1
|
Miyata Y, Nishida E. Identification of FAM53C as a cytosolic-anchoring inhibitory binding protein of the kinase DYRK1A. Life Sci Alliance 2023; 6:e202302129. [PMID: 37802655 PMCID: PMC10559228 DOI: 10.26508/lsa.202302129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
The protein kinase DYRK1A encoded in human chromosome 21 is the major contributor to the multiple symptoms observed in Down syndrome patients. In addition, DYRK1A malfunction is associated with various other neurodevelopmental disorders such as autism spectrum disorder. Here, we identified FAM53C with no hitherto known biological function as a novel suppressive binding partner of DYRK1A. FAM53C is bound to the catalytic protein kinase domain of DYRK1A, whereas DCAF7/WDR68, the major DYRK1A-binding protein, binds to the N-terminal domain of DYRK1A. The binding of FAM53C inhibited autophosphorylation activity of DYRK1A and its kinase activity to an exogenous substrate, MAPT/Tau. FAM53C did not bind directly to DCAF7/WDR68, whereas DYRK1A tethered FAM53C and DCAF7/WDR68 by binding concurrently to both of them, forming a tri-protein complex. DYRK1A possesses an NLS and accumulates in the nucleus when overexpressed in cells. Co-expression of FAM53C induced cytoplasmic re-localization of DYRK1A, revealing the cytoplasmic anchoring function of FAM53C to DYRK1A. Moreover, the binding of FAM53C to DYRK1A suppressed the DYRK1A-dependent nuclear localization of DCAF7/WDR68. All the results show that FAM53C binds to DYRK1A, suppresses its kinase activity, and anchors it in the cytoplasm. In addition, FAM53C is bound to the DYRK1A-related kinase DYRK1B with an Hsp90/Cdc37-independent manner. The results explain for the first time why endogenous DYRK1A is distributed in the cytoplasm in normal brain tissue. FAM53C-dependent regulation of the kinase activity and intracellular localization of DYRK1A may play a significant role in gene expression regulation caused by normal and aberrant levels of DYRK1A.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
3
|
Stachelek K, Harutyunyan N, Lee S, Beck A, Kim J, Xu L, Berry JL, Nagiel A, Reynolds CP, Murphree AL, Lee TC, Aparicio JG, Cobrinik D. Non-synonymous, synonymous, and non-coding nucleotide variants contribute to recurrently altered biological processes during retinoblastoma progression. Genes Chromosomes Cancer 2023; 62:275-289. [PMID: 36550020 PMCID: PMC10006380 DOI: 10.1002/gcc.23120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastomas form in response to biallelic RB1 mutations or MYCN amplification and progress to more aggressive and therapy-resistant phenotypes through accumulation of secondary genomic changes. Progression-related changes include recurrent somatic copy number alterations and typically non-recurrent nucleotide variants, including synonymous and non-coding variants, whose significance has been unclear. To determine if nucleotide variants recurrently affect specific biological processes, we identified altered genes and over-represented variant gene ontologies in 168 exome or whole-genome-sequenced retinoblastomas and 12 tumor-matched cell lines. In addition to RB1 mutations, MYCN amplification, and established retinoblastoma somatic copy number alterations, the analyses revealed enrichment of variant genes related to diverse biological processes including histone monoubiquitination, mRNA processing (P) body assembly, and mitotic sister chromatid segregation and cytokinesis. Importantly, non-coding and synonymous variants increased the enrichment significance of each over-represented biological process term. To assess the effects of such mutations, we examined the consequences of a 3' UTR variant of PCGF3 (a BCOR-binding component of Polycomb repressive complex I), dual 3' UTR variants of CDC14B (a regulator of sister chromatid segregation), and a synonymous variant of DYNC1H1 (a regulator of P-body assembly). One PCGF3 and one of two CDC14B 3' UTR variants impaired gene expression whereas a base-edited DYNC1H1 synonymous variant altered protease sensitivity and stability. Retinoblastoma cell lines retained only ~50% of variants detected in tumors and enriched for new variants affecting p53 signaling. These findings reveal potentially important differences in retinoblastoma cell lines and tumors and implicate synonymous and non-coding variants, along with non-synonymous variants, in retinoblastoma oncogenesis.
Collapse
Affiliation(s)
- Kevin Stachelek
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Narine Harutyunyan
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Susan Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Assaf Beck
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jonathan Kim
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Liya Xu
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jesse L. Berry
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Nagiel
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - C. Patrick Reynolds
- Department of Pediatrics and Cancer Center, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX
| | - A. Linn Murphree
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas C. Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jennifer G. Aparicio
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - David Cobrinik
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
4
|
Rammohan M, Harris E, Bhansali RS, Zhao E, Li LS, Crispino JD. The chromosome 21 kinase DYRK1A: emerging roles in cancer biology and potential as a therapeutic target. Oncogene 2022; 41:2003-2011. [PMID: 35220406 PMCID: PMC8977259 DOI: 10.1038/s41388-022-02245-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a serine/threonine kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome (DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a prominent role in cancer through its ability to regulate biologic processes including cell cycle progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in different models, underscoring the importance of cellular context in its function. Here, we review mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Malini Rammohan
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Ethan Harris
- University of Illinois at Chicago College of Medicine, Chicago, IL, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul S Bhansali
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Zhao
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
6
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
7
|
Fan P, Pu D, Lv X, Hu N, Feng X, Hao Z, Sun Y, He L. Cav 1.3 damages the osteogenic differentiation in osteoporotic rats by negatively regulating Spred 2-mediated autophagy-induced cell senescence. J Cell Mol Med 2020; 24:13863-13875. [PMID: 33124763 PMCID: PMC7754063 DOI: 10.1111/jcmm.15978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023] Open
Abstract
Cav 1.3 can affect the classical osteoclast differentiation pathway through calcium signalling pathway. Here, we performed cell transfection, real-time fluorescence quantitative PCR (qPCR), flow cytometry, SA-β-Gal staining, Alizarin Red S staining, ALP activity test, immunofluorescence, Western blot and cell viability assay to analyse cell viability, cell cycle, osteogenesis differentiation and autophagy activities in vitro. Meanwhile, GST-pull down and CHIP experiments were conducted to explore the influence of Cav 1.3 and Sprouty-related EVH1 domain 2 (Spred 2) on bone marrow-derived mesenchymal stem cells (BMSCs). The results showed that OS lead to the decreased of bone mineral density and differentiation ability of BMSCs in rats. Cav 1.3 was up-regulated in OS rats. Overexpression of Cav 1.3 inhibited the activity of BMSCs, the expression of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN), as well as promoted the cell cycle arrest and senescence. Furthermore, the negative correlation between Cav 1.3 and Spred 2 was found through GST-pull down and CHIP. Overexpression of Spred 2 increased the expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1 of BMSCs, which ultimately promoted the cell activity of BMSCs and ALP, RUNX2, OCN expression. In conclusion, Cav 1.3 negatively regulates Spred 2-mediated autophagy and cell senescence, and damages the activity and osteogenic differentiation of BMSCs in OS rats.
Collapse
Affiliation(s)
- Ping Fan
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Dan Pu
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiaohong Lv
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Nan Hu
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiuyuan Feng
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yining Sun
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Lan He
- Department of Rheumatism and Immunology, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
8
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
9
|
Kurabayashi N, Nguyen MD, Sanada K. Triple play of DYRK1A kinase in cortical progenitor cells of Trisomy 21. Neurosci Res 2019; 138:19-25. [PMID: 30227164 DOI: 10.1016/j.neures.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Down syndrome (DS) also known as Trisomy 21 is a genetic disorder that occurs in ∼1 in 800 live births. The disorder is caused by the triplication of all or part of human chromosome 21 and therefore, is thought to arise from the increased dosage of genes found within chromosome 21. The manifestations of the disease include among others physical growth delays and intellectual disability. A prominent anatomical feature of DS is the microcephaly that results from altered brain development. Recent studies using mouse models of DS have shed new light on DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), a gene located on human chromosome 21 that plays a critical role in neocortical development. The present review summarizes effects of the increased dosage of DYRK1A on the proliferative, neurogenic and astrogliogenic potentials of cortical neural progenitor cells, and relates these findings to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, HMR 151, Calgary, Alberta T2N4N1, Canada
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Lim FT, Ogawa S, Smith AI, Parhar IS. Proteomics Identification of Potential Candidates Involved in Cell Proliferation for Early Stage of Brain Regeneration in the Adult Zebrafish. Zebrafish 2017; 14:10-22. [DOI: 10.1089/zeb.2016.1319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Fei Tieng Lim
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Lim FT, Ogawa S, Parhar IS. Spred-2 expression is associated with neural repair of injured adult zebrafish brain. J Chem Neuroanat 2016; 77:176-186. [PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 01/11/2023]
Abstract
Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
Collapse
Affiliation(s)
- Fei Tieng Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
12
|
Kurabayashi N, Nguyen MD, Sanada K. DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model. EMBO Rep 2015; 16:1548-62. [PMID: 26373433 PMCID: PMC4641506 DOI: 10.15252/embr.201540374] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS) arises from triplication of genes on human chromosome 21 and is associated with anomalies in brain development such as reduced production of neurons and increased generation of astrocytes. Here, we show that differentiation of cortical progenitor cells into astrocytes is promoted by DYRK1A, a Ser/Thr kinase encoded on human chromosome 21. In the Ts1Cje mouse model of DS, increased dosage of DYRK1A augments the propensity of progenitors to differentiate into astrocytes. This tendency is associated with enhanced astrogliogenesis in the developing neocortex. We also find that overexpression of DYRK1A upregulates the activity of the astrogliogenic transcription factor STAT in wild-type progenitors. Ts1Cje progenitors exhibit elevated STAT activity, and depletion of DYRK1A in these cells reverses the deregulation of STAT. In sum, our findings indicate that potentiation of the DYRK1A-STAT pathway in progenitors contributes to aberrant astrogliogenesis in DS.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, Calgary, Hotchkiss Brain Institute University of Calgary, Alberta, Canada
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Antolín AA, Mestres J. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors. Oncotarget 2015; 5:3023-8. [PMID: 24632590 PMCID: PMC4102788 DOI: 10.18632/oncotarget.1814] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PARP inhibitors hold promise as a novel class of targeted anticancer drugs. However, their true mechanism of action is still not well understood following recent reports that show marked differences in cellular effects. Here, we demonstrate that three PARP drug candidates, namely, rucaparib, veliparib, and olaparib, have a clearly different in vitro affinity profile across a panel of diverse kinases selected using a computational approach that relates proteins by ligand similarity. In this respect, rucaparib inhibits nine kinases with micromolar affinity, including PIM1, PIM2, PRKD2, DYRK1A, CDK1, CDK9, HIPK2, CK2, and ALK. In contrast, olaparib does not inhibit any of the sixteen kinases tested. In between, veliparib inhibits only two, namely, PIM1 and CDK9. The differential kinase pharmacology observed among PARP inhibitors provides a plausible explanation to their different cellular effects and offers unexplored opportunities for this drug class, but alerts also on the risk associated to transferring directly both preclinical and clinical outcomes from one PARP drug candidate to another.
Collapse
Affiliation(s)
- Albert A Antolín
- Systems Pharmacology, Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | | |
Collapse
|
14
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
15
|
|
16
|
Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, Hernández H, Burlingame AL, McCormick F. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 2012; 26:1421-6. [PMID: 22751498 DOI: 10.1101/gad.190876.112] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Irma B Stowe
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brems H, Pasmant E, Van Minkelen R, Wimmer K, Upadhyaya M, Legius E, Messiaen L. Review and update of SPRED1 mutations causing Legius syndrome. Hum Mutat 2012; 33:1538-46. [PMID: 22753041 DOI: 10.1002/humu.22152] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/07/2012] [Indexed: 01/24/2023]
Abstract
Legius syndrome presents as a mild neurofibromatosis type 1 (NF1) phenotype. Multiple café-au-lait spots and macrocephaly are present with or without axillary or inguinal freckling. Other typical NF1-associated features (Lisch nodules, bone abnormalities, neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors) are systematically absent. Legius syndrome is caused by germline loss-of-function SPRED1 mutations, resulting in overactivation of the RAS-MAPK signal transduction cascade. The first families were identified in 2007. Here, we review all identified SPRED1 mutations and summarize molecular, clinical, and functional data. All mutations have been deposited in a database created using the Leiden Open Variation Database software and accessible at http://www.lovd.nl/SPRED1. At present, the database contains 89 different mutations identified in 146 unrelated probands, including 16 new variants described for the first time. The database contains a spectrum of mutations: 29 missense, 28 frameshift, 19 nonsense, eight copy number changes, two splicing, one silent, one in-frame deletion and a mutation affecting the initiation codon. Sixty-three mutations and deletions are definitely pathogenic or most likely pathogenic, eight SPRED1 mutations are probably benign rare variants, and 17 SPRED1 missense mutations are still unclassified and need further family and functional studies to help with the interpretation.
Collapse
Affiliation(s)
- Hilde Brems
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen CP, Chen YH, Chern SR, Chang SJ, Tsai TL, Li SH, Chou HC, Lo YW, Lyu PC, Chan HL. Placenta proteome analysis from Down syndrome pregnancies for biomarker discovery. MOLECULAR BIOSYSTEMS 2012; 8:2360-72. [PMID: 22777171 DOI: 10.1039/c2mb25081k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Down syndrome is one of the most frequent chromosomal disorders, with a prevalence of approximately 1/500 to 1/800, depending on the maternal age distribution of the pregnant population. However, few reliable protein biomarkers have been used in the diagnosis of this disease. Recent progress in quantitative proteomics has offered opportunities to discover biomarkers for tracking the progression and for understanding the molecular mechanisms of Down syndrome. In the present study, placental samples were analyzed by fluorescence two-dimensional differential gel electrophoresis (2D-DIGE) and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 101 proteins have been firmly identified representing 80 unique gene products. These proteins mainly function in cytoskeleton structure and regulation (such as vimentin and Profilin-1). Additionally, our quantitative proteomics approach has identified numerous previously reported Down syndrome markers, such as myelin protein. Here we present several Down syndrome biomarkers including galectin-1, ataxin-3 and sprouty-related EVH1 domain-containing protein 2 (SPRED2), which have not been reported elsewhere and may be associated with the progression and development of the disease. In summary, we report a comprehensive placenta-based proteomics approach for the identification of potential biomarkers for Down syndrome, in which serum amyloid P-component (APCS) and ataxin-3 have been shown to be up-regulated in the maternal peripheral plasma of Down syndrome cases. The potential of utilizing these markers for the prognosis and screening of Down syndrome warrants further investigation.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Meng S, Zhang M, Pan W, Li Z, Anderson DH, Zhang S, Ge B, Wang C. Tyrosines 303/343/353 within the Sprouty-related domain of Spred2 are essential for its interaction with p85 and inhibitory effect on Ras/ERK activation. Int J Biochem Cell Biol 2012; 44:748-58. [PMID: 22305891 DOI: 10.1016/j.biocel.2012.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/28/2022]
Abstract
Sprouty-related EVH1 domain (Spred) proteins modulate growth factor receptor signaling by inhibiting the Ras/ERK pathway. In particular, the Sprouty-related domain (SPR) of Spred2 is essential for the Spred2-mediated inhibitory effect, but the molecular mechanism is largely unknown. We show here that the p85 subunit of phosphatidylinositol 3-kinase (PI3K) is a new binding partner of Spred2 via interaction with the SPR domain. Mutation of three tyrosines 303/343/353 within the SPR domain not only abolish EGF-induced p85 binding to Spred2 but also attenuate the inhibitory effect on Ras/ERK activation by Spred2. This results in increased Hela cell proliferation and neurite outgrowth in PC12 cells. We further demonstrate that p85 binding to Spred2 enhances the Spred2-mediated inhibitory effect via increased Ras binding to Spred2 and decreased Spred2 ubiquitination. We also show that Spred2 constitutively associates with epidermal growth factor receptor (EGFR) via its SPR domain and dissociates from EGFR upon EGF stimulation. Moreover, mutation of tyrosines 303/343/353 together enhances Spred2 binding to EGFR. Taken together, these results suggest critical roles of the three tyrosines 303/343/353 within the SPR domain in regulating Spred2 signaling and provide a mechanism for the SPR domain of Spred2 to mediate the inhibitory effect on the Ras/ERK pathway.
Collapse
Affiliation(s)
- Songshu Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in neuronal development and adult brain physiology. Higher than normal levels of DYRK1A are associated with the pathology of neurodegenerative diseases and have been implicated in some neurobiological alterations of Down syndrome, such as mental retardation. It is therefore important to understand the molecular mechanisms that control the activity of DYRK1A. Here we review the current knowledge about the initial self-activation of DYRK1A by tyrosine autophosphorylation and propose that this mechanism presents an ancestral feature of the CMGC group of kinases. However, tyrosine phosphorylation does not appear to regulate the enzymatic activity of DYRK1A. Control of DYRK1A may take place on the level of gene expression, interaction with regulatory proteins and regulated nuclear translocation. Finally, we compare the properties of small molecule inhibitors that target DYRK1A and evaluate their potential application and limitations. The β-carboline alkaloid harmine is currently the most selective and potent inhibitor of DYRK1A and has proven very useful in cellular assays.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|