptides in the kidney in a positive feedback loop. Interference with this vicious circle may represent a new therapeutic target for mitigation of DN.
Collapse
Affiliation(s)
- Verena Peters
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| | - Barbara Lanthaler
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Fleming
- Internal Medicine, University Heidelberg, Heidelberg, Germany
| | - Elisabete Forsberg
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Hecker
- Institute for Physiology and Pathophysiology, University Heidelberg, Heidelberg, Germany
| | - Andreas H Wagner
- Institute for Physiology and Pathophysiology, University Heidelberg, Heidelberg, Germany
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Internal Medicine, University Heidelberg, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Claus P Schmitt
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Singh AK, Singh M, Pandya VK, G L B, Singh V, Ekka MK, Mittal M, Kumaran S. Molecular basis of peptide recognition in metallopeptidase Dug1p from Saccharomyces cerevisiae. Biochemistry 2014; 53:7870-83. [PMID: 25427234 DOI: 10.1021/bi501263u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.
Collapse
Affiliation(s)
- Appu Kumar Singh
- G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR) , Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bellia F, Vecchio G, Rizzarelli E. Carnosinases, their substrates and diseases. Molecules 2014; 19:2299-329. [PMID: 24566305 PMCID: PMC6271292 DOI: 10.3390/molecules19022299] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 02/08/2023] Open
Abstract
Carnosinases are Xaa-His dipeptidases that play diverse functions throughout all kingdoms of life. Human isoforms of carnosinase (CN1 and CN2) under appropriate conditions catalyze the hydrolysis of the dipeptides carnosine (β-alanyl-l-histidine) and homocarnosine (γ-aminobutyryl-l-histidine). Alterations of serum carnosinase (CN1) activity has been associated with several pathological conditions, such as neurological disorders, chronic diseases and cancer. For this reason the use of carnosinase levels as a biomarker in cerebrospinal fluid (CSF) has been questioned. The hydrolysis of imidazole-related dipeptides in prokaryotes and eukaryotes is also catalyzed by aminoacyl-histidine dipeptidases like PepD (EC 3.4.13.3), PepV (EC 3.4.13.19) and anserinase (EC 3.4.13.5). The review deals with the structure and function of this class of enzymes in physiological and pathological conditions. The main substrates of these enzymes, i.e., carnosine, homocarnosine and anserine (β-alanyl-3-methyl-l-histidine) will also be described.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
16
|
Martínez-Salgado JL, León-Ramírez CG, Pacheco AB, Ruiz-Herrera J, de la Rosa APB. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes. J Proteomics 2013; 79:251-62. [PMID: 23305952 DOI: 10.1016/j.jprot.2012.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/23/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
Abstract
Ustilago maydis is a dimorphic corn pathogenic basidiomycota whose haploid cells grow in yeast form at pH7, while at pH3 they grow in the mycelial form. Two-dimensional gel electrophoresis (2-DE) coupled with LC-ESI/MS-MS was used to analyze the differential accumulation of proteins in yeast against mycelial morphologies. 2-DE maps were obtained in the pH range of 5-8 and 404 total protein spots were separated. From these, 43 were differentially accumulated when comparing strains FB2wt, constitutive yeast CL211, and constitutive mycelial GP25 growing at pH7 against pH3. Differentially accumulated proteins in response to pH are related with defense against reactive oxygen species or toxic compounds. Up-accumulation of CipC and down-accumulation of Hmp1 were specifically related with mycelial growth. Changes in proteins that were affected by mutation in the gene encoding the adaptor of a MAPK pathway (CL211 strain) were UM521* and transcription factors Btf3, Sol1 and Sti1. Mutation of GCN5 (GP25 strain) affected the accumulation of Rps19-ribosomal protein, Mge1-heath shock protein, and Lpd1-dihydrolipoamide dehydrogenase. Our results complement the information about the genes and proteins related with the dimorphic transition in U. maydis and changes in proteins affected by mutations in a MAPK pathway and GCN5 gene.
Collapse
Affiliation(s)
- José L Martínez-Salgado
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica. Camino a La Presa San José No. 2055, Lomas 4ª Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | |
Collapse
|
17
|
Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J Bacteriol 2012; 194:5759-68. [PMID: 22904279 DOI: 10.1128/jb.01056-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Carbamoyl-L-amino acid amidohydrolases (L-carbamoylases) are important industrial enzymes used in kinetic resolution of racemic mixtures of N-carbamoyl-amino acids due to their strict enantiospecificity. In this work, we report the first L-carbamoylase structure belonging to Geobacillus stearothermophilus CECT43 (BsLcar), at a resolution of 2.7 Å. Structural analysis of BsLcar and several members of the peptidase M20/M25/M40 family confirmed the expected conserved residues at the active site in this family, and site-directed mutagenesis revealed their relevance to substrate binding. We also found an unexpectedly conserved arginine residue (Arg(234) in BsLcar), proven to be critical for dimerization of the enzyme. The mutation of this sole residue resulted in a total loss of activity and prevented the formation of the dimer in BsLcar. Comparative studies revealed that the dimerization domain of the peptidase M20/M25/M40 family is a "small-molecule binding domain," allowing further evolutionary considerations for this enzyme family.
Collapse
|
18
|
Oku T, Ando S, Tsai HC, Yamashita Y, Ueno H, Shiozaki K, Nishi R, Yamada S. Purification and identification of two carnosine-cleaving enzymes, carnosine dipeptidase I and Xaa-methyl-His dipeptidase, from Japanese eel (Anguilla japonica). Biochimie 2012; 94:1281-90. [PMID: 22525515 DOI: 10.1016/j.biochi.2012.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023]
Abstract
Three enzymes, carnosine dipeptidase I (EC 3.4.13.20, CNDP1), carnosine dipeptidase II (EC 3.4.13.18, CNDP2), and Xaa-methyl-His dipeptidase (or anserinase: EC 3.4.13.5, ANSN), are known to be capable of catalyzing the hydrolysis of carnosine (β-alanyl-l-histidine), in vertebrates. Here we report the purification and identification of two unidentified carnosine-cleaving enzymes from Japanese eel (Anguilla japonica). Two different dipeptidases were successfully purified to homogeneity from the skeletal muscle; one exhibited a broad substrate specificity, while the other a narrow specificity. N-terminal amino-acid sequencing, deglycosylation analysis, and genetic analysis clearly revealed that the former is a homodimer of glycosylated subunits, encoded by ANSN, and the latter is another homodimer of glycosylated subunits, encoded by CNDP1; that is, Xaa-methyl-His dipeptidase, and carnosine dipeptidase I respectively. This is the first report on the identification of carnosine dipeptidase I from a non-mammal. Database search revealed presence of a CNDP1 ortholog only from salmonid fishes, including Atlantic salmon and rainbow trout, but not from other ray-finned fish species, such as zebrafish, fugu, and medaka whose genomes have been completely sequenced. The mRNAs of CNDP1 and ANSN are strongly expressed in the liver of Japanese eel, compared with other tissues, while that of CNDP2 is widely distributed in all tissues tested.
Collapse
Affiliation(s)
- Takahiro Oku
- Science of Marine Resources, United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|