1
|
Abdullah, Wani KI, Hayat K, Naeem M, Aftab T. Multifaceted role of selenium in plant physiology and stress resilience: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112456. [PMID: 40049525 DOI: 10.1016/j.plantsci.2025.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Selenium (Se) is a naturally occurring element in both seleniferous and non-seleniferous soils. Plants absorb Se in a variety of ways, mainly as selenate (SeO42-), selenite (SeO32-), and organic compounds such as selenomethionine (SeMet). Selenium significantly impacts plant growth, development, and stress responses. It is a trace element that regulates many physiological and biochemical functions in plants, acts as an antioxidant, and increases plant resistance to abiotic stresses such as heavy metal toxicity, salinity, drought, and severe temperatures. Its beneficial effects depend on the dose and vary depending on the plant species and the environmental conditions. Several functions of Se have been thoroughly discussed in this review, with special attention given to the mechanisms of Se uptake, transport, accumulation, and metabolism. Plants use Se through its assimilation into amino acids (mostly selenocysteine and selenomethionine) and integration into proteins. These processes might have different effects depending on the Se concentration. Furthermore, Se has the potential to be a useful tool in sustainable agriculture, especially in regions where environmental stress is common. This is demonstrated by its ability to increase plant tolerance to various environmental stressors. Recent research shows that Se supplementation not only boosts plant resistance but also enhances secondary metabolite accumulation. Overall, this review concludes that Se plays a dual role in plant systems, acting as both a nutrient and a stress mitigator, and provides opportunities to optimize its use in sustainable agriculture by tailoring Se supplementation to maximize plant tolerance and productivity.
Collapse
Affiliation(s)
- Abdullah
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, PR China
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India.
| |
Collapse
|
2
|
Zhang Z, Zhu L, Zhang H, Yu D, Yin Z, Zhan X. Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites. Int J Mol Sci 2025; 26:3315. [PMID: 40244176 PMCID: PMC11989349 DOI: 10.3390/ijms26073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer's yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer's yeast was selected as the experimental subject, and the digestion of this yeast (Brewer's yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| |
Collapse
|
3
|
Ma JY, Jiang YQ, Liu XY, Sun XD, Jia YN, Wang Y, Tan MM, Duan JL, Yuan XZ. Amplified selenite toxicity in methanogenic archaea mediated by cysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117263. [PMID: 39486247 DOI: 10.1016/j.ecoenv.2024.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The challenge of understanding the interaction between trace elements and microbial life is critical for assessing environmental and ecological impacts. Nevertheless, cysteine (Cys), a low molecular weight thiol substance prevalent in the ecosystem, is able to influence the fate of certain trace elements, which increases the complexity of the interaction between trace elements and microorganisms. Therefore, we chose Cys, selenite and the model methanogenic archaeon Methanosarcina acetivorans C2A as research targets, and comprehensively explored the intricate role of Cys in modulating the biological effects of selenite on M. acetivorans C2A in terms of population growth, methane production and oxidative stress. Our results demonstrate that Cys significantly exacerbates the inhibitory effects of selenite on growth and methane production in M. acetivorans C2A. This increased toxicity is linked to heightened membrane permeability and oxidative stress, with a marked upregulation in reactive oxygen species and changes in NADPH levels. Transcriptomic analysis reveals alterations in genes associated with transmembrane transport and methanogenesis. Intriguingly, we also observed a potential interaction between selenite and phosphate transmembrane transporters, suggesting a novel pathway for selenite entry into cells. These findings highlight the complex interplay between trace elements and microbial processes, with significant implications for understanding environmental risks and developing remediation strategies.
Collapse
Affiliation(s)
- Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Qian Jiang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Ning Jia
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yue Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Miao-Miao Tan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
4
|
Lashani E, Moghimi H, Turner RJ, Amoozegar MA. Characterization and biological activity of selenium nanoparticles biosynthesized by Yarrowia lipolytica. Microb Biotechnol 2024; 17:e70013. [PMID: 39364622 PMCID: PMC11450378 DOI: 10.1111/1751-7915.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/28/2024] [Indexed: 10/05/2024] Open
Abstract
In this research, biogenic selenium nanoparticles were produced by the fungi Yarrowia lipolytica, and the biological activity of its nanoparticles was studied for the first time. The electron microscopy analyses showed the production of nanoparticles were intracellular and the resulting particles were extracted and characterized by XRD, zeta potential, FESEM, EDX, FTIR spectroscopy and DLS. These analyses showed amorphous spherical nanoparticles with an average size of 110 nm and a Zeta potential of -34.51 ± 2.41 mV. Signatures of lipids and proteins were present in the capping layer of biogenic selenium nanoparticles based on FTIR spectra. The antimicrobial properties of test strains showed that Serratia marcescens, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis were inhibited at concentrations between 160 and 640 μg/mL, while the growth of Candida albicans was hindered by 80 μg/mL of biogenic selenium nanoparticles. At concentrations between 0.5 and 1.5 mg/mL of biogenic selenium nanoparticles inhibited up to 50% of biofilm formation of Klebsiella pneumonia, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, the concentration of 20-640 μg/mL of these bioSeNPs showed antioxidant activity. Evaluating the cytotoxicity of these nanoparticles on the HUVEC and HepG2 cell lines did not show any significant toxicity within MIC concentrations of SeNPs. This defines that Y. lipolytica synthesized SeNPs have strong potential to be exploited as antimicrobial agents against pathogens of WHO concern.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| |
Collapse
|
5
|
Li L, Ahsan MZ, Li Z, Panhwar FH, Zhang Y, Luo D, Su Y, Jia X, Ye X, Shen C, Wang S, Zhu J. Transcriptome analysis of high- and low-selenium genotypes identifies genes responsible for selenium absorption, translocation, and accumulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1413549. [PMID: 39376240 PMCID: PMC11456430 DOI: 10.3389/fpls.2024.1413549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Introduction Selenium is an essential micronutrient the human body requires, which is closely linked to health. Rice, a primary staple food globally, is a major source of human selenium intake. To develop selenium-enriched rice varieties, it is imperative to understand the mechanisms behind selenium's absorption and transport within rice, alongside identifying the key genes involved in selenium uptake, transport, and transformation within the plant. Methods This study conducted transcriptome sequencing on four types of rice materials (two with low-selenium and two with high-selenium contents) across roots, stems, leaves, and panicles to analyze the gene expression differences. Results and discussion Differential gene expression was observed in the various tissues, identifying 5,815, 6,169, 7,609, and 10,223 distinct genes in roots, stems, leaves, and panicles, respectively. To delve into these differentially expressed genes and identify the hub genes linked to selenium contents, weighted gene co-expression network analysis (WGCNA) was performed. Ultimately, 10, 8, 7, and 6 hub genes in the roots, stems, leaves, and panicles, respectively, were identified. The identification of these hub genes substantially aids in advancing our understanding of the molecular mechanisms involved in selenium absorption and transport during the growth of rice.
Collapse
Affiliation(s)
- Ling Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Chengdu, Sichuan, China
| | - Muhammad Zahir Ahsan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhe Li
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan, China
| | - Faiz Hussain Panhwar
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dan Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Su
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Xue SJ, Zhang XT, Li XC, Zhao FY, Shu X, Jiang WW, Zhang JY. Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134204. [PMID: 38579586 DOI: 10.1016/j.jhazmat.2024.134204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.
Collapse
Affiliation(s)
- Si-Jia Xue
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xin-Tong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao-Chen Li
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Fang-Yuan Zhao
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xian Shu
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Wen-Wen Jiang
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jin-Yong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, China.
| |
Collapse
|
7
|
Hao W, Li Y, Guo H, Chen J, Pi F. Co-metabolism of Na +/K + ion regulated physiological enhancement on selenium-accumulation in Saccharomyces yeasts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4136-4144. [PMID: 38258891 DOI: 10.1002/jsfa.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Selenium is an important nutritional supplement that mainly exists naturally in soil as inorganic selenium. Saccharomyces cerevisiae cells are excellent medium for converting inorganic selenium in nature into organic selenium. RESULTS Under the co-stimulation of sodium selenite (Na2SeO3) and potassium selenite (K2SeO3), the activity of selenophosphate synthetase (SPS) was improved up to about five folds more than conventional Na2SeO3 group with the total selenite salts content of 30 mg/L. Transcriptome analysis first revealed that due to the sharing pathway between sodium ion (Na+) and potassium ion (K+), the K+ largely regulates the metabolisms of amino acid and glutathione under the accumulation of selenite salt. Furthermore, K+ could improve the tolerance performance and selenium-biotransformation yields of Saccharomyces cerevisiae cells under Na2SeO3 salt stimulation. CONCLUSION The important role of K+ in regulating the intracellular selenium accumulation especially in terms of amino acid metabolism and glutathione, suggested a new direction for the development of selenium-enrichment supplements with Saccharomyces cerevisiae cell factory. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Hanlin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Jian Chen
- Shandong Jiucifang Biotechnology, Co. Ltd, Zibo, P. R. China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
- Shandong Jiucifang Biotechnology, Co. Ltd, Zibo, P. R. China
| |
Collapse
|
8
|
Klaczek CE, Goss GG, Glover CN. Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters. CONSERVATION PHYSIOLOGY 2024; 12:coad108. [PMID: 38293640 PMCID: PMC10823350 DOI: 10.1093/conphys/coad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Concentrations of selenium that exceed regulatory guidelines have been associated with coal mining activities and have been linked to detrimental effects on aquatic ecosystems and the organisms therein. Although the major route of selenium uptake in macroinvertebrates is via the diet, the uptake of waterborne selenite (HSeO3-), the prominent form at circumneutral pH, can be an important contributor to selenium body burden and thus selenium toxicity. In the current study, radiolabelled selenite (Se75) was used to characterize the mechanism of selenite uptake in the water flea, Daphnia magna. The concentration dependence (1-32 μM) of selenite uptake was determined in 1-hour uptake assays in artificial waters that independently varied in bicarbonate, chloride, sulphate, phosphate and selenate concentrations. At concentrations representative of those found in highly contaminated waters, selenite uptake was phosphate-dependent and inhibited by foscarnet, a phosphate transport inhibitor. At higher concentrations, selenite uptake was dependent on waterborne bicarbonate concentration and inhibited by the bicarbonate transporter inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid). These findings suggest that concentrations of phosphate in coal mining-affected waters could alter selenite uptake in aquatic organisms and could ultimately affect the toxic impacts of selenium in such waters.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Dr., Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
9
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
10
|
Zheng Q, Guo L, Huang J, Hao X, Li X, Li N, Wang Y, Zhang K, Wang X, Wang L, Zeng J. Comparative transcriptomics provides novel insights into the mechanisms of selenium accumulation and transportation in tea cultivars ( Camellia sinensis (L.) O. Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1268537. [PMID: 37849840 PMCID: PMC10577196 DOI: 10.3389/fpls.2023.1268537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Tea plants (Camellia sinensis) show discrepancies in selenium accumulation and transportation, the molecular mechanisms of which are not well understood. Hence, we aimed to conduct a systematic investigation of selenium accumulation and transportation mechanisms in different tea cultivars via transcriptome analysis. The Na2SeO3 and Na2SeO4 treatments improved selenium contents in the roots and leaves of three tea cultivars. The high selenium-enrichment ability (HSe) tea cultivars accumulated higher selenium contents in the leaves than did the low selenium-enrichment ability (LSe) tea cultivars. Transcriptome analysis revealed that differentially expressed genes (DEGs) under the Na2SeO3 and Na2SeO4 treatments were enriched in flavonoid biosynthesis in leaves. DEGs under the Na2SeO3 treatment were enriched in glutathione metabolism in the HSe tea cultivar roots compared to those of the LSe tea cultivar. More transporters and transcription factors involved in improving selenium accumulation and transportation were identified in the HSe tea cultivars under the Na2SeO3 treatment than in the Na2SeO4 treatment. In the HSe tea cultivar roots, the expression of sulfate transporter 1;2 (SULTR1;2) and SULTR3;4 increased in response to Na2SeO4 exposure. In contrast, ATP-binding cassette transporter genes (ABCs), glutathione S-transferase genes (GSTs), phosphate transporter 1;3 (PHT1;3), nitrate transporter 1 (NRT1), and 34 transcription factors were upregulated in the presence of Na2SeO3. In the HSe tea cultivar leaves, ATP-binding cassette subfamily B member 11 (ABCB11) and 14 transcription factors were upregulated under the Na2SeO3 treatment. Among them, WRKY75 was explored as a potential transcription factor that regulated the accumulation of Na2SeO3 in the roots of HSe tea cultivars. This study preliminary clarified the mechanism of selenium accumulation and transportation in tea cultivars, and the findings have important theoretical significance for the breeding and cultivation of selenium-enriched tea cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Kałucka M, Roszczyk A, Klimaszewska M, Kaleta B, Drelich E, Błażewicz A, Górska-Jakubowska S, Malinowska E, Król M, Prus AM, Trześniowska K, Wołczyńska A, Dorożyński P, Zagożdżon R, Turło J. Optimization of Se- and Zn-Enriched Mycelium of Lentinula edodes (Berk.) Pegler as a Dietary Supplement with Immunostimulatory Activity. Nutrients 2023; 15:4015. [PMID: 37764798 PMCID: PMC10535943 DOI: 10.3390/nu15184015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different.
Collapse
Affiliation(s)
- Małgorzata Kałucka
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Marzenna Klimaszewska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Ewelina Drelich
- Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (E.D.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisiciplinary Applications of Ion Chromatography, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Sandra Górska-Jakubowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Eliza Malinowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | | | - Katarzyna Trześniowska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Aleksandra Wołczyńska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| |
Collapse
|
12
|
Gong A, Liu W, Lin Y, Huang L, Xie Z. Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0132623. [PMID: 37098949 PMCID: PMC10269739 DOI: 10.1128/spectrum.01326-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Selenium (Se) is a micronutrient in most eukaryotes, and Se-enriched yeast is the most common selenium supplement. However, selenium metabolism and transport in yeast have remained unclear, greatly hindering the application of this element. To explore the latent selenium transport and metabolism mechanisms, we performed adaptive laboratory evolution under the selective pressure of sodium selenite and successfully obtained selenium-tolerant yeast strains. Mutations in the sulfite transporter gene ssu1 and its transcription factor gene fzf1 were found to be responsible for the tolerance generated in the evolved strains, and the selenium efflux process mediated by ssu1 was identified in this study. Moreover, we found that selenite is a competitive substrate for sulfite during the efflux process mediated by ssu1, and the expression of ssu1 is induced by selenite rather than sulfite. Based on the deletion of ssu1, we increased the intracellular selenomethionine content in Se-enriched yeast. This work confirms the existence of the selenium efflux process, and our findings may benefit the optimization of Se-enriched yeast production in the future. IMPORTANCE Selenium is an essential micronutrient for mammals, and its deficiency severely threatens human health. Yeast is the model organism for studying the biological role of selenium, and Se-enriched yeast is the most popular selenium supplement to solve Se deficiency. The cognition of selenium accumulation in yeast always focuses on the reduction process. Little is known about selenium transport, especially selenium efflux, which may play a crucial part in selenium metabolism. The significance of our research is in determining the selenium efflux process in Saccharomyces cerevisiae, which will greatly enhance our knowledge of selenium tolerance and transport, facilitating the production of Se-enriched yeast. Moreover, our research further advances the understanding of the relationship between selenium and sulfur in transport.
Collapse
Affiliation(s)
- Ao Gong
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenyue Liu
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yelong Lin
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Laili Huang
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ravindran R, Bacellar IOL, Castellanos-Girouard X, Wahba HM, Zhang Z, Omichinski JG, Kisley L, Michnick SW. Peroxisome biogenesis initiated by protein phase separation. Nature 2023; 617:608-615. [PMID: 37165185 PMCID: PMC10302873 DOI: 10.1038/s41586-023-06044-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Peroxisomes are organelles that carry out β-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.
Collapse
Affiliation(s)
- Rini Ravindran
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Isabel O L Bacellar
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
- Douglas Research Centre, Montreal, Quebec, Canada
| | | | - Haytham M Wahba
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zhenghao Zhang
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Mitchell Physics Building (MPHY), College Station, TX, USA
| | - James G Omichinski
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Hu C, Nie Z, Shi H, Peng H, Li G, Liu H, Li C, Liu H. Selenium uptake, translocation, subcellular distribution and speciation in winter wheat in response to phosphorus application combined with three types of selenium fertilizer. BMC PLANT BIOLOGY 2023; 23:224. [PMID: 37101116 PMCID: PMC10134582 DOI: 10.1186/s12870-023-04227-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Selenium (Se) deficiency causes a series of health disorders in humans, and Se concentrations in the edible parts of crops can be improved by altering exogenous Se species. However, the uptake, transport, subcellular distribution and metabolism of selenite, selenate and SeMet (selenomethionine) under the influence of phosphorus (P) has not been well characterized. RESULTS The results showed that increasing the P application rate enhanced photosynthesis and then increased the dry matter weight of shoots with selenite and SeMet treatment, and an appropriate amount of P combined with selenite treatment increased the dry matter weight of roots by enhancing root growth. With selenite treatment, increasing the P application rate significantly decreased the concentration and accumulation of Se in roots and shoots. P1 decreased the Se migration coefficient, which could be attributed to the inhibited distribution of Se in the root cell wall, but increased distribution of Se in the root soluble fraction, as well as the promoted proportion of SeMet and MeSeCys (Se-methyl-selenocysteine) in roots. With selenate treatment, P0.1 and P1 significantly increased the Se concentration and distribution in shoots and the Se migration coefficient, which could be attributed to the enhanced proportion of Se (IV) in roots but decreased proportion of SeMet in roots. With SeMet treatment, increasing the P application rate significantly decreased the Se concentration in shoots and roots but increased the proportion of SeCys2 (selenocystine) in roots. CONCLUSION Compared with selenate or SeMet treatment, treatment with an appropriate amount of P combined with selenite could promote plant growth, reduce Se uptake, alter Se subcellular distribution and speciation, and affect Se bioavailability in wheat.
Collapse
Affiliation(s)
- Caixia Hu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Zhaojun Nie
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China.
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hongyu Peng
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Guangxin Li
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Haiyang Liu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Chang Li
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China.
| |
Collapse
|
15
|
Xu Q, Zhang S, Ren J, Li K, Li J, Guo Y. Uptake of Selenite by Rahnella aquatilis HX2 Involves the Aquaporin AqpZ and Na +/H + Antiporter NhaA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2371-2379. [PMID: 36734488 DOI: 10.1021/acs.est.2c07028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.
Collapse
Affiliation(s)
- Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
17
|
Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. Biomolecules 2022; 12:biom12070917. [PMID: 35883471 PMCID: PMC9312934 DOI: 10.3390/biom12070917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.
Collapse
|
18
|
Cohen N, Kahana A, Schuldiner M. A Similarity-Based Method for Predicting Enzymatic Functions in Yeast Uncovers a New AMP Hydrolase. J Mol Biol 2022; 434:167478. [PMID: 35123996 PMCID: PMC9005783 DOI: 10.1016/j.jmb.2022.167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/01/2022]
Abstract
Despite decades of research and the availability of the full genomic sequence of the baker's yeast Saccharomyces cerevisiae, still a large fraction of its genome is not functionally annotated. This hinders our ability to fully understand cellular activity and suggests that many additional processes await discovery. The recent years have shown an explosion of high-quality genomic and structural data from multiple organisms, ranging from bacteria to mammals. New computational methods now allow us to integrate these data and extract meaningful insights into the functional identity of uncharacterized proteins in yeast. Here, we created a database of sensitive sequence similarity predictions for all yeast proteins. We use this information to identify candidate enzymes for known biochemical reactions whose enzymes are unidentified, and show how this provides a powerful basis for experimental validation. Using one pathway as a test case we pair a new function for the previously uncharacterized enzyme Yhr202w, as an extra-cellular AMP hydrolase in the NAD degradation pathway. Yhr202w, which we now term Smn1 for Scavenger MonoNucleotidase 1, is a highly conserved protein that is similar to the human protein E5NT/CD73, which is associated with multiple cancers. Hence, our new methodology provides a paradigm, that can be adopted to other organisms, for uncovering new enzymatic functions of uncharacterized proteins.
Collapse
Affiliation(s)
- Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amit Kahana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. https://twitter.com/AmitKahana
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
19
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
20
|
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine. Molecules 2021; 26:molecules26237120. [PMID: 34885702 PMCID: PMC8659212 DOI: 10.3390/molecules26237120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Collapse
|
21
|
He R, Ding C, Luo Y, Guo G, Tang J, Shen H, Wang Q, Zhang X. Congener-Induced Sulfur-Related Metabolism Interference Therapy Promoted by Photothermal Sensitization for Combating Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104410. [PMID: 34486185 DOI: 10.1002/adma.202104410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolic homeostasis is vital for individual cells to keep alive. Stronger metabolic homeostasis allows bacteria to survive in vivo and do persistent harm to hosts, which is especially typical in implant-associated infection (IAI) with biofilm intervention. Herein, based on the competitive role of selenium (Se) and sulfur (S) in bacteria metabolism as congeners, a congener-induced sulfur-related metabolism interference therapy (SMIT) eradicating IAI is proposed by specific destruction of bacteria metabolic homeostasis. The original nanodrug manganese diselenide (MnSe2 ) is devised to generate permeable H2 Se in bacteria, triggered by the acidic microenvironment. H2 Se, the congener substitution of H2 S, as a bacteria-specific intermediate metabolite, can embed itself into the H2 S-utilization pathway and further alternatively disrupt the downstream sulfur-related metabolism state inside bacteria. A proteomic study indicates ribosome-related proteins are heavily downregulated and the basic metabolic pathways are mainly disordered after SMIT, revealing the destruction of bacteria metabolic homeostasis. The efficiency of SMIT is significantly promoted with the mild temperature sensitization provided by the photothermal treatment (PTT) of MnSe2 nanoparticles, verified by the proteomic study and the anti-IAI effect in vitro and in vivo. With the intelligent nanodrug, a PTT-promoted SMIT strategy against IAI is provided and a new insight into the interference design toward metabolic homeostasis with biochemical similarity is demonstrated.
Collapse
Affiliation(s)
- Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Cheng Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| |
Collapse
|
22
|
Cao D, Liu Y, Liu Z, Li J, Zhang X, Yin P, Jin X, Huang J. Genome-wide identification and characterization of phosphate transporter gene family members in tea plants (Camellia sinensis L. O. kuntze) under different selenite levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:668-676. [PMID: 34214777 DOI: 10.1016/j.plaphy.2021.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Selenium (Se) is an essential element for human health and an important nutrient for plant growth. Selenite is the main form of Se available to plants in acidic soils. Previous studies have shown that phosphate transporters (PTHs) participate in selenite uptake in plants. Research on the PHT gene family is therefore vital for production of Se-rich products. Here, 23 CsPHT genes were identified in the tea (Camellia sinensis) genome and renamed based on homology with AtPHT genes in Arabidopsis thaliana. The CsPHT genes were divided into four subfamilies: PHT1, PHT3, PHT4, and PHO, containing nine, three, six, and five genes, respectively. Phylogenetic analysis indicated that fewer duplication events occurred in tea plants than in A. thaliana, rice, apple, and poplar. Genes in the same subfamily tended to share similar gene structures, conserved motifs, and potential functions. CsPHT genes were differentially expressed in various tissues and in roots under different Se levels, suggesting key roles in selenite uptake, translocation, and homeostasis. The results illuminate the contributions of CsPHT genes to selenite supply in tea plants, and lay a foundation for follow-up studies on their potential functions in this plant species.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Peng Yin
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan, 464000, China
| | - Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
23
|
Yang J, Yang H. Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Crit Rev Food Sci Nutr 2021; 63:411-425. [PMID: 34278845 DOI: 10.1080/10408398.2021.1948818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endemic selenium (Se) deficiency is a major worldwide nutritional challenge. Organic Se can be synthesized through physical and chemical methods that are conducive to human absorption, but its high production cost and low output cannot meet the actual demand for Se supplementation. Some microbes are known to convert inorganic Se into organic forms of high nutritional value and Se-enriched probiotics are the main representatives. The aim of the present review is to describe the characteristics of Se-enriched yeast, lactic acid bacteria, bifidobacteria and discuss their Se enrichment mechanisms. Se products metabolized by Se-enriched probiotics have been classified, such as Se nanoparticles (SeNPs) and selenoprotein, and their bioactivities have been assessed. The factors affecting the Se enrichment capacity of probiotics and their application in animal feed, food additives, and functional food production have been summarized. Moreover, a brief summary and the development of Se-enriched probiotics, particularly their potential applications in the field of biomedicine have been provided. In conclusion, Se-enriched probiotics not just have a wide range of applications in the food industry but also have great potential for application in the field of biomedicine in the future.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Zhu TT, Tian LJ, Yu HQ. Phosphate-Suppressed Selenite Biotransformation by Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10713-10721. [PMID: 32786571 DOI: 10.1021/acs.est.0c02175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biotransformation of selenite to valuable elemental selenium nanoparticles (Se0) is a promising avenue to remediate seleniferous environments and simultaneously recover selenium (Se). However, the underlying oxyanion competition and selenite transformation mechanism in prokaryotes are poorly understood. In this work, the impacts of phosphate on selenite uptake and transformation were elucidated with Escherichia coli and its mutant deficient in phosphate transport as model microbial strains. Selenite uptake was inhibited by phosphate in E. coli. Moreover, the transformation of internalized Se was shifted from Se0 to toxic organo-Se with elevated phosphate levels, as evidenced by the linear combination fit analysis of the Se K-edge X-ray absorption near-edge structure. Such a phosphate-regulated selenite biotransformation process was mainly assigned to the competitive uptake of phosphate and selenite, which was primarily mediated by a low affinity phosphate transporter (PitA). Under phosphate-deficient conditions, the cells not only produced abundant Se0 nanoparticles but also maintained good cell viability. These findings provide new insights into the phosphate-regulated selenite biotransformation by prokaryotes and contribute to the development of new processes for bioremediating Se-contaminated environments, as well as bioassembly of Se0.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Kieliszek M, Bierla K, Jiménez-Lamana J, Kot AM, Alcántara-Durán J, Piwowarek K, Błażejak S, Szpunar J. Metabolic Response of the Yeast Candida utilis During Enrichment in Selenium. Int J Mol Sci 2020; 21:ijms21155287. [PMID: 32722488 PMCID: PMC7432028 DOI: 10.3390/ijms21155287] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20–30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
- Correspondence: (M.K.); (J.S.)
| | - Katarzyna Bierla
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Javier Jiménez-Lamana
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Jaime Alcántara-Durán
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen, Spain;
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Joanna Szpunar
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
- Correspondence: (M.K.); (J.S.)
| |
Collapse
|
27
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Harnessing the Residual Nutrients in Anaerobic Digestate for Ethanol Fermentation and Digestate Remediation Using Saccharomyces cerevisiae. FERMENTATION 2020. [DOI: 10.3390/fermentation6020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the feasibility of concomitant nutrient removal, cleaner water recovery, and improved ethanol production via glucose fermentation in the liquid fraction of anaerobic digestate (ADE) by Saccharomyces cerevisiae. The 25%, 50%, and 100% (v/v) ADE supported the growth of S. cerevisiae, glucose utilization (~100 g/L) and ethanol production (up to 50.4 ± 6.4 g/L). After a 144 h fermentation in the 50% ADE, the concentrations of ammonia, total nitrogen, phosphate, and total phosphorus decreased 1000-, 104.43-, 1.94-, and 2.20-fold, respectively. Notably, only 0.40 ± 0.61 mg/L ammonia was detected in the 50% ADE post-fermentation. Similarly, the concentrations of aluminum, copper, magnesium, manganese, molybdenum, potassium, sodium, iron, sulfur, zinc, chloride, and sulfate decreased significantly in the ADE. Further analysis suggests that the nitrogen (ammonia and protein), phosphate, and the metal contents of the digestate work in tandem to promote growth and ethanol production. Among these, ammonia and protein appear to exert considerable effects on S. cerevisiae. These results represent a significant first step towards repurposing ADE as a resource in bio-production of fuels and chemicals, whilst generating effluent that is economically treatable by conventional wastewater treatment technologies.
Collapse
|
29
|
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J Fungi (Basel) 2020; 6:jof6020059. [PMID: 32375266 PMCID: PMC7344654 DOI: 10.3390/jof6020059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu Wu
- Correspondence: ; Tel.: +86-716-806-6262
| |
Collapse
|
30
|
Wang T, Lou X, Zhang G, Dang Y. Improvement of selenium enrichment in Rhodotorula glutinis X-20 through combining process optimization and selenium transport. Bioengineered 2019; 10:335-344. [PMID: 31322471 PMCID: PMC6682361 DOI: 10.1080/21655979.2019.1644853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selenium-enriched yeast can transform toxic inorganic selenium into absorbable organic selenium, which is of great significance for human health and pharmaceutical industry. A yeast Rhodotorula glutinis X-20 we obtained before has good selenium-enriched ability, but its selenium content is still low for industrial application. In this study, strategies of process optimization and transport regulation of selenium were thus employed to further improve the cell growth and selenium enrichment. Through engineering phosphate transporters from Saccharomyces cerevisiae into R. glutinis X-20, the selenium content was increased by 21.1%. Through using mixed carbon culture (20 g L−1, glycerol: glucose 3:7), both biomass and selenium content were finally increased to 5.3 g L−1 and 5349.6 µg g−1 (cell dry weight, DWC), which were 1.14 folds and 6.77 folds compared to their original values, respectively. Our results indicate that high selenium-enrichment ability and biomass production can be achieved through combining process optimization and regulation of selenium transport.
Collapse
Affiliation(s)
- Ting Wang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Xindan Lou
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Genlin Zhang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Yanyan Dang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| |
Collapse
|
31
|
Hoffman KS, Vargas-Rodriguez O, Bak DW, Mukai T, Woodward LK, Weerapana E, Söll D, Reynolds NM. A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation. J Biol Chem 2019; 294:12855-12865. [PMID: 31296657 DOI: 10.1074/jbc.ra119.008219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) is the 21st genetically encoded amino acid in organisms across all domains of life. Although structurally similar to cysteine (Cys), the Sec selenol group has unique properties that are attractive for protein engineering and biotechnology applications. Production of designer proteins with Sec (selenoproteins) at desired positions is now possible with engineered translation systems in Escherichia coli However, obtaining pure selenoproteins at high yields is limited by the accumulation of free Sec in cells, causing undesired incorporation of Sec at Cys codons due to the inability of cysteinyl-tRNA synthetase (CysRS) to discriminate against Sec. Sec misincorporation is toxic to cells and causes protein aggregation in yeast. To overcome this limitation, here we investigated a CysRS from the selenium accumulator plant Astragalus bisulcatus that is reported to reject Sec in vitro Sequence analysis revealed a rare His → Asn variation adjacent to the CysRS catalytic pocket. Introducing this variation into E. coli and Saccharomyces cerevisiae CysRS increased resistance to the toxic effects of selenite and selenomethionine (SeMet), respectively. Although the CysRS variant could still use Sec as a substrate in vitro, we observed a reduction in the frequency of Sec misincorporation at Cys codons in vivo We surmise that the His → Asn variation can be introduced into any CysRS to provide a fitness advantage for strains burdened by Sec misincorporation and selenium toxicity. Our results also support the notion that the CysRS variant provides higher specificity for Cys as a mechanism for plants to grow in selenium-rich soils.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Laura K Woodward
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
32
|
Wang M, Yang W, Zhou F, Du Z, Xue M, Chen T, Liang D. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20475-20484. [PMID: 31102230 DOI: 10.1007/s11356-019-04717-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 05/21/2023]
Abstract
The ambiguous mechanism that selenite seems to be absorbed by roots via phosphorus (P) and silicon (Si) transporters signifies P and Si may affect selenite uptake. However, the role of P and Si in phloem-mediated selenium (Se) transport within plant tissue is unknown. Therefore, in this work, tomato (Solanum lycopersicum L.) seedlings were exposed to selenite under different hydroponic conditions firstly. And then, split-root experiments were conducted. Results showed that Se uptake decreased as external pH increased. At pH 8, more selenite in the form of SeO32- was assimilated under P-deficient conditions than under P-normal conditions. Silicate inhibited Se uptake only at pH 3 (27.5% H2SeO3 +72.5% HSeO3-). The results of split-root experiments showed that Se concentrations in seedlings increased under heterogeneously high P or Si. Selenium transport from shoots to roots immersed in solution without selenite was also enhanced. This study illustrated that the affinity of tomato roots to assimilate selenite species followed the order of H2SeO3 >HSeO3- >SeO32-. H2SeO3 was absorbed into roots via Si transporters, whereas HSeO3- and a portion of SeO32- were absorbed via low- and high-affinity P transporters, respectively. In addition, heterogeneously high P or Si concentrations in environmental media could enhance phloem-mediated Se redistribution.
Collapse
Affiliation(s)
- Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zekun Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Kieliszek M, Błażejak S, Piwowarek K, Brzezicka K. Equilibrium modeling of selenium binding from aqueous solutions by Candida utilis ATCC 9950 yeasts. 3 Biotech 2018; 8:388. [PMID: 30175025 PMCID: PMC6111034 DOI: 10.1007/s13205-018-1415-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022] Open
Abstract
The study investigated the effectiveness of selenium binding from its salt solution by Candida utilis ATCC 9950 yeast biomass cultured on a medium prepared from the agro-food industry wastes, containing an available source of carbon and nitrogen. Selenium binding by C. utilis yeast strain after 48 h of culturing at 28 °C from aqueous solutions with the addition of 30 mg Se/L reached a value of 2.28 mg Se/g of yeast biomass. The kinetics of selenium binding by the yeasts showed a better fit for the pseudo-second-order kinetic model compared to the pseudo-first-order one. Accumulation stability data were analyzed using the Freundlich and Langmuir isotherm models. The presence of competing anions such as SO 4 2 - , and HPO 4 2 - at a concentration of 0.5 mM resulted in about 35% reduction of selenium binding by the examined C. utilis strain. FTIR analysis showed that sulfur compounds were involved in selenium biosorption by the yeast. Compounds containing ammonium groups appeared to be very important for selenium binding. The results of the study demonstrated that the yeast can be used to effectively bind selenium from aqueous solution. At the same time, it gives the opportunity to obtain a biomass rich in this deficient element, which can also be used in dietary supplement production.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Kamil Piwowarek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Katarzyna Brzezicka
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
34
|
Directed Evolution of Saccharomyces cerevisiae for Increased Selenium Accumulation. Microorganisms 2018; 6:microorganisms6030081. [PMID: 30082639 PMCID: PMC6165298 DOI: 10.3390/microorganisms6030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Selenium-enriched yeast (selenium yeast) are one of the most popular sources of selenium supplementation used in the agriculture and human nutritional supplements industries. To enhance the production efficiency of selenium yeast, we sought to develop a method to identify, and ultimately select for, strains of yeast with enhanced selenium accumulation capabilities. Selenite resistance of four genetically diverse strains of Saccharomyces cerevisiae was assayed in various conditions, including varying carbon sources, nitrogen sources, and phosphate amounts, and they were correlated with selenium accumulation in a commercially relevant selenium-containing growth medium. Glycerol- and selenite-containing media was used to select for six yeast isolates with enhanced selenite resistance. One isolate was found to accumulate 10-fold greater selenium (0.13 to 1.4 mg Se g−1 yeast) than its parental strain. Glycerol- and selenium-containing medium can be used to select for strains of yeast with enhanced selenium accumulation capability. The methods identified can lead to isolation of industrial yeast strains with enhanced selenium accumulation capabilities that can result in greater cost efficiency of selenium yeast production. Additionally, the selection method does not involve the construction of transgenic yeast, and thus produces yeasts suitable for use in human food and nutrient supplements.
Collapse
|
35
|
Moniruzzaman M, Gann ER, Wilhelm SW. Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 - A Harmful Bloom Algae. Front Microbiol 2018; 9:752. [PMID: 29725322 PMCID: PMC5917014 DOI: 10.3389/fmicb.2018.00752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to be associated with important ecological processes, including the collapse of algal blooms. However, the molecular aspects of giant virus–host interactions remain largely unknown. Aureococcus anophagefferens virus (AaV), a giant virus in the Mimiviridae clade, is known to play a critical role in regulating the fate of brown tide blooms caused by the pelagophyte Aureococcus anophagefferens. To understand the physiological response of A. anophagefferens CCMP1984 upon AaV infection, we studied the transcriptomic landscape of this host–virus pair over an entire infection cycle using a RNA-sequencing approach. A massive transcriptional response of the host was evident as early as 5 min post-infection, with modulation of specific processes likely related to both host defense mechanism(s) and viral takeover of the cell. Infected Aureococcus showed a relative suppression of host-cell transcripts associated with photosynthesis, cytoskeleton formation, fatty acid, and carbohydrate biosynthesis. In contrast, host cell processes related to protein synthesis, polyamine biosynthesis, cellular respiration, transcription, and RNA processing were overrepresented compared to the healthy cultures at different stages of the infection cycle. A large number of redox active host-selenoproteins were overexpressed, which suggested that viral replication and assembly progresses in a highly oxidative environment. The majority (99.2%) of annotated AaV genes were expressed at some point during the infection cycle and demonstrated a clear temporal–expression pattern and an increasing relative expression for the majority of the genes through the time course. We detected a putative early promoter motif for AaV, which was highly similar to the early promoter elements of two other Mimiviridae members, indicating some degree of evolutionary conservation of gene regulation within this clade. This large-scale transcriptome study provides insights into the Aureococcus cells infected by a giant virus and establishes a foundation to test hypotheses regarding metabolic and regulatory processes critical for AaV and other Mimiviridae members.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
36
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
37
|
Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
|
39
|
The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci Rep 2016; 6:32836. [PMID: 27618952 PMCID: PMC5020356 DOI: 10.1038/srep32836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity.
Collapse
|
40
|
Wang J, Wang B, Zhang D, Wu Y. Selenium uptake, tolerance and reduction in Flammulina velutipes supplied with selenite. PeerJ 2016; 4:e1993. [PMID: 27547513 PMCID: PMC4986802 DOI: 10.7717/peerj.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/10/2016] [Indexed: 01/29/2023] Open
Abstract
Recently, selenium (Se) enriched mushrooms have been exploited as dietary Se supplements, but our knowledge of the metabolic process during the Se enrichment process is far from complete. In this study, the uptake, tolerance and reduction of selenite in a widely cultivated mushroom, Flammulina velutipes, was investigated. The results showed that pH variation (from 5.5-7.5), metabolic inhibitor (0.1 mM 2,4-DNP) and P or S starvation led to 11-26% decreases in the selenite uptake rate of F. velutipes. This indicates that a minor portion of the selenite uptake was metabolism dependent, whereas a carrier-facilitated passive transport may be crucial. Growth inhibition of F. velutipes initiated at 0.1 mM selenite (11% decrease in the growth rate) and complete growth inhibition occurred at 3 mM selenite. A selenite concentration of 0.03-0.1 mM was recommended to maintain the balance between mycelium production and Se enrichment. F. velutipes was capable of reducing selenite to elemental Se [Se(0)] including Se(0) nanoparticles, possibly as a detoxification mechanism. This process depended on both selenite concentration and metabolism activity. Overall, the data obtained provided some basic information for the cultivation of the selenized F. velutipes, and highlighted the opportunity of using mushrooms for the production of Se(0) nanoparticles.
Collapse
Affiliation(s)
- Jipeng Wang
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LHE. Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:711-720. [PMID: 26690834 DOI: 10.1021/acs.est.5b04169] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biogenic selenium (Se) emissions play a major role in the biogeochemical cycle of this essential micronutrient. Microalgae may be responsible for a large portion of these emissions via production of methylated Se compounds that volatilize into the atmosphere. However, the biochemical mechanisms underlying Se methylation in microalgae are poorly understood. Here, we study Se methylation by Chlamydomonas reinhardtii, a model freshwater alga, as a function of uptake and intracellular Se concentrations and present a biochemical model that quantitatively describes Se uptake and methylation. Both selenite and selenate, two major inorganic forms of Se, are readily internalized by C. reinhardtii, but selenite is accumulated around ten times more efficiently than selenate due to different membrane transporters. With either selenite or selenate as substrates, Se methylation was highly efficient (up to 89% of intracellular Se) and directly coupled to intracellular Se levels (R(2) > 0.92) over an intracellular concentration range exceeding an order of magnitude. At intracellular concentrations exceeding 10 mM, intracellular zerovalent Se was formed. The relationship between uptake, intracellular accumulation, and methylation was used by the biochemical model to successfully predict measured concentrations of methylated Se in natural waters. Therefore, biological Se methylation by microalgae could significantly contribute to environmental Se cycling.
Collapse
Affiliation(s)
- Bas Vriens
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| | - Andreas Voegelin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Anze Zupanic
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Lenny H E Winkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| |
Collapse
|
42
|
Samyn DR, Persson BL. Inorganic Phosphate and Sulfate Transport in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:253-269. [PMID: 26721277 DOI: 10.1007/978-3-319-25304-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.
Collapse
Affiliation(s)
- D R Samyn
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden.
| | - B L Persson
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden
| |
Collapse
|
43
|
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 2015; 99:5373-5382. [PMID: 26003453 PMCID: PMC4464373 DOI: 10.1007/s00253-015-6650-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022]
Abstract
This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland,
| | | | | | | |
Collapse
|
44
|
Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 2015; 7:4199-239. [PMID: 26035246 PMCID: PMC4488781 DOI: 10.3390/nu7064199] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.
Collapse
Affiliation(s)
- Lenny H E Winkel
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Bas Vriens
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Gerrad D Jones
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Leila S Schneider
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA.
| |
Collapse
|
45
|
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. MICROBIAL CELL 2015; 2:139-149. [PMID: 28357286 PMCID: PMC5349236 DOI: 10.15698/mic2015.05.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
46
|
Pimentel C, Caetano SM, Menezes R, Figueira I, Santos CN, Ferreira RB, Santos MA, Rodrigues-Pousada C. Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2014; 1840:1977-86. [DOI: 10.1016/j.bbagen.2014.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
47
|
A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 2014; 457:391-400. [PMID: 24206186 DOI: 10.1042/bj20130862] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The homologue of human YTHDF2, Ydr374c (Pho92), is the only protein that has a YTH (YT521-B homology) domain in Saccharomyces cerevisiae. Based on microarray analysis, genes involved in the phosphate signal transduction (PHO) pathway were up-regulated in the Δpho92 strain, as were genes regulated by Pho4, which is an important transcription factor in the PHO pathway. To identify the exact mechanism of Pho92 action with respect to phosphate metabolism, we investigated the effect of Pho92 on PHO4 expression. The half-life of PHO4 mRNA was increased in the Δpho92 strain; this phenotype was also observed in the deletion mutants UPF1 and POP2, which are components of the NMD (nonsense-mediated decay) pathway and the Pop2-Ccr4-Not deadenylase complex respectively. Pho92 interacts physically with Pop2 of the Pop2-Ccr4-Not deadenylase complex. Furthermore, Pho92 binding to the 3'-UTR of PHO4 was dependent on the phosphate concentration. Deletion of the PHO4 3'-UTR resulted in PHO4 mRNA resistance to Pho92-dependent degradation. The results of the present study indicate that Pho92 regulates Pho4 expression at the post-transcriptional level via the regulation of mRNA stability. Taken together, Pho92 participates in cellular phosphate metabolism, specifically via the regulation of PHO4 mRNA stability by binding to the 3'-UTR in a phosphate-dependent manner.
Collapse
|
48
|
Pérez-Sampietro M, Casas C, Herrero E. The AMPK family member Snf1 protects Saccharomyces cerevisiae cells upon glutathione oxidation. PLoS One 2013; 8:e58283. [PMID: 23472170 PMCID: PMC3589272 DOI: 10.1371/journal.pone.0058283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023] Open
Abstract
The AMPK/Snf1 kinase has a central role in carbon metabolism homeostasis in Saccharomyces cerevisiae. In this study, we show that Snf1 activity, which requires phosphorylation of the Thr210 residue, is needed for protection against selenite toxicity. Such protection involves the Elm1 kinase, which acts upstream of Snf1 to activate it. Basal Snf1 activity is sufficient for the defense against selenite, although Snf1 Thr210 phosphorylation levels become increased at advanced treatment times, probably by inhibition of the Snf1 dephosphorylation function of the Reg1 phosphatase. Contrary to glucose deprivation, Snf1 remains cytosolic during selenite treatment, and the protective function of the kinase does not require its known nuclear effectors. Upon selenite treatment, a null snf1 mutant displays higher levels of oxidized versus reduced glutathione compared to wild type cells, and its hypersensitivity to the agent is rescued by overexpression of the glutathione reductase gene GLR1. In the presence of agents such as diethyl maleate or diamide, which cause alterations in glutathione redox homeostasis by increasing the levels of oxidized glutathione, yeast cells also require Snf1 in an Elm1-dependent manner for growth. These observations demonstrate a role of Snf1 to protect yeast cells in situations where glutathione-dependent redox homeostasis is altered to a more oxidant intracellular environment and associates AMPK to responses against oxidative stress.
Collapse
Affiliation(s)
- Maria Pérez-Sampietro
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Celia Casas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
49
|
Shen MWY, Shah D, Chen W, Da Silva N. Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol Prog 2012; 28:654-61. [PMID: 22628173 DOI: 10.1002/btpr.1531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/12/2012] [Indexed: 11/06/2022]
Abstract
Arsenate is a major toxic constituent in arsenic-contaminated water supplies. Saccharomyces cerevisiae was engineered as a potential biosorbent for enhanced arsenate accumulation. The phosphate transporter, Pho84p, known to import arsenate, was overexpressed using a 2μ-based vector carrying PHO84 under the control of the late-phase ADH2 promoter. Arsenate uptake was then evaluated using a resting cell system. In buffer solutions containing high arsenate concentrations (12,000 and 30,000 ppb), the engineered strains internalized up to 750 μg of arsenate per gram of cells, a 50% improvement over control strains. Increasing the cell mass 2.5-fold yielded a proportional increase in the volumetric arsenate uptake, while maintaining the same level of specific uptake. At high levels of arsenate, loss from the intact cells to the medium was observed with time; knockouts of two known arsenic extrusion genes, ACR3 and FPS1, did not prevent this loss. At trace level concentrations (120 ppb), rapid and total arsenate removal was observed. The presence of 50 μM phosphate reduced uptake by approximately 15% in buffer containing 80 μM (6,000 ppb) arsenate. At trace levels of arsenate (70 ppb), the phosphate reduced the initial rate of uptake, but not the total amount removed. PHO84 mRNA levels were nearly 30 times higher in the engineered strains relative to the control strains. Uptake may no longer be a limiting factor in the engineered system and further increases should be possible by upregulating the downstream reduction and sequestration pathways.
Collapse
Affiliation(s)
- Michael W Y Shen
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | | | | | |
Collapse
|
50
|
Mapelli V, Hillestrøm PR, Patil K, Larsen EH, Olsson L. The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Res 2011; 12:20-32. [PMID: 22093810 DOI: 10.1111/j.1567-1364.2011.00757.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 09/19/2011] [Accepted: 10/02/2011] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se) is an essential element for most eukaryotic organisms, including humans. The balance between Se toxicity and its beneficial effects is very delicate. It has been demonstrated that a diet enriched with Se has cancer prevention potential in humans. The most popular commercial Se supplementation is selenized yeast, which is produced in a fermentation process using an inorganic source of Se. Here, we show that the uptake of Se, Se toxic effects and intracellular Se-metabolite profile are largely influenced by the level of sulphur source supplied during the fermentation. A Yap1-dependent oxidative stress response is active when yeast actively metabolizes Se, and this response is linked to the generation of intracellular redox imbalance. The redox imbalance derives from a disproportionate ratio between the reduced and oxidized forms of glutathione and also from the influence of Se metabolism on the central carbon metabolism. The observed increase in glycerol production rate, concomitant with the inhibition of ethanol formation in the presence of Se, can be ascribed to the occurrence of redox imbalance that triggers glycerol biosynthesis to replenish the pool of NAD(+) .
Collapse
Affiliation(s)
- Valeria Mapelli
- Deparment of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|