1
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Lu Q, Shi W, Zhang F, Ding Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1760-1773. [PMID: 38446797 DOI: 10.1111/tpj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Histone 2B ubiquitination (H2Bub) and trimethylation of H3 at lysine 4 (H3K4me3) are associated with transcription activation. However, the function of these modifications in transcription in plants remains largely unknown. Here, we report that coordination of H2Bub and H3K4me3 deposition with the binding of the RNA polymerase-associated factor VERNALIZATION INDEPENDENCE2 (VIP2) to FLOWERING LOCUS C (FLC) modulates flowering time in Arabidopsis. We found that RING domain protein HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 (we refer as HUB1/2), which are responsible for H2Bub, interact with ARABIDOPSIS TRITHORAX1 (ATX1), which is required for H3K4me3 deposition, to promote the transcription of FLC and repress the flowering time. The atx1-2 hub1-10 hub2-2 triple mutant in FRIGIDIA (FRI) background displayed early flowering like FRI hub1-10 hub2-2 and overexpression of ATX1 failed to rescue the early flowering phenotype of hub1-10 hub2-2. Mutations in HUB1 and HUB2 reduced the ATX1 enrichment at FLC, indicating that HUB1 and HUB2 are required for ATX1 recruitment and H3K4me3 deposition at FLC. We also found that the VIP2 directly binds to HUB1, HUB2, and ATX1 and that loss of VIP2 in FRI hub1-10 hub2-2 and FRI atx1-2 plants resulted in early flowering like that observed in FRI vip2-10. Loss of function of HUB2 and ATX1 impaired VIP2 enrichment at FLC, and reduced the transcription initiation and elongation of FLC. In addition, mutations in VIP2 reduced HUB1 and ATX1 enrichment and H2Bub and H3K4me3 levels at FLC. Together, our findings revealed that HUB1/2, ATX1, and VIP2 coordinately modulate H2Bub and H3K4me3 deposition, FLC transcription, and flowering time.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Wenwen Shi
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
3
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
4
|
Tang X, Luo Y, Yuan D, Calandrelli R, Malhi NK, Sriram K, Miao Y, Lou CH, Tsark W, Tapia A, Chen AT, Zhang G, Roeth D, Kalkum M, Wang ZV, Chien S, Natarajan R, Cooke JP, Zhong S, Chen ZB. Long noncoding RNA LEENE promotes angiogenesis and ischemic recovery in diabetes models. J Clin Invest 2023; 133:e161759. [PMID: 36512424 PMCID: PMC9888385 DOI: 10.1172/jci161759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Impaired angiogenesis in diabetes is a key process contributing to ischemic diseases such as peripheral arterial disease. Epigenetic mechanisms, including those mediated by long noncoding RNAs (lncRNAs), are crucial links connecting diabetes and the related chronic tissue ischemia. Here we identify the lncRNA that enhances endothelial nitric oxide synthase (eNOS) expression (LEENE) as a regulator of angiogenesis and ischemic response. LEENE expression was decreased in diabetic conditions in cultured endothelial cells (ECs), mouse hind limb muscles, and human arteries. Inhibition of LEENE in human microvascular ECs reduced their angiogenic capacity with a dysregulated angiogenic gene program. Diabetic mice deficient in Leene demonstrated impaired angiogenesis and perfusion following hind limb ischemia. Importantly, overexpression of human LEENE rescued the impaired ischemic response in Leene-knockout mice at tissue functional and single-cell transcriptomic levels. Mechanistically, LEENE RNA promoted transcription of proangiogenic genes in ECs, such as KDR (encoding VEGFR2) and NOS3 (encoding eNOS), potentially by interacting with LEO1, a key component of the RNA polymerase II-associated factor complex and MYC, a crucial transcription factor for angiogenesis. Taken together, our findings demonstrate an essential role for LEENE in the regulation of angiogenesis and tissue perfusion. Functional enhancement of LEENE to restore angiogenesis for tissue repair and regeneration may represent a potential strategy to tackle ischemic vascular diseases.
Collapse
Affiliation(s)
- Xiaofang Tang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | | | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Kiran Sriram
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
- Irell and Manella Graduate School of Biological Sciences
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | | | - Walter Tsark
- Transgenic Mouse Facility, Center for Comparative Medicine, City of Hope, Duarte, California, USA
| | - Alonso Tapia
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
- Irell and Manella Graduate School of Biological Sciences
| | - Aleysha T. Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | | | - Daniel Roeth
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Comparative Medicine, City of Hope, Duarte, California, USA
| | - Markus Kalkum
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Comparative Medicine, City of Hope, Duarte, California, USA
| | - Zhao V. Wang
- Irell and Manella Graduate School of Biological Sciences
- Department of Diabetes and Cancer Metabolism and
| | - Shu Chien
- Department of Bioengineering, UCSD, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
- Irell and Manella Graduate School of Biological Sciences
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Sheng Zhong
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
- Irell and Manella Graduate School of Biological Sciences
| |
Collapse
|
5
|
Varier RA, Sideri T, Capitanchik C, Manova Z, Calvani E, Rossi A, Edupuganti RR, Ensinck I, Chan VWC, Patel H, Kirkpatrick J, Faull P, Snijders AP, Vermeulen M, Ralser M, Ule J, Luscombe NM, van Werven FJ. N6-methyladenosine (m6A) reader Pho92 is recruited co-transcriptionally and couples translation to mRNA decay to promote meiotic fitness in yeast. eLife 2022; 11:e84034. [PMID: 36422864 PMCID: PMC9731578 DOI: 10.7554/elife.84034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022] Open
Abstract
N6- methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here, we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3'end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice Rossi
- The Francis Crick InstituteLondonUnited Kingdom
| | - Raghu R Edupuganti
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University NijmegenNijmegenNetherlands
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Biomedical Research BuildingMiamiUnited States
| | | | | | | | | | - Peter Faull
- The Francis Crick InstituteLondonUnited Kingdom
- Biological Mass Spectrometry Facility, The University of Texas at AustinAustinUnited States
| | | | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University NijmegenNijmegenNetherlands
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Biochemistry, Charité Universitätsmedizin BerlinBerlinGermany
| | - Jernej Ule
- The Francis Crick InstituteLondonUnited Kingdom
- Dementia Research Institute, King's College LondonLondonUnited Kingdom
| | - Nicholas M Luscombe
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Genetics, Evolution and Environment, UCL Genetics InstituteLondonUnited Kingdom
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | | |
Collapse
|
6
|
Kubota Y, Ota N, Takatsuka H, Unno T, Onami S, Sugimoto A, Ito M. The
PAF1
complex cell‐autonomously promotes oogenesis in
Caenorhabditis elegans. Genes Cells 2022; 27:409-420. [PMID: 35430776 PMCID: PMC9321568 DOI: 10.1111/gtc.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II‐associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II‐mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO‐1, RTFO‐1, PAFO‐1, CDC‐73, and CTR‐9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA‐1::GFP. While four to five OMA‐1::GFP‐positive oocytes were observed in wild‐type animals, their numbers were significantly decreased in pafo‐1 mutant and leo‐1(RNAi), pafo‐1(RNAi), and cdc‐73(RNAi) animals. Expression of a functional PAFO‐1::mCherry transgene in the germline significantly rescued the oogenesis‐defective phenotype of the pafo‐1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA‐1::GFP partially rescued the oogenesis defect in the pafo‐1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell‐autonomous manner by positively regulating the expression of genes involved in oocyte maturation.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Natsumi Ota
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Takuma Unno
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Shuichi Onami
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- RIKEN Center for Biosystems Dynamics Research 2‐2‐3, Minatojima‐minamimachi, Chuo‐ku Kobe Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dinamics Graduate School of Life Sciences, Tohoku University 2‐1‐1 Katahira Sendai Miyagi Japan
| | - Masahiro Ito
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| |
Collapse
|
7
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
8
|
Ogorodnikov A, Danckwardt S. TRENDseq-A highly multiplexed high throughput RNA 3' end sequencing for mapping alternative polyadenylation. Methods Enzymol 2021; 655:37-72. [PMID: 34183130 DOI: 10.1016/bs.mie.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alternative polyadenylation (APA) is a widespread and highly dynamic mechanism of gene regulation. It affects more than 70% of all genes, resulting in transcript isoforms with distinct 3' end termini. APA thereby considerably expands the diversity of the transcriptome 3' end (TREND). This leads to mRNA isoforms with profoundly different physiological effects, by affecting protein output, production of distinct protein isoforms, or modulating protein localization. APA is globally regulated in various conditions, including developmental and adaptive programs. Since perturbations of APA can disrupt biological processes, ultimately resulting in most devastating disorders, querying the APA landscape is crucial to decipher underlying mechanisms, resulting consequences and potential diagnostic and therapeutic implications. Here we provide a detailed step-by-step protocol for TRENDseq, a method for transcriptome-wide high-throughput sequencing of polyadenylated RNA 3' ends in a highly multiplexed fashion. TRENDseq exploits linear amplification of the starting material to improve sensitivity while significantly reducing the amount of input material. It thereby represents a powerful tool to study APA in numerous experimental set-ups and/or limited human samples in a highly multiplexed and reproducible manner.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany; Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany; Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
9
|
Marini F, Scherzinger D, Danckwardt S. TREND-DB-a transcriptome-wide atlas of the dynamic landscape of alternative polyadenylation. Nucleic Acids Res 2021; 49:D243-D253. [PMID: 32976578 PMCID: PMC7778938 DOI: 10.1093/nar/gkaa722] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative polyadenylation (APA) profoundly expands the transcriptome complexity. Perturbations of APA can disrupt biological processes, ultimately resulting in devastating disorders. A major challenge in identifying mechanisms and consequences of APA (and its perturbations) lies in the complexity of RNA 3′ end processing, involving poorly conserved RNA motifs and multi-component complexes consisting of far more than 50 proteins. This is further complicated in that RNA 3′ end maturation is closely linked to transcription, RNA processing and even epigenetic (histone/DNA/RNA) modifications. Here, we present TREND-DB (http://shiny.imbei.uni-mainz.de:3838/trend-db), a resource cataloging the dynamic landscape of APA after depletion of >170 proteins involved in various facets of transcriptional, co- and post-transcriptional gene regulation, epigenetic modifications and further processes. TREND-DB visualizes the dynamics of transcriptome 3′ end diversification (TREND) in a highly interactive manner; it provides a global APA network map and allows interrogating genes affected by specific APA-regulators and vice versa. It also permits condition-specific functional enrichment analyses of APA-affected genes, which suggest wide biological and clinical relevance across all RNAi conditions. The implementation of the UCSC Genome Browser provides additional customizable layers of gene regulation accounting for individual transcript isoforms (e.g. epigenetics, miRNA-binding sites and RNA-binding proteins). TREND-DB thereby fosters disentangling the role of APA for various biological programs, including potential disease mechanisms, and helps identify their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany
| | - Denise Scherzinger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, 55131 Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany.,Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
10
|
Bennett NK, Nguyen MK, Darch MA, Nakaoka HJ, Cousineau D, Ten Hoeve J, Graeber TG, Schuelke M, Maltepe E, Kampmann M, Mendelsohn BA, Nakamura JL, Nakamura K. Defining the ATPome reveals cross-optimization of metabolic pathways. Nat Commun 2020; 11:4319. [PMID: 32859923 PMCID: PMC7455733 DOI: 10.1038/s41467-020-18084-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
Collapse
Affiliation(s)
- Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Maxwell A Darch
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Derek Cousineau
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bryce A Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Spt5 Phosphorylation and the Rtf1 Plus3 Domain Promote Rtf1 Function through Distinct Mechanisms. Mol Cell Biol 2020; 40:MCB.00150-20. [PMID: 32366382 DOI: 10.1128/mcb.00150-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Rtf1 is a conserved RNA polymerase II (RNAPII) elongation factor that promotes cotranscriptional histone modification, RNAPII transcript elongation, and mRNA processing. Rtf1 function requires the phosphorylation of Spt5, an essential RNAPII processivity factor. Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), the catalytic component of positive transcription elongation factor b (P-TEFb). Rtf1 recognizes phosphorylated Spt5 (pSpt5) through its Plus3 domain. Since Spt5 is a unique target of Cdk9 and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. Here, we dissect Rtf1 regulation by pSpt5 in the fission yeast Schizosaccharomyces pombe We demonstrate that the Plus3 domain of Rtf1 (Prf1 in S. pombe) and pSpt5 are functionally distinct and that they act in parallel to promote Prf1 function. This alternate Plus3 domain function involves an interface that overlaps the pSpt5-binding site and that can interact with single-stranded nucleic acid or with the polymerase-associated factor (PAF) complex in vitro We further show that the C-terminal region of Prf1, which also interacts with PAF, has a similar parallel function with pSpt5. Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation.
Collapse
|
12
|
Goodman LD, Bonini NM. New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. Trends Genet 2019; 36:81-92. [PMID: 31837826 DOI: 10.1016/j.tig.2019.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of microsatellite repeat expansions within genes is associated with >30 neurological diseases. Of interest, (GGGGCC)>30-repeats within C9orf72 are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These expansions can be 100s to 1000s of units long. Thus, it is perplexing how RNA-polymerase II (RNAPII) can successfully transcribe them. Recent investigations focusing on GGGGCC-transcription have identified specific, canonical complexes that may promote RNAPII-transcription at these GC-rich microsatellites: the DSIF complex and PAF1C. These complexes may be important for resolving the unique secondary structures formed by GGGGCC-DNA during transcription. Importantly, this process can produce potentially toxic repeat-containing RNA that can encode potentially toxic peptides, impacting neuron function and health. Understanding how transcription of these repeats occurs has implications for therapeutics in multiple diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription. Cell Rep 2019; 23:1530-1542. [PMID: 29719263 PMCID: PMC5946721 DOI: 10.1016/j.celrep.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/11/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II-dependent transcription RNMT-RAM-dependent transcription is independent of mRNA cap methylation RNMT-RAM binds to the entire length of pre-mRNA and to transcription-associated proteins Significant loss of RNA Pol II gene occupancy is observed on RNMT-RAM suppression
Collapse
|
14
|
Goodman LD, Prudencio M, Kramer NJ, Martinez-Ramirez LF, Srinivasan AR, Lan M, Parisi MJ, Zhu Y, Chew J, Cook CN, Berson A, Gitler AD, Petrucelli L, Bonini NM. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci 2019; 22:863-874. [PMID: 31110321 PMCID: PMC6535128 DOI: 10.1038/s41593-019-0396-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
An expanded GGGGCC hexanucleotide of more than 30 repeats (termed (G4C2)30+) within C9orf72 is the most prominent mutation in familial frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) (termed C9+). Through an unbiased large-scale screen of (G4C2)49-expressing Drosophila we identify the CDC73/PAF1 complex (PAF1C), a transcriptional regulator of RNA polymerase II, as a suppressor of G4C2-associated toxicity when knocked-down. Depletion of PAF1C reduces RNA and GR dipeptide production from (G4C2)30+ transgenes. Notably, in Drosophila, the PAF1C components Paf1 and Leo1 appear to be selective for the transcription of long, toxic repeat expansions, but not shorter, nontoxic expansions. In yeast, PAF1C components regulate the expression of both sense and antisense repeats. PAF1C is upregulated following (G4C2)30+ expression in flies and mice. In humans, PAF1 is also upregulated in C9+-derived cells, and its heterodimer partner, LEO1, binds C9+ repeat chromatin. In C9+ FTD, PAF1 and LEO1 are upregulated and their expression positively correlates with the expression of repeat-containing C9orf72 transcripts. These data indicate that PAF1C activity is an important factor for transcription of the long, toxic repeat in C9+ FTD.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nicholas J Kramer
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Matthews Lan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Parisi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9:4475. [PMID: 30367041 PMCID: PMC6203777 DOI: 10.1038/s41467-018-06862-2] [Citation(s) in RCA: 507] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) are a large class of transcripts in the mammalian genome. Although the translation of circRNAs was reported, additional coding circRNAs and the functions of their translated products remain elusive. Here, we demonstrate that an endogenous circRNA generated from a long noncoding RNA encodes regulatory peptides. Through ribosome nascent-chain complex-bound RNA sequencing (RNC-seq), we discover several peptides potentially encoded by circRNAs. We identify an 87-amino-acid peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) that suppresses glioblastoma cell proliferation in vitro and in vivo. This peptide directly interacts with polymerase associated factor complex (PAF1c) and inhibits the transcriptional elongation of multiple oncogenes. The expression of this peptide and its corresponding circRNA are decreased in glioblastoma compared with the levels in normal tissues. Our results establish the existence of peptides encoded by circRNAs and demonstrate their potential functions in glioblastoma tumorigenesis. Functional peptides can be encoded by short open reading frames in non-coding RNA. Here, the authors identify a 87aa peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) that can reduce glioblastoma proliferation via interaction with PAF1 which sequentially inhibits the transcriptional elongation of some oncogenes.
Collapse
|
16
|
Voichek Y, Mittelman K, Gordon Y, Bar-Ziv R, Lifshitz Smit D, Shenhav R, Barkai N. Epigenetic Control of Expression Homeostasis during Replication Is Stabilized by the Replication Checkpoint. Mol Cell 2018; 70:1121-1133.e9. [PMID: 29910110 DOI: 10.1016/j.molcel.2018.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
DNA replication introduces a dosage imbalance between early and late replicating genes. In budding yeast, buffering gene expression against this imbalance depends on marking replicated DNA by H3K56 acetylation (H3K56ac). Whether additional processes are required for suppressing transcription from H3K56ac-labeled DNA remains unknown. Here, using a database-guided candidate screen, we find that COMPASS, the H3K4 methyltransferase, and its upstream effector, PAF1C, act downstream of H3K56ac to buffer expression. Replicated genes show reduced abundance of the transcription activating mark H3K4me3 and accumulate the transcription inhibitory mark H3K4me2 near transcription start sites. Notably, in hydroxyurea-exposed cells, the S phase checkpoint stabilizes H3K56ac and becomes essential for buffering. We suggest that H3K56ac suppresses transcription of replicated genes by interfering with post-replication recovery of epigenetic marks and assign a new function for the S phase checkpoint in stabilizing this mechanism during persistent dosage imbalance.
Collapse
Affiliation(s)
- Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karin Mittelman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gordon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Lifshitz Smit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rom Shenhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Cdc73 suppresses genome instability by mediating telomere homeostasis. PLoS Genet 2018; 14:e1007170. [PMID: 29320491 PMCID: PMC5779705 DOI: 10.1371/journal.pgen.1007170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/23/2018] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Defects in the genes encoding the Paf1 complex can cause increased genome instability. Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of gross chromosomal rearrangements (GCRs). Combining the cdc73Δ mutation with individual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere maintenance, resulted in synergistic increases in GCR rates. Whole genome sequence analysis of GCRs indicated that there were reduced relative rates of GCRs mediated by de novo telomere additions and increased rates of translocations and inverted duplications in cdc73Δ single and double mutants. Analysis of telomere lengths and telomeric gene silencing in strains containing different combinations of cdc73Δ, tel1Δ and yku80Δ mutations suggested that combinations of these mutations caused increased defects in telomere maintenance. A deletion analysis of Cdc73 revealed that a central 105 amino acid region was necessary and sufficient for suppressing the defects observed in cdc73Δ strains; this region was required for the binding of Cdc73 to the Paf1 complex through Ctr9 and for nuclear localization of Cdc73. Taken together, these data suggest that the increased GCR rate of cdc73Δ single and double mutants is due to partial telomere dysfunction and that Ctr9 and Paf1 play a central role in the Paf1 complex potentially by scaffolding the Paf1 complex subunits or by mediating recruitment of the Paf1 complex to the different processes it functions in. Maintaining a stable genome is crucial for all organisms, and loss of genome stability has been linked to multiple human diseases, including many cancers. Previously we found that defects in Cdc73, a component of the Paf1 transcriptional elongation complex, give rise to increased genome instability. Here, we explored the mechanism underlying this instability and found that Cdc73 defects give rise to partial defects in maintaining telomeres, which are the specialized ends of chromosomes, and interact with other mutations causing telomere defects. Remarkably, Cdc73 function is mediated through a short central region of the protein that is not a part of previously identified protein domains but targets Cdc73 to the Paf1 complex through interaction with the Ctr9 subunit. Analysis of the other components of the Paf1 complex provides a model in which the Paf1 subunit mediates recruitment of the other subunits to different processes they function in. Together, these data suggest that the mutations in CDC73 and CTR9 found in patients with hyperparathyroidism-jaw tumor syndrome and some patients with Wilms tumors, respectively, may contribute to cancer progression by contributing to genome instability.
Collapse
|
18
|
Fal K, Liu M, Duisembekova A, Refahi Y, Haswell ES, Hamant O. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development 2017; 144:4428-4436. [PMID: 28982682 PMCID: PMC5769633 DOI: 10.1242/dev.154369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along the stem exhibited increased variance in vip3-1 and vip3-2 compared with the wild type, in two different growth conditions. Similar results were obtained with the weak vip3-6 allele and in vip6, a mutant for another Paf1c subunit. Mathematical analysis confirmed that these defects could not be explained solely by plastochron defects. Instead, increased variance in phyllotaxis in vip3 was observed at the meristem and related to defects in spatial patterns of auxin activity. Thus, the regularity of spatial, auxin-dependent, patterning at the meristem requires Paf1c.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Mengying Liu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Assem Duisembekova
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yassin Refahi
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
19
|
Xu Y, Bernecky C, Lee CT, Maier KC, Schwalb B, Tegunov D, Plitzko JM, Urlaub H, Cramer P. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat Commun 2017; 8:15741. [PMID: 28585565 PMCID: PMC5467213 DOI: 10.1038/ncomms15741] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
The conserved polymerase-associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin.
Collapse
Affiliation(s)
- Youwei Xu
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Carrie Bernecky
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
20
|
Battaglia S, Lidschreiber M, Baejen C, Torkler P, Vos SM, Cramer P. RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. eLife 2017; 6. [PMID: 28537551 PMCID: PMC5457138 DOI: 10.7554/elife.25637] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
For transcription through chromatin, RNA polymerase (Pol) II associates with elongation factors (EFs). Here we show that many EFs crosslink to RNA emerging from transcribing Pol II in the yeast Saccharomyces cerevisiae. Most EFs crosslink preferentially to mRNAs, rather than unstable non-coding RNAs. RNA contributes to chromatin association of many EFs, including the Pol II serine 2 kinases Ctk1 and Bur1 and the histone H3 methyltransferases Set1 and Set2. The Ctk1 kinase complex binds RNA in vitro, consistent with direct EF-RNA interaction. Set1 recruitment to genes in vivo depends on its RNA recognition motifs (RRMs). These results strongly suggest that nascent RNA contributes to EF recruitment to transcribing Pol II. We propose that EF-RNA interactions facilitate assembly of the elongation complex on transcribed genes when RNA emerges from Pol II, and that loss of EF-RNA interactions upon RNA cleavage at the polyadenylation site triggers disassembly of the elongation complex. DOI:http://dx.doi.org/10.7554/eLife.25637.001
Collapse
Affiliation(s)
- Sofia Battaglia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Carlo Baejen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Phillipp Torkler
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Fischl H, Howe FS, Furger A, Mellor J. Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol Cell 2017; 65:685-698.e8. [PMID: 28190769 PMCID: PMC5316414 DOI: 10.1016/j.molcel.2017.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andre Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Jensen GS, Fal K, Hamant O, Haswell ES. The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:499-511. [PMID: 28204553 PMCID: PMC5441907 DOI: 10.1093/jxb/erw439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The Paf1 complex is found in yeast, plants and animals, and has been implicated in histone modification and RNA processing. Several components of the Paf1 complex are required for reduced stem height in response to touch and normal root slanting and coiling responses. Global levels of histone H3K36 trimethylation are reduced in VIP3 mutants. In addition, THS1/VIP3 is required for wild type histone H3K36 trimethylation at the TOUCH3 (TCH3) and TOUCH4 (TCH4) loci and for rapid touch-induced upregulation of TCH3 and TCH4 transcripts. Thus, an evolutionarily conserved chromatin-modifying complex is required for both short- and long-term responses to mechanical stimulation, providing insight into how plants record mechanical signals for thigmomorphogenesis.
Collapse
Affiliation(s)
- Gregory S Jensen
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
23
|
Stevenson HP, Lin G, Barnes CO, Sutkeviciute I, Krzysiak T, Weiss SC, Reynolds S, Wu Y, Nagarajan V, Makhov AM, Lawrence R, Lamm E, Clark L, Gardella TJ, Hogue BG, Ogata CM, Ahn J, Gronenborn AM, Conway JF, Vilardaga JP, Cohen AE, Calero G. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr D Struct Biol 2016; 72:603-15. [PMID: 27139624 PMCID: PMC4854312 DOI: 10.1107/s2059798316001546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 11/10/2022] Open
Abstract
The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.
Collapse
Affiliation(s)
- Hilary P. Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Christopher O. Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ieva Sutkeviciute
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Troy Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Simon C. Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Shelley Reynolds
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | - Alexander M. Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Robert Lawrence
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Emily Lamm
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Lisa Clark
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Timothy J. Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Craig M. Ogata
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
24
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
25
|
Identifying Novel Transcriptional Regulators with Circadian Expression. Mol Cell Biol 2015; 36:545-58. [PMID: 26644408 DOI: 10.1128/mcb.00701-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.
Collapse
|
26
|
An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep 2015; 5:13370. [PMID: 26311515 PMCID: PMC4550835 DOI: 10.1038/srep13370] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x − 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins.
Collapse
|
27
|
Kobayashi M, Chen S, Gao R, Bai Y, Zhang ZY, Liu Y. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle 2015; 13:2827-35. [PMID: 25486470 DOI: 10.4161/15384101.2014.954448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- a Department of Pediatrics, Herman B Wells Center for Pediatric Research; Department of Biochemistry and Molecular Biology , Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | |
Collapse
|
28
|
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 2013; 110:17290-5. [PMID: 24101474 DOI: 10.1073/pnas.1314754110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.
Collapse
|
29
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol 2013; 33:3259-73. [PMID: 23775116 DOI: 10.1128/mcb.00270-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription elongation factors associate with RNA polymerase II and aid its translocation through chromatin. One such factor is the conserved Paf1 complex (Paf1C), which regulates gene expression through several mechanisms, including the stimulation of cotranscriptional histone modifications. Previous studies revealed a prominent role for the Rtf1 subunit in tethering Paf1C to the RNA polymerase II elongation machinery. Here, we investigated the mechanism by which Rtf1 couples Paf1C to active chromatin. We show that a highly conserved domain of Rtf1 is necessary and sufficient for mediating a physical interaction between Rtf1 and the essential transcription elongation factor Spt5. Mutations that alter this Rtf1 domain or delete the Spt5 C-terminal repeat domain (CTR) disrupt the interaction between Rtf1 and Spt5 and release Paf1C from chromatin. When expressed in cells as the only source of Rtf1, the Spt5-interacting domain of Rtf1 can associate independently with active genes in a pattern similar to that of full-length Rtf1 and in a manner dependent on the Spt5 CTR. In vitro experiments indicate that the interaction between the Rtf1 Spt5-interacting domain and the Spt5 CTR is direct. Collectively, our results provide molecular insight into a key attachment point between Paf1C and the RNA polymerase II elongation machinery.
Collapse
|
31
|
Kim N, Sun HY, Youn MY, Yoo JY. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes. Nucleic Acids Res 2013; 41:4495-506. [PMID: 23502002 PMCID: PMC3632138 DOI: 10.1093/nar/gkt156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β–stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β–mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β–induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.
Collapse
Affiliation(s)
- Nari Kim
- Division of Molecular and Life Sciences, Department of Life Sciences, Pohang University of Science and Technology POSTECH, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
32
|
The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:116-26. [PMID: 22982193 DOI: 10.1016/j.bbagrm.2012.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/18/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
The Paf1 complex was originally identified over fifteen years ago in budding yeast through its physical association with RNA polymerase II. The Paf1 complex is now known to be conserved throughout eukaryotes and is well studied for promoting RNA polymerase II transcription elongation and transcription-coupled histone modifications. Through these critical regulatory functions, the Paf1 complex participates in numerous cellular processes such as gene expression and silencing, RNA maturation, DNA repair, cell cycle progression and prevention of disease states in higher eukaryotes. In this review, we describe the historic and current research involving the eukaryotic Paf1 complex to explain the cellular roles that underlie its conservation and functional importance. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
33
|
Qiu H, Hu C, Gaur NA, Hinnebusch AG. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J 2012; 31:3494-505. [PMID: 22796944 DOI: 10.1038/emboj.2012.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/20/2012] [Indexed: 11/09/2022] Open
Abstract
Paf1 complex (Paf1C) is a transcription elongation factor whose recruitment is stimulated by Spt5 and the CDKs Kin28 and Bur1, which phosphorylate the Pol II C-terminal domain (CTD) on Serines 2, 5, and 7. Bur1 promotes Paf1C recruitment by phosphorylating C-terminal repeats (CTRs) in Spt5, and we show that Kin28 enhances Spt5 phosphorylation by promoting Bur1 recruitment. It was unclear, however, whether CTD phosphorylation by Kin28 or Bur1 also stimulates Paf1C recruitment. We find that Paf1C and its Cdc73 subunit bind diphosphorylated CTD repeats (pCTD) and phosphorylated Spt5 CTRs (pCTRs) in vitro, and that cdc73 mutations eliminating both activities reduce Paf1C recruitment in vivo. Phosphomimetic (acidic) substitutions in the Spt5 CTR sustain high-level Paf1C recruitment in otherwise wild-type cells, but not following inactivation of Bur1 or Kin28. Furthermore, inactivating the pCTD/pCTR-interaction domain (PCID) in Cdc73 decreases Paf1C-dependent histone methylation in cells containing non-phosphorylatable Spt5 CTRs. These results identify an Spt5 pCTR-independent pathway of Paf1C recruitment requiring Kin28, Bur1, and the Cdc73 PCID. We propose that pCTD repeats and Spt5 pCTRs provide separate interaction surfaces that cooperate to ensure high-level Paf1C recruitment.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | |
Collapse
|
34
|
Ouna BA, Nyambega B, Manful T, Helbig C, Males M, Fadda A, Clayton C. Depletion of trypanosome CTR9 leads to gene expression defects. PLoS One 2012; 7:e34256. [PMID: 22532828 PMCID: PMC3332058 DOI: 10.1371/journal.pone.0034256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
The Paf complex of Opisthokonts and plants contains at least five subunits: Paf1, Cdc73, Rtf1, Ctr9, and Leo1. Mutations in, or loss of Paf complex subunits have been shown to cause defects in histone modification, mRNA polyadenylation, and transcription by RNA polymerase I and RNA polymerase II. We here investigated trypanosome CTR9, which is essential for trypanosome survival. The results of tandem affinity purification suggested that trypanosome CTR9 associates with homologues of Leo1 and Cdc73; genes encoding homologues of Rtf1 and Paf1 were not found. RNAi targeting CTR9 resulted in at least ten-fold decreases in 131 essential mRNAs: they included several that are required for gene expression and its control, such as those encoding subunits of RNA polymerases, exoribonucleases that target mRNA, RNA helicases and RNA-binding proteins. Simultaneously, some genes from regions subject to chromatin silencing were derepressed, possibly as a secondary effect of the loss of two proteins that are required for silencing, ISWI and NLP1.
Collapse
Affiliation(s)
- Benard A. Ouna
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Benson Nyambega
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Claudia Helbig
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Matilda Males
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Abstract
During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.
Collapse
|
36
|
Crisucci EM, Arndt KM. The Roles of the Paf1 Complex and Associated Histone Modifications in Regulating Gene Expression. GENETICS RESEARCH INTERNATIONAL 2011; 2011. [PMID: 22408743 PMCID: PMC3296560 DOI: 10.4061/2011/707641] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The conserved Paf1 complex (Paf1C) carries out multiple functions during transcription by RNA polymerase (pol) II, and these functions are required for the proper expression of numerous genes in yeast and metazoans. In the elongation stage of the transcription cycle, the Paf1C associates with RNA pol II, interacts with other transcription elongation factors, and facilitates modifications to the chromatin template. At the end of elongation, the Paf1C plays an important role in the termination of RNA pol II transcripts and the recruitment of proteins required for proper RNA 3′ end formation. Significantly, defects in the Paf1C are associated with several human diseases. In this paper, we summarize current knowledge on the roles of the Paf1C in RNA pol II transcription.
Collapse
Affiliation(s)
- Elia M Crisucci
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
37
|
The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 2011; 42:536-49. [PMID: 21596317 DOI: 10.1016/j.molcel.2011.03.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/12/2011] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
Abstract
Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.
Collapse
|