1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Haynes V, Giulivi C. Calcium-Dependent Interaction of Nitric Oxide Synthase with Cytochrome c Oxidase: Implications for Brain Bioenergetics. Brain Sci 2023; 13:1534. [PMID: 38002494 PMCID: PMC10669843 DOI: 10.3390/brainsci13111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Targeted nitric oxide production is relevant for maintaining cellular energy production, protecting against oxidative stress, regulating cell death, and promoting neuroprotection. This study aimed to characterize the putative interaction of nitric-oxide synthase with mitochondrial proteins. The primary finding of this study is that cytochrome c oxidase (CCO) subunit IV (CCOIV) is associated directly with NOS in brain mitochondria when calcium ions are present. The matrix side of CCOIV binds to the N-terminus of NOS, supported by the abrogation of the binding by antibodies towards the N-terminus of NOS. Evidence supporting the interaction between CCOIV and NOS was provided by the coimmunoprecipitation of NOS from detergent-solubilized whole rat brain mitochondria with antibodies to CCOIV and the coimmunoprecipitation of CCOIV from crude brain NOS preparations using antibodies to NOS. The CCOIV domain that interacts with NOS was identified using a series of overlapping peptides derived from the primary sequence of CCOIV. As calcium ions not only activate NOS, but also facilitate the docking of NOS to CCOIV, this study points to a dynamic mechanism of controlling the bioenergetics by calcium changes, thereby adapting bioenergetics to cellular demands.
Collapse
Affiliation(s)
- Virginia Haynes
- School of Veterinary Medicine, Department Molecular Biosciences, University of California Davis, Davis, CA 95616, USA
| | - Cecilia Giulivi
- School of Veterinary Medicine, Department Molecular Biosciences, University of California Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Zhao M, Okunishi K, Bu Y, Kikuchi O, Wang H, Kitamura T, Izumi T. Targeting activin receptor-like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight 2023; 8:161229. [PMID: 36626233 PMCID: PMC9977491 DOI: 10.1172/jci.insight.161229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Activin receptor-like kinase 7 (ALK7) is a type I receptor in the TGF-β superfamily preferentially expressed in adipose tissue and associated with lipid metabolism. Inactivation of ALK7 signaling in mice results in increased lipolysis and resistance to both genetic and diet-induced obesity. Human genetic studies have recently revealed an association between ALK7 variants and both reduced waist to hip ratios and resistance to development of diabetes. In the present study, treatment with a neutralizing mAb against ALK7 caused a substantial loss of adipose mass and improved glucose intolerance and insulin resistance in both genetic and diet-induced mouse obesity models. The enhanced lipolysis increased fatty acid supply from adipocytes to promote fatty acid oxidation in muscle and oxygen consumption at the whole-body level. The treatment temporarily increased hepatic triglyceride levels, which resolved with long-term Ab treatment. Blocking of ALK7 signals also decreased production of its ligand, growth differentiation factor 3, by downregulating S100A8/A9 release from adipocytes and, subsequently, IL-1β release from adipose tissue macrophages. These findings support the feasibility of potential therapeutics targeting ALK7 as a treatment for obesity and diabetes.
Collapse
Affiliation(s)
- Min Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Yun Bu
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| |
Collapse
|
4
|
Bojko B, Vasiljevic T, Boyaci E, Roszkowska A, Kraeva N, Ibarra Moreno CA, Koivu A, Wąsowicz M, Hanna A, Hamilton S, Riazi S, Pawliszyn J. Untargeted metabolomics profiling of skeletal muscle samples from malignant hyperthermia susceptible patients. Can J Anaesth 2021; 68:761-772. [PMID: 33403543 PMCID: PMC8185566 DOI: 10.1007/s12630-020-01895-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Malignant hyperthermia (MH) is a potentially fatal hypermetabolic condition triggered by certain anesthetics and caused by defective calcium homeostasis in skeletal muscle cells. Recent evidence has revealed impairment of various biochemical pathways in MH-susceptible patients in the absence of anesthetics. We hypothesized that clinical differences between MH-susceptible and control individuals are reflected in measurable differences in myoplasmic metabolites. METHODS We performed metabolomic profiling of skeletal muscle samples from MH-negative (control) individuals and MH-susceptible patients undergoing muscle biopsy for diagnosis of MH susceptibility. Cellular metabolites were extracted from 33 fresh and 87 frozen human muscle samples using solid phase microextraction and Metabolon® untargeted biochemical profiling platforms, respectively. Ultra-performance liquid chromatography-high resolution mass spectrometry was used for metabolite identification and validation, followed by analysis of differences in metabolites between the MH-susceptible and MH-negative groups. RESULTS Significant fold-change differences between the MH-susceptible and control groups in metabolites from various pathways were found (P value range: 0.009 to < 0.001). These included accumulation of long chain acylcarnitines, diacylglycerols, phosphoenolpyruvate, histidine pathway metabolites, lysophosphatidylcholine, oxidative stress markers, and phosphoinositols, as well as decreased levels of monoacylglycerols. The results from both analytical platforms were in agreement. CONCLUSION This metabolomics study indicates a shift from utilization of carbohydrates towards lipids for energy production in MH-susceptible individuals. This shift may result in inefficiency of beta-oxidation, and increased muscle protein turnover, oxidative stress, and/or lysophosphatidylcholine levels.
Collapse
Affiliation(s)
- Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Tijana Vasiljevic
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Annabel Koivu
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Marcin Wąsowicz
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Amy Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Susan Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Kaura V, Chang L, Allen PD. Unravelling the unseen metabolic changes in patients with malignant hyperthermia. Can J Anaesth 2021; 68:751-754. [PMID: 33532996 DOI: 10.1007/s12630-020-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- Vikas Kaura
- Leeds Institute of Medical Research at St James's, Leeds, UK
| | - Leon Chang
- Leeds Institute of Medical Research at St James's, Leeds, UK
| | - Paul D Allen
- Leeds Institute of Medical Research at St James's, Leeds, UK.
| |
Collapse
|
6
|
Pathways of calcium regulation, electron transport, and mitochondrial protein translation are molecular signatures of susceptibility to recurrent exertional rhabdomyolysis in Thoroughbred racehorses. PLoS One 2021; 16:e0244556. [PMID: 33566847 PMCID: PMC7875397 DOI: 10.1371/journal.pone.0244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrent exertional rhabdomyolysis (RER) is a chronic muscle disorder of unknown etiology in racehorses. A potential role of intramuscular calcium (Ca2+) dysregulation in RER has led to the use of dantrolene to prevent episodes of rhabdomyolysis. We examined differentially expressed proteins (DEP) and gene transcripts (DEG) in gluteal muscle of Thoroughbred race-trained mares after exercise among three groups of 5 horses each; 1) horses susceptible to, but not currently experiencing rhabdomyolysis, 2) healthy horses with no history of RER (control), 3) RER-susceptible horses treated with dantrolene pre-exercise (RER-D). Tandem mass tag LC/MS/MS quantitative proteomics and RNA-seq analysis (FDR <0.05) was followed by gene ontology (GO) and semantic similarity of enrichment terms. Of the 375 proteins expressed, 125 were DEP in RER-susceptible versus control, with 52 ↑DEP mainly involving Ca2+ regulation (N = 11) (e.g. RYR1, calmodulin, calsequestrin, calpain), protein degradation (N = 6), antioxidants (N = 4), plasma membranes (N = 3), glyco(geno)lysis (N = 3) and 21 DEP being blood-borne. ↓DEP (N = 73) were largely mitochondrial (N = 45) impacting the electron transport system (28), enzymes (6), heat shock proteins (4), and contractile proteins (12) including Ca2+ binding proteins. There were 812 DEG in RER-susceptible versus control involving the electron transfer system, the mitochondrial transcription/translational response and notably the pro-apoptotic Ca2+-activated mitochondrial membrane transition pore (SLC25A27, BAX, ATP5 subunits). Upregulated mitochondrial DEG frequently had downregulation of their encoded DEP with semantic similarities highlighting signaling mechanisms regulating mitochondrial protein translation. RER-susceptible horses treated with dantrolene, which slows sarcoplasmic reticulum Ca2+ release, showed no DEG compared to control horses. We conclude that RER-susceptibility is associated with alterations in proteins, genes and pathways impacting myoplasmic Ca2+ regulation, the mitochondrion and protein degradation with opposing effects on mitochondrial transcriptional/translational responses and mitochondrial protein content. RER could potentially arise from excessive sarcoplasmic reticulum Ca2+ release and subsequent mitochondrial buffering of excessive myoplasmic Ca2+.
Collapse
|
7
|
T lymphocytes from malignant hyperthermia-susceptible mice display aberrations in intracellular calcium signaling and mitochondrial function. Cell Calcium 2020; 93:102325. [PMID: 33310301 DOI: 10.1016/j.ceca.2020.102325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
Gain-of-function RyR1-p.R163C mutation in ryanodine receptors type 1 (RyR1) deregulates Ca2+ signaling and mitochondrial function in skeletal muscle and causes malignant hyperthermia in humans and mice under triggering conditions. We investigated whether T lymphocytes from heterozygous RyR1-p.R163C knock-in mutant mice (HET T cells) display measurable aberrations in resting cytosolic Ca2+ concentration ([Ca2+]i), Ca2+ release from the store, store-operated Ca2+ entry (SOCE), and mitochondrial inner membrane potential (ΔΨm) compared with T lymphocytes from wild-type mice (WT T cells). We explored whether these variables can be used to distinguish between T cells with normal and altered RyR1 genotype. HET and WT T cells were isolated from spleen and lymph nodes and activated in vitro using phytohemagglutinin P. [Ca2+]i and ΔΨm dynamics were examined using Fura 2 and tetramethylrhodamine methyl ester fluorescent dyes, respectively. Activated HET T cells displayed elevated resting [Ca2+]i, diminished responses to Ca2+ mobilization with thapsigargin, and decreased rate of [Ca2+]i elevation in response to SOCE compared with WT T cells. Pretreatment of HET T cells with ryanodine or dantrolene sodium reduced disparities in the resting [Ca2+]i and ability of thapsigargin to mobilize Ca2+ between HET and WT T cells. While SOCE elicited dissipation of the ΔΨm in WT T cells, it produced ΔΨm hyperpolarization in HET T cells. When used as the classification variable, the amplitude of thapsigargin-induced Ca2+ transient showed the best promise in predicting the presence of RyR1-p.R163C mutation. Other significant variables identified by machine learning analysis were the ratio of resting cytosolic Ca2+ level to the amplitude of thapsigargin-induced Ca2+ transient and an integral of changes in ΔΨm in response to SOCE. Our study demonstrated that gain-of-function mutation in RyR1 significantly affects Ca2+ signaling and mitochondrial fiction in T lymphocytes, which suggests that this mutation may cause altered immune responses in its carrier. Our data link the RyR1-p.R163C mutation, which causes inherited skeletal muscle diseases, to deregulation of Ca2+ signaling and mitochondrial function in immune T cells and establish proof-of-principle for in vitro T cell-based diagnostic assay for hereditary RyR1 hyperfunction.
Collapse
|
8
|
Aleman M, Zhang R, Feng W, Qi L, Lopez JR, Crowe C, Dong Y, Cherednichenko G, Pessah IN. Dietary Caffeine Synergizes Adverse Peripheral and Central Responses to Anesthesia in Malignant Hyperthermia Susceptible Mice. Mol Pharmacol 2020; 98:351-363. [PMID: 32764093 PMCID: PMC7491310 DOI: 10.1124/mol.120.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Lihong Qi
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Jose R Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Chelsea Crowe
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Genady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| |
Collapse
|
9
|
Chang L, Liu X, Diggle CP, Boyle JP, Hopkins PM, Shaw MA, Allen PD. Bioenergetic defects in muscle fibers of RYR1 mutant knock-in mice associated with malignant hyperthermia. J Biol Chem 2020; 295:15226-15235. [PMID: 32826313 DOI: 10.1074/jbc.ra120.013537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the skeletal muscle ryanodine receptor gene (RYR1) can cause susceptibility to malignant hyperthermia (MH), a potentially lethal genetic condition triggered by volatile anesthetics. MH is associated with hypermetabolism, which has directed research interest into oxidative phosphorylation and muscle bioenergetics. The most common cause of MH in the United Kingdom is the c.7300G>A RYR1 variant, which is present in ∼16% of MH families. Our study focuses on the MH susceptible G2435R-RYR1 knock-in mouse model, which is the murine equivalent of the human c.7300G>A genotype. Using a combination of transcriptomics, protein expression, and functional analysis, we investigated adult muscle fiber bioenergetics in this mouse model. RNA-Seq data showed reduced expression of genes associated with mitochondria and fatty acid oxidation in RYR1 mutants when compared with WT controls. Mitochondrial function was assessed by measuring oxygen consumption rates in permeabilized muscle fibers. Comparisons between WT and homozygous G2435R-RYR1 mitochondria showed a significant increase in complex I-facilitated oxidative phosphorylation in mutant muscle. Furthermore, we observed a gene-dose-specific increase in reactive oxygen species production in G2435R-RYR1 muscle fibers. Collectively, these findings provide evidence of metabolic defects in G2435R-RYR1 knock-in mouse muscle under basal conditions. Differences in metabolic profile could be the result of differential gene expression in metabolic pathways, in conjunction with mitochondrial damage accumulated from chronic exposure to increased oxidative stress.
Collapse
Affiliation(s)
- Leon Chang
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Xiaochen Liu
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Christine P Diggle
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - John P Boyle
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom; Malignant Hyperthermia Unit, St James's University Hospital, Leeds, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Paul D Allen
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
10
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Rutkowsky JM, Knotts TA, Allen PD, Pessah IN, Ramsey JJ. Sex-specific alterations in whole body energetics and voluntary activity in heterozygous R163C malignant hyperthermia-susceptible mice. FASEB J 2020; 34:8721-8733. [PMID: 32367593 PMCID: PMC7383697 DOI: 10.1096/fj.202000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
Malignant hyperthermia (MH) is characterized by induction of skeletal muscle hyperthermia in response to a dysregulated increase in myoplasmic calcium. Although altered energetics play a central role in MH, MH‐susceptible humans and mouse models are often described as having no phenotype until exposure to a triggering agent. The purpose of this study was to determine the influence of the R163C ryanodine receptor 1 mutation, a common MH mutation in humans, on energy expenditure, and voluntary wheel running in mice. Energy expenditure was measured by indirect respiration calorimetry in wild‐type (WT) and heterozygous R163C (HET) mice over a range of ambient temperatures. Energy expenditure adjusted for body weight or lean mass was increased (P < .05) in male, but not female, HET mice housed at 22°C or when housed at 28°C with a running wheel. In female mice, voluntary wheel running was decreased (P < .05) in the HET vs WT animals when analyzed across ambient temperatures. The thermoneutral zone was also widened in both male and female HET mice. The results of the study show that the R163C mutations alters energetics even at temperatures that do not typically induce MH.
Collapse
Affiliation(s)
- Jennifer M Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Paul D Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
13
|
Hung C, Napoli E, Ross-Inta C, Graham J, Flores-Torres AL, Stanhope KL, Froment P, Havel PJ, Giulivi C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes. FASEB J 2019; 33:11270-11283. [PMID: 31307210 DOI: 10.1096/fj.201802714r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ileal interposition (IT) is a surgical procedure that increases the delivery of incompletely digested nutrients and biliary and pancreatic secretions to the distal intestinal mucosa. Here, we investigated the metabolic impact of this intervention in 2-mo-old prediabetic University of California, Davis type 2 diabetes mellitus rats by assessing liver gene expression at 1.5 mo post-IT surgery. Pathway analysis indicated decreased signaling via TGF-β/Smad (a family of proteins named mothers against decapentaplegic homologs), peroxisome proliferator-activated receptor (PPAR), and PI3K-Akt-AMPK-mechanistic target of rapamycin, likely targeting hepatic stellate cells because differentiation and activation of these cells is associated with decreased signaling via PPAR and TGF-β/Smad. IT surgery up-regulated the expression of genes involved in regulation of cholesterol and terpenoid syntheses and down-regulated those involved in glycerophospholipid metabolism [including cardiolipin (CL)], lipogenesis, and gluconeogenesis. Consistent with the down-regulation of the hepatic CL pathway, IT surgery produced a metabolic switch in liver, kidney cortex, and fat depots toward decreased mitochondrial fatty acid β-oxidation, the process required to fuel high energy-demanding pathways (e.g., gluconeogenesis and glyceroneogenesis), whereas opposite effects were observed in skeletal and cardiac muscles. This study demonstrates for the first time the presence of metabolic pathways that complement the effects of IT surgery to maximize its benefits and potentially identify similarly effective, durable, and less invasive therapeutic options for metabolic disease, including inhibitors of TGF-β signaling.-Hung, C., Napoli, E., Ross-Inta, C., Graham, J., Flores-Torres, A. L., Stanhope, K. L., Froment, P., Havel, P. J., Giulivi, C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes.
Collapse
Affiliation(s)
- Connie Hung
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - James Graham
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Amanda L Flores-Torres
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) 85, Paris, France
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Chang L, Daly C, Miller DM, Allen PD, Boyle JP, Hopkins PM, Shaw MA. Permeabilised skeletal muscle reveals mitochondrial deficiency in malignant hyperthermia-susceptible individuals. Br J Anaesth 2019; 122:613-621. [PMID: 30916033 DOI: 10.1016/j.bja.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Individuals genetically susceptible to malignant hyperthermia (MH) exhibit hypermetabolic reactions when exposed to volatile anaesthetics. Mitochondrial dysfunction has previously been associated with the MH-susceptible (MHS) phenotype in animal models, but evidence of this in human MH is limited. METHODS We used high resolution respirometry to compare oxygen consumption rates (oxygen flux) between permeabilised human MHS and MH-negative (MHN) skeletal muscle fibres with or without prior exposure to halothane. A substrate-uncoupler-inhibitor titration protocol was used to measure the following components of the electron transport chain under conditions of oxidative phosphorylation (OXPHOS) or after uncoupling the electron transport system (ETS): complex I (CI), complex II (CII), CI+CII and, as a measure of mitochondrial mass, complex IV (CIV). RESULTS Baseline comparisons without halothane exposure showed significantly increased mitochondrial mass (CIV, P=0.021) but lower flux control ratios in CI+CII(OXPHOS) and CII(ETS) of MHS mitochondria compared with MHN (P=0.033 and 0.005, respectively) showing that human MHS mitochondria have a functional deficiency. Exposure to halothane triggered a hypermetabolic response in MHS mitochondria, significantly increasing mass-specific oxygen flux in CI(OXPHOS), CI+CII(OXPHOS), CI+CII(ETS), and CII(ETS) (P=0.001-0.012), while the rates in MHN samples were unaltered by halothane exposure. CONCLUSIONS We present evidence of mitochondrial dysfunction in human MHS skeletal muscle both at baseline and after halothane exposure.
Collapse
Affiliation(s)
- Leon Chang
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Catherine Daly
- Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK
| | - Dorota M Miller
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Paul D Allen
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - John P Boyle
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK; Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK.
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Abstract
This article reviews advancements in the genetics of malignant hyperthermia, new technologies and approaches for its diagnosis, and the existing limitations of genetic testing for malignant hyperthermia. It also reviews the various RYR1-related disorders and phenotypes, such as myopathies, exertional rhabdomyolysis, and bleeding disorders, and examines the connection between these disorders and malignant hyperthermia.
Collapse
|
16
|
Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ, Chaudhuri D. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol 2017; 113:22-32. [PMID: 28962857 PMCID: PMC5652072 DOI: 10.1016/j.yjmcc.2017.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Patrick R Houlihan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Sadiki S Deane
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Judith A Simcox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mi-Young Jeong
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dennis R Winge
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
17
|
Lipid-based DNA/siRNA transfection agents disrupt neuronal bioenergetics and mitophagy. Biochem J 2017; 474:3887-3902. [PMID: 29025974 DOI: 10.1042/bcj20170632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
A multitude of natural and artificial compounds have been recognized to modulate autophagy, providing direct or, through associated pathways, indirect entry points to activation and inhibition. While these pharmacological tools are extremely useful in the study of autophagy, their abundance also suggests the potential presence of unidentified autophagic modulators that may interfere with experimental designs if applied unknowingly. Here, we report unanticipated effects on autophagy and bioenergetics in neuronal progenitor cells (NPCs) incubated with the widely used lipid-based transfection reagent lipofectamine (LF), which induced mitochondria depolarization followed by disruption of electron transport. When NPCs were exposed to LF for 5 h followed by 24, 48, and 72 h in LF-free media, an immediate increase in mitochondrial ROS production and nitrotyrosine formation was observed. These events were accompanied by disrupted mitophagy (accumulation of dysfunctional and damaged mitochondria, and of LC3II and p62), in an mTOR- and AMPK-independent manner, and despite the increased mitochondrial PINK1 (PTEN-inducible kinase 1) localization. Evidence supported a role for a p53-mediated abrogation of parkin translocation and/or abrogation of membrane fusion between autophagosome and lysosomes. While most of the outcomes were LF-specific, only two were shared by OptiMEM exposure (with no serum and reduced glucose levels) albeit at lower extents. Taken together, our findings show that the use of transfection reagents requires critical evaluation with respect to consequences for overall cellular health, particularly in experiments designed to address autophagy-inducing effects and/or energy stress.
Collapse
|
18
|
Liu X, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities. Sci Rep 2017; 7:14024. [PMID: 29070892 PMCID: PMC5656670 DOI: 10.1038/s41598-017-14491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.
Collapse
Affiliation(s)
- Xuan Liu
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
19
|
Napoli E, Song G, Liu S, Espejo A, Perez CJ, Benavides F, Giulivi C. Zdhhc13-dependent Drp1 S-palmitoylation impacts brain bioenergetics, anxiety, coordination and motor skills. Sci Rep 2017; 7:12796. [PMID: 29038583 PMCID: PMC5643561 DOI: 10.1038/s41598-017-12889-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/14/2023] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification mediated by palmitoyl acyltransferase enzymes, a group of Zn2+-finger DHHC-domain-containing proteins (ZDHHC). Here, for the first time, we show that Zdhhc13 plays a key role in anxiety-related behaviors and motor function, as well as brain bioenergetics, in a mouse model (luc) carrying a spontaneous Zdhhc13 recessive mutation. At 3 m of age, mutant mice displayed increased sensorimotor gating, anxiety, hypoactivity, and decreased motor coordination, compared to littermate controls. Loss of Zdhhc13 in cortex and cerebellum from 3- and 24 m old hetero- and homozygous male mutant mice resulted in lower levels of Drp1 S-palmitoylation accompanied by altered mitochondrial dynamics, increased glycolysis, glutaminolysis and lactic acidosis, and neurotransmitter imbalances. Employing in vivo and in vitro models, we identified that Zdhhc13-dependent Drp1 S-palmitoylation, which acting alone or in concert, enables the normal occurrence of the fission-fusion process. In vitro and in vivo direct Zdhhc13-Drp1 protein interaction was observed, confirming Drp1 as a substrate of Zdhhc13. Abnormal fission-fusion processes result in disrupted mitochondria morphology and distribution affecting not only mitochondrial ATP output but neurotransmission and integrity of synaptic structures in the brain, setting the basis for the behavioral abnormalities described in the Zdhhc13-deficient mice.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Siming Liu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Alexsandra Espejo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, 95817, USA.
| |
Collapse
|
20
|
Thompson SJ, Riazi S, Kraeva N, Noseworthy MD, Rayner TE, Schneiderman JE, Cifra B, Wells GD. Skeletal Muscle Metabolic Dysfunction in Patients With Malignant Hyperthermia Susceptibility. Anesth Analg 2017; 125:434-441. [PMID: 28682948 PMCID: PMC9940015 DOI: 10.1213/ane.0000000000002232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Malignant hyperthermia (MH), a pharmacogenetic disorder of skeletal muscle, presents with a potentially lethal hypermetabolic reaction to certain anesthetics. However, some MH-susceptible patients experience muscle weakness, fatigue, and exercise intolerance in the absence of anesthetic triggers. The objective of this exploratory study was to elucidate the pathophysiology of exercise intolerance in patients tested positive for MH with the caffeine-halothane contracture test. To this end, we used phosphorus magnetic resonance spectroscopy, blood oxygen level-dependent functional magnetic resonance imaging (MRI), and traditional exercise testing to compare skeletal muscle metabolism in MH-positive patients and healthy controls. METHODS Skeletal muscle metabolism was assessed using phosphorus magnetic resonance spectroscopy and blood oxygen level-dependent functional MRI in 29 MH-positive patients and 20 healthy controls. Traditional measures of physical capacity were employed to measure aerobic capacity, anaerobic capacity, and muscle strength. RESULTS During 30- and 60-second exercise, MH-positive patients had significantly lower ATP production via the oxidative pathway compared to healthy controls. MH-positive patients also had a longer recovery time with blood oxygen level-dependent functional MRI compared to healthy controls. Exercise testing revealed lower aerobic and anaerobic capacity in MH-positive patients compared to healthy controls. CONCLUSIONS Results of this exploratory study suggest that MH-positive patients have impaired aerobic metabolism compared to healthy individuals. This could explain the exercise intolerance exhibited in MH-susceptible patient population.
Collapse
Affiliation(s)
- Sara J. Thompson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Michael D. Noseworthy
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tammy E. Rayner
- Department of Diagnostic Imaging, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane E. Schneiderman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada,Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Barbara Cifra
- Division of Cardiology, the Labatt Family Heart Centre, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Greg D. Wells
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada,Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Marín de Mas I, Marín S, Pachón G, Rodríguez-Prados JC, Vizán P, Centelles JJ, Tauler R, Azqueta A, Selivanov V, López de Ceraín A, Cascante M. Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity. Front Mol Biosci 2017; 4:8. [PMID: 28321398 PMCID: PMC5338303 DOI: 10.3389/fmolb.2017.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of p-phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound in vivo with Wistar rats and in vitro with C2C12 muscle cells. To this aim we have combined multi-omic experimental measurements with computational approaches using model-driven methods. The integrative study presented here has unveiled the metabolic disorders associated to PPD exposure that may underlay the aberrant metabolism observed in rhabdomyolys disease. Animals treated with lower doses of PPD (10 and 20 mg/kg) showed depressed activity and myoglobinuria after 10 h of treatment. We measured the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) in rats after 24, 48, and 72 h of PPD exposure. At all times, treatment with PPD at higher doses (40 and 60 mg/kg) showed an increase of AST and ALT, and also an increase of lactate dehydrogenase (LDH) and CK after 24 h. Blood packed cell volume and hemoglobin levels, as well as organs weight at 48 and 72 h, were also measured. No significant differences were observed in these parameters under any condition. PPD induce cell cycle arrest in S phase and apoptosis (40% or early apoptotic cells) on mus musculus mouse C2C12 cells after 24 h of treatment. Incubation of mus musculus mouse C2C12 cells with [1,2-13C2]-glucose during 24 h, subsequent quantification of 13C isotopologues distribution in key metabolites of glucose metabolic network and a computational fluxomic analysis using in-house developed software (Isodyn) showed that PPD is inhibiting glycolysis, non-oxidative pentose phosphate pathway, glycogen turnover, and ATPAse reaction leading to a reduction in ATP synthesis. These findings unveil the glucose metabolism collapse, which is consistent with a decrease in cell viability observed in PPD-treated C2C12 cells and with the myoglubinuria and other effects observed in Wistar Rats treated with PPD. These findings shed new light on muscle dysfunction associated to PPD exposure, opening new avenues for cost-effective therapies in Rhabdomyolysis disease.
Collapse
Affiliation(s)
- Igor Marín de Mas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Silvia Marín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Gisela Pachón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Juan C Rodríguez-Prados
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Pedro Vizán
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Josep J Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas Barcelona, Spain
| | - Amaya Azqueta
- Departamento de Farmacología y Toxicología, Facultad de Farmacia y Nutrición, Universidad de Navarra Pamplona, Spain
| | - Vitaly Selivanov
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Adela López de Ceraín
- Departamento de Farmacología y Toxicología, Facultad de Farmacia y Nutrición, Universidad de Navarra Pamplona, Spain
| | - Marta Cascante
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
22
|
Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun 2016; 4:121. [PMID: 27855725 PMCID: PMC5114830 DOI: 10.1186/s40478-016-0392-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
Ryanodine receptor isoform-1 (RyR1) is a major calcium channel in skeletal muscle important for excitation-contraction coupling. Mutations in the RYR1 gene yield RyR1 protein dysfunction that manifests clinically as RYR1-related congenital myopathies (RYR1-RM) and/or malignant hyperthermia susceptibility (MHS). Individuals with RYR1-RM and/or MHS exhibit varying symptoms and severity. The symptoms impair quality of life and put patients at risk for early mortality, yet the cause of varying severity is not well understood. Currently, there is no Food and Drug Administration (FDA) approved treatment for RYR1-RM. Discovery of effective treatments is therefore critical, requiring knowledge of the RyR1 pathway. The purpose of this review is to compile work published to date on the RyR1 pathway and to implicate potential regions as targets for treatment. The RyR1 pathway is comprised of protein-protein interactions, protein-ligand interactions, and post-translational modifications, creating an activation/regulatory macromolecular complex. Given the complexity of this pathway, we divided these interactions and modifications into six regulatory groups. Three of several RyR1 interacting proteins, FK506-binding protein 12 (FKBP12), triadin, and calmodulin, were identified as playing important roles across all groups and may serve as promising target sites for treatment. Also, variability in disease severity may be influenced by prolongation or hyperactivity of post-translational modifications resulting from RyR1 dysfunction.
Collapse
|
23
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
24
|
Liu X, Trakooljul N, Muráni E, Krischek C, Schellander K, Wicke M, Wimmers K, Ponsuksili S. Molecular changes in mitochondrial respiratory activity and metabolic enzyme activity in muscle of four pig breeds with distinct metabolic types. J Bioenerg Biomembr 2016; 48:55-65. [PMID: 26759028 DOI: 10.1007/s10863-015-9639-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Abstract
Skeletal muscles are metabolically active and have market value in meat-producing farm animals. A better understanding of biological pathways affecting energy metabolism in skeletal muscle could advance the science of skeletal muscle. In this study, comparative pathway-focused gene expression profiling in conjunction with muscle fiber typing were analyzed in skeletal muscles from Duroc, Pietrain, and Duroc-Pietrain crossbred pigs. Each breed type displayed a distinct muscle fiber-type composition. Mitochondrial respiratory activity and glycolytic and oxidative enzyme activities were comparable among genotypes, except for significantly lower complex I activity in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. At the transcriptional level, lactate dehydrogenase B showed breed specificity, with significantly lower expression in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. A similar mRNA expression pattern was shown for several subunits of oxidative phosphorylation complexes, including complex I, complex II, complex IV, and ATP synthase. Significant correlations were observed between mRNA expression of genes in focused pathways and enzyme activities in a breed-dependent manner. Moreover, expression patterns of pathway-focused genes were well correlated with muscle fiber-type composition. These results stress the importance of regulation of transcriptional rate of genes related to oxidative and glycolytic pathways in the metabolic capacity of muscle fibers. Overall, the results further the breed-specific understanding of the molecular basis of metabolic enzyme activities, which directly impact meat quality.
Collapse
Affiliation(s)
- Xuan Liu
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, D-30173, Hannover, Germany
| | - Karl Schellander
- Insititute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Michael Wicke
- Department of Animal Sciences, Quality of Food of Animal Origin, Georg-August-University Goettingen, Goettingen, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
25
|
Fujisawa Y, Napoli E, Wong S, Song G, Yamaguchi R, Matsui T, Nagasaki K, Ogata T, Giulivi C. Impact of a novel homozygous mutation in nicotinamide nucleotide transhydrogenase on mitochondrial DNA integrity in a case of familial glucocorticoid deficiency. BBA CLINICAL 2015; 3:70-78. [PMID: 26309815 PMCID: PMC4545511 DOI: 10.1016/j.bbacli.2014.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Familial Glucocorticoid Deficiency (FGD) is a rare autosomal recessive disorder that is characterized by isolated glucocorticoid deficiency. Recently, mutations in the gene encoding for the mitochondrial nicotinamide nucleotide transhydrogenase (NNT) have been identified as a causative gene for FGD; however, no NNT activities have been reported in FGD patients carrying NNT mutations. METHODS Clinical, biochemical and molecular analyses of lymphocytes from FDG homozygous and heterozygous carriers for the F215S NNT mutation. RESULTS In this study, we described an FGD-affected Japanese patient carrying a novel NNT homozygous mutation (c.644T>C; F215S) with a significant loss-of-function (NNT activity = 31% of healthy controls) in peripheral blood cells' mitochondria. The NNT activities of the parents, heterozygous for the mutation, were 61% of controls. CONCLUSIONS Our results indicated that (i) mitochondrial biogenesis (citrate synthase activity) and/or mtDNA replication (mtDNA copy number) were affected at ≤60% NNT activity because these parameters were affected in individuals carrying either one or both mutated alleles; and (ii) other outcomes (mtDNA deletions, protein tyrosine nitration, OXPHOS capacity) were affected at ≤30% NNT activity as also observed in murine cerebellar mitochondria from C57BL/6J (NNT-/-) vs. C57BL/6JN (NNT+/+) substrains. GENERAL SIGNIFICANCE By studying a family affected with a novel point mutation in the NNT gene, a gene-dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California Davis, Davis, CA 95616, USA
| | - Sarah Wong
- Department of Molecular Biosciences, University of California Davis, Davis, CA 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, University of California Davis, Davis, CA 95616, USA
| | - Rie Yamaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiharu Matsui
- Department of Pediatrics, Nagaoka Chuo General Hospital, Nagaoka 940-8653, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Niigata University Graduate School of Medicine and Dental Sciences, Niigata 951-8122, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California Davis, Davis, CA 95616, USA ; Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California Davis, Sacramento, CA 95616
| |
Collapse
|
26
|
Rossi A, Lord JM. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 2014; 18:1469-80. [PMID: 23982477 PMCID: PMC3825413 DOI: 10.1007/s10495-013-0893-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.
Collapse
Affiliation(s)
- Alessandra Rossi
- MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
27
|
Scheffler TL, Scheffler JM, Park S, Kasten SC, Wu Y, McMillan RP, Hulver MW, Frisard MI, Gerrard DE. Fiber hypertrophy and increased oxidative capacity can occur simultaneously in pig glycolytic skeletal muscle. Am J Physiol Cell Physiol 2013; 306:C354-63. [PMID: 24304835 DOI: 10.1152/ajpcell.00002.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An inverse relationship between skeletal muscle fiber cross-sectional area (CSA) and oxidative capacity suggests that muscle fibers hypertrophy at the expense of oxidative capacity. Therefore, our objective was to utilize pigs possessing mutations associated with increased oxidative capacity [AMP-activated protein kinase (AMPKγ3(R200Q))] or fiber hypertrophy [ryanodine receptor 1 (RyR1(R615C))] to determine if these events occur in parallel. Longissimus muscle was collected from wild-type (control), AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q)-RyR1(R615C) pigs. Regardless of AMPK genotype, RyR(R615C) increased fiber CSA by 35%. In contrast, AMPKγ3(R200Q) pig muscle exhibited greater citrate synthase and β-hydroxyacyl CoA dehydrogenase activity. Isolated mitochondria from AMPKγ3(R200Q) muscle had greater maximal, ADP-stimulated oxygen consumption rate. Additionally, AMPKγ3(R200Q) muscle contained more (∼50%) of the mitochondrial proteins succinate dehydrogenase and cytochrome c oxidase and more mitochondrial DNA. Surprisingly, RyR1(R615C) increased mitochondrial proteins and DNA, but this was not associated with improved oxidative capacity, suggesting that altered energy metabolism in RyR1(R615C) muscle influences mitochondrial proliferation and protein turnover. Thus pigs that possess both AMPKγ3(R200Q) and RyR(R615C) exhibit increased muscle fiber CSA as well as greater oxidative capacity. Together, our findings support the notion that hypertrophy and enhanced oxidative capacity can occur simultaneously in skeletal muscle and suggest that the signaling mechanisms controlling these events are independently regulated.
Collapse
Affiliation(s)
- T L Scheffler
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia; and
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eisner V, Csordás G, Hajnóczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca²⁺ and reactive oxygen species signaling. J Cell Sci 2013; 126:2965-78. [PMID: 23843617 DOI: 10.1242/jcs.093609] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER-mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca(2+) signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER-mitochondria tethers that are formed by multiple proteins, and local Ca(2+) transfer between SR/ER and mitochondria.
Collapse
Affiliation(s)
- Verónica Eisner
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
29
|
Klemcke HG, DeKroon RM, Mocanu M, Robinette JB, Alzate O. Cardiac mitochondrial proteomic expression in inbred rat strains divergent in survival time after hemorrhage. Physiol Genomics 2013; 45:243-55. [PMID: 23386204 DOI: 10.1152/physiolgenomics.00118.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have previously identified inbred rat strains differing in survival time to a severe controlled hemorrhage (StaH). In efforts to identify cellular mechanisms and ultimately genes that are important contributors to enhanced STaH, we conducted a study to characterize potential differences in cardiac mitochondrial proteins in these rats. Inbred rats from three strains [Brown Norway/Medical College of Wisconsin (BN); Dark Agouti (DA), and Fawn Hooded Hypertensive (FHH)] with different StaH (DA = FHH > BN) were assigned to one of three treatment groups (n = 4/strain): nonoperated controls, surgically catheterized rats, or rats surgically catheterized and hemorrhaged 24 h postsurgery. Rats were euthanized 30 min after handling or 30 min after initiation of a 26 min hemorrhage. After euthanasia, hearts were removed and mitochondria isolated. Differential protein expression was determined using 2D DIGE-based Quantitative Intact Proteomics and proteins identified by MALDI/TOF mass spectrometry. Hundreds of proteins (791) differed among inbred rat strains (P ≤ 0.038), and of these 81 were identified. Thirty-eight were unique proteins and 43 were apparent isoforms. For DA rats (longest STaH), 36 proteins increased and 30 decreased compared with BN (shortest STaH). These 81 proteins were associated with lipid (e.g., acyl CoA dehydrogenase) and carbohydrate (e.g., fumarase) metabolism, oxidative phosphorylation (e.g., ubiquinol-cytochrome C reductase), ATP synthesis (F1 ATPase), and H2S synthesis (3-mercaptopyruvate sulfurtransferase). Although we cannot make associations between these identified mitochondrial proteins and StaH, our data do provide evidence for future candidate proteins with which to consider such associations.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas 78234, USA.
| | | | | | | | | |
Collapse
|
30
|
O-Uchi J, Pan S, Sheu SS. Perspectives on: SGP symposium on mitochondrial physiology and medicine: molecular identities of mitochondrial Ca2+ influx mechanism: updated passwords for accessing mitochondrial Ca2+-linked health and disease. ACTA ACUST UNITED AC 2013; 139:435-43. [PMID: 22641638 PMCID: PMC3362516 DOI: 10.1085/jgp.201210795] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jin O-Uchi
- Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
31
|
Eltit JM, Ding X, Pessah IN, Allen PD, Lopez JR. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia. FASEB J 2012; 27:991-1000. [PMID: 23159934 DOI: 10.1096/fj.12-218354] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant hyperthermia (MH) susceptibility has been attributed to a leaky sarcoplasmic reticulum (SR) caused by missense mutations in RYR1 or CACNA1S, and the MH crisis has been attributed solely to massive self-sustaining release of Ca(2+) from SR stores elicited by triggering agents. Here, we show in muscle cells from MH-RyR1(R163C) knock-in mice that increased passive SR Ca(2+) leak causes an enlarged basal influx of sarcolemmal Ca(2+) that results in chronically elevated myoplasmic free Ca(2+) concentration ([Ca(2+)]i) at rest. We discovered that Gd(+3) and GsMTx-4 were more effective than BTP2 or expression of the dominant-negative Orai1(E190Q) in reducing both Ca(2+) entry and [Ca(2+)]i, implicating a non-STIM1/Orai1 SOCE pathway in resetting resting [Ca(2+)]i. Indeed, two nonselective cationic channels, TRPC3 and TRPC6, are overexpressed, and [Na]i is chronically elevated in MH-RyR1(R163C) muscle cells. [Ca(2+)]i and [Na(+)]i are persistently elevated in vivo and further increased by halothane in MH-RyR1(R163C/WT) muscle. These increases are markedly attenuated by local perfusion of Gd(+3) or GsMTx-4 and completely suppressed by dantrolene. These results contribute a new paradigm for understanding MH pathophysiology by demonstrating that nonselective sarcolemmal cation channel activity plays a critical role in causing myoplasmic Ca(2+) and Na(+) overload both at rest and during the MH crisis.-Eltit, J. M., Ding, X., Pessah, I. N., Allen, P. D., Lopez, J. R. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia.
Collapse
Affiliation(s)
- José M Eltit
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | |
Collapse
|
32
|
Kaplan ES, Cao Z, Hulsizer S, Tassone F, Berman RF, Hagerman PJ, Pessah IN. Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J Neurochem 2012; 123:613-21. [PMID: 22924671 DOI: 10.1111/j.1471-4159.2012.07936.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 12/01/2022]
Abstract
Pre-mutation CGG repeat expansions (55-200 CGG repeats; pre-CGG) within the fragile-X mental retardation 1 (FMR1) gene cause fragile-X-associated tremor/ataxia syndrome in humans. Defects in neuronal morphology, early migration, and electrophysiological activity have been described despite appreciable expression of fragile-X mental retardation protein (FMRP) in a pre-CGG knock-in (KI) mouse model. The triggers that initiate and promote pre-CGG neuronal dysfunction are not understood. The absence of FMRP in a Drosophila model of fragile-X syndrome was shown to increase axonal transport of mitochondria. In this study, we show that dissociated hippocampal neuronal culture from pre-CGG KI mice (average 170 CGG repeats) express 42.6% of the FMRP levels and 3.8-fold higher Fmr1 mRNA than that measured in wild-type neurons at 4 days in vitro. Pre-CGG hippocampal neurons show abnormalities in the number, mobility, and metabolic function of mitochondria at this early stage of differentiation. Pre-CGG hippocampal neurites contained significantly fewer mitochondria and greatly reduced mitochondria mobility. In addition, pre-CGG neurons had higher rates of basal oxygen consumption and proton leak. We conclude that deficits in mitochondrial trafficking and metabolic function occur despite the presence of appreciable FMRP expression and may contribute to the early pathophysiology in pre-CGG carriers and to the risk of developing clinical fragile-X-associated tremor/ataxia syndrome.
Collapse
Affiliation(s)
- Eitan S Kaplan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor. Proc Natl Acad Sci U S A 2012; 109:7923-8. [PMID: 22547813 DOI: 10.1073/pnas.1119207109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant hyperthermia (MH) susceptibility is a dominantly inherited disorder in which volatile anesthetics trigger aberrant Ca(2+) release in skeletal muscle and a potentially fatal rise in perioperative body temperature. Mutations causing MH susceptibility have been identified in two proteins critical for excitation-contraction (EC) coupling, the type 1 ryanodine receptor (RyR1) and Ca(V)1.1, the principal subunit of the L-type Ca(2+) channel. All of the mutations that have been characterized previously augment EC coupling and/or increase the rate of L-type Ca(2+) entry. The Ca(V)1.1 mutation R174W associated with MH susceptibility occurs at the innermost basic residue of the IS4 voltage-sensing helix, a residue conserved among all Ca(V) channels [Carpenter D, et al. (2009) BMC Med Genet 10:104-115.]. To define the functional consequences of this mutation, we expressed it in dysgenic (Ca(V)1.1 null) myotubes. Unlike previously described MH-linked mutations in Ca(V)1.1, R174W ablated the L-type current and had no effect on EC coupling. Nonetheless, R174W increased sensitivity of Ca(2+) release to caffeine (used for MH diagnostic in vitro testing) and to volatile anesthetics. Moreover, in Ca(V)1.1 R174W-expressing myotubes, resting myoplasmic Ca(2+) levels were elevated, and sarcoplasmic reticulum (SR) stores were partially depleted, compared with myotubes expressing wild-type Ca(V)1.1. Our results indicate that Ca(V)1.1 functions not only to activate RyR1 during EC coupling, but also to suppress resting RyR1-mediated Ca(2+) leak from the SR, and that perturbation of Ca(V)1.1 negative regulation of RyR1 leak identifies a unique mechanism that can sensitize muscle cells to MH triggers.
Collapse
|
34
|
Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, Marty I, Lunardi J, Brooks SV, Kuwada JY, Ferreiro A. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. ACTA ACUST UNITED AC 2012; 135:1115-27. [PMID: 22418739 DOI: 10.1093/brain/aws036] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defective excitation-contraction coupling, other abnormalities likely play a role in disease pathogenesis. In an effort to discover novel pathogenic mechanisms, we analysed two complementary models of RYR1-related myopathies, the relatively relaxed zebrafish and cultured myotubes from patients with RYR1-related myopathies. Expression array analysis in the zebrafish disclosed significant abnormalities in pathways associated with cellular stress. Subsequent studies focused on oxidative stress in relatively relaxed zebrafish and RYR1-related myopathy myotubes and demonstrated increased oxidant activity, the presence of oxidative stress markers, excessive production of oxidants by mitochondria and diminished survival under oxidant conditions. Exposure to the antioxidant N-acetylcysteine reduced oxidative stress and improved survival in the RYR1-related myopathies human myotubes ex vivo and led to significant restoration of aspects of muscle function in the relatively relaxed zebrafish, thereby confirming its efficacy in vivo. We conclude that oxidative stress is an important pathophysiological mechanism in RYR1-related myopathies and that N-acetylcysteine is a successful treatment modality ex vivo and in a vertebrate disease model. We propose that N-acetylcysteine represents the first potential therapeutic strategy for these debilitating muscle diseases.
Collapse
Affiliation(s)
- James J Dowling
- Department of Paediatrics, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:183-215. [DOI: 10.1007/978-94-007-2888-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Barrientos GC, Feng W, Truong K, Matthaei KI, Yang T, Allen PD, Lopez JR, Pessah IN. Gene dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia-susceptible muscle. J Biol Chem 2011; 287:2863-76. [PMID: 22139840 DOI: 10.1074/jbc.m111.307926] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.
Collapse
Affiliation(s)
- Genaro C Barrientos
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuen B, Boncompagni S, Feng W, Yang T, Lopez JR, Matthaei KI, Goth SR, Protasi F, Franzini-Armstrong C, Allen PD, Pessah IN. Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage. FASEB J 2011; 26:1311-22. [PMID: 22131268 DOI: 10.1096/fj.11-197582] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutation T4825I in the type 1 ryanodine receptor (RYR1(T4825I/+)) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1(T4826I/+) (Het) or homozygous RYR1(T4826I/T4826I) (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca(2+)](rest), and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.
Collapse
Affiliation(s)
- Benjamin Yuen
- Department of Veterinary Molecular Biosciences, University of California, Davis, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|