1
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
2
|
Aregbesola OA, Kumar A, Mokoena MP, Olaniran AO. Classic Pentachlorophenol Hydroxylating Phenylalanine 4-Monooxygenase from Indigenous Bacillus tropicus Strain AOA-CPS1: Cloning, Overexpression, Purification, Characterization and Structural Homology Modelling. Appl Biochem Biotechnol 2022; 194:635-658. [PMID: 34417677 DOI: 10.1007/s12010-021-03645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
The metabolically promiscuous pentachlorophenol (PCP) hydroxylating Phe4MO (represented as CpsB) was detected, amplified (from the genome of Bacillus tropicus strain AOA-CPS1), cloned, overexpressed, purified and characterized here. The 1.755-kb gene cloned in the pET15b vector expressed a ≅ 64 kDa monomeric protein which was purified to homogeneity by single-step affinity chromatography, with a total yield of 82.1%. The optimum temperature and pH of the enzyme were found to be 30 °C and 7.0, respectively. CpsB showed functional stability between pH 6.0-7.5 and temperature 25-30 °C. The enzyme-substrate reaction kinetic studies showed the allosteric nature of the enzyme and followed pre-steady state using NADH as a co-substrate with apparent vmax, Km, kcat and kcat/Km values of 0.465 μM.s-1, 140 μM, 0.099 s-1 and 7.07 × 10-4 μM-1.s-1, respectively, for the substrate PCP. The in-gel trypsin digestion experiments and bioinformatic tools confirmed that the reported enzyme is a Phe4MO with multiple putative conserved domains and metal ion-binding site. Though Phe4MO has been reported to have a diverse catalytic function, here we report, for the first time, that it functions as a PCP dehalogenase or PCP-4-monooxygenase by hydroxylating PCP. Hence, the use of this enzyme may be further explored in the bioremediation of PCP and other related xenobiotics.
Collapse
Affiliation(s)
- Oladipupo A Aregbesola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
3
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
4
|
Jensen PR, Moore BS, Fenical W. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 2015; 32:738-51. [PMID: 25730728 PMCID: PMC4414829 DOI: 10.1039/c4np00167b] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review covers the initial discovery of the marine actinomycete genus Salinispora through its development as a model for natural product research. A focus is placed on the novel chemical structures reported with reference to their biological activities and the synthetic and biosynthetic studies they have inspired. The time line of discoveries progresses from more traditional bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target the products of specific biosynthetic gene clusters. This overview exemplifies the extraordinary biosynthetic diversity that can emanate from a narrowly defined genus and supports future efforts to explore marine taxa in the search for novel natural products.
Collapse
Affiliation(s)
- Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA.
| | | | | |
Collapse
|
5
|
Ma L, Bartholome A, Tong MH, Qin Z, Yu Y, Shepherd T, Kyeremeh K, Deng H, O'Hagan D. Identification of a fluorometabolite from Streptomyces sp. MA37: (2 R3 S4 S)-5-fluoro-2,3,4-trihydroxypentanoic acid. Chem Sci 2015; 6:1414-1419. [PMID: 29861965 PMCID: PMC5947533 DOI: 10.1039/c4sc03540b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/26/2014] [Indexed: 01/19/2023] Open
Abstract
(2R3S4S)-5-Fluoro-2,3,4-trihydroxypentanoic acid (5-FHPA) has been discovered as a new fluorometabolite in the soil bacterium Streptomyces sp. MA37. Exogenous addition of 5-fluoro-5-deoxy-d-ribose (5-FDR) into the cell free extract of MA37 demonstrated that 5-FDR was an intermediate to a range of unidentified fluorometabolites, distinct from fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Bioinformatics analysis allowed identification of a gene cluster (fdr), encoding a pathway to the biosynthesis of 5-FHPA. Over-expression and in vitro assay of FdrC indicated that FdrC is a NAD+ dependent dehydrogenase responsible for oxidation of 5-FDR into 5-fluoro-5-deoxy-lactone, followed by hydrolysis to 5-FHPA. The identity of 5-FHPA in the fermentation broth was confirmed by synthesis of a reference compound and then co-correlation by 19F-NMR and GC-MS analysis. The occurrence of 5-FHPA proves the existence of a new fluorometabolite pathway.
Collapse
Affiliation(s)
- Long Ma
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| | - Axel Bartholome
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| | - Ming Him Tong
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - Zhiwei Qin
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) , School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , P. R. China
| | - Thomas Shepherd
- The James Hutton Institute , Invergowrie , Dundee , DD2 5DA , UK
| | - Kwaku Kyeremeh
- Department of Chemistry , University of Ghana , FGO Torto Building , Legon , Ghana
| | - Hai Deng
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - David O'Hagan
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| |
Collapse
|
6
|
Napora K, Wrodnigg TM, Kosmus P, Thonhofer M, Robins K, Winkler M. Yarrowia lipolytica dehydrogenase/reductase: an enzyme tolerant for lipophilic compounds and carbohydrate substrates. Bioorg Med Chem Lett 2013; 23:3393-5. [PMID: 23608762 DOI: 10.1016/j.bmcl.2013.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
Abstract
Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose and reduced the latter at the expense of NADP(H).
Collapse
|
7
|
Lechner A, Eustáquio AS, Gulder TAM, Hafner M, Moore BS. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. ACTA ACUST UNITED AC 2012; 18:1527-36. [PMID: 22195555 DOI: 10.1016/j.chembiol.2011.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 12/30/2022]
Abstract
The chlorinated natural product salinosporamide A is a potent 20S proteasome inhibitor currently in clinical trials as an anticancer agent. To deepen our understanding of salinosporamide biosynthesis, we investigated the function of a LuxR-type pathway-specific regulatory gene, salR2, and observed a selective effect on the production of salinosporamide A over its less active aliphatic analogs. SalR2 specifically activates genes involved in the biosynthesis of the halogenated precursor chloroethylmalonyl-CoA, which is a dedicated precursor of salinosporamide A. Specifically, SalR2 activates transcription of two divergent operons-one of which contains the unique S-adenosyl-L-methionine-dependent chlorinase encoding gene salL. By applying this knowledge to rational engineering, we were able to selectively double salinosporamide A production. This study exemplifies the specialized regulation of a polyketide precursor pathway and its application to the selective overproduction of a specific natural product congener.
Collapse
Affiliation(s)
- Anna Lechner
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0204, USA
| | | | | | | | | |
Collapse
|
8
|
Wilson MC, Moore BS. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 2011; 29:72-86. [PMID: 22124767 DOI: 10.1039/c1np00082a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the emerging biosynthetic role of crotonyl-CoA carboxylase/reductase (CCR) homologs in extending the structural and functional diversity of polyketide natural products. CCRs catalyze the reductive carboxylation of α,β-unsaturated acyl-CoA substrates to produce a variety of substituted malonyl-CoA derivatives employed as polyketide synthase extender units. Here we discuss the history of CCRs in both primary and secondary metabolism, the mechanism by which they function, examples of new polyketide diversity from pathway specific CCRs, and the role of CCRs in facilitating the bioengineering novel polyketides.
Collapse
Affiliation(s)
- Micheal C Wilson
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
9
|
Abstract
The years 2000 through mid-2010 marked a transformational period in understanding of the biosynthesis of marine natural products. During this decade the field emerged from one largely dominated by chemical approaches to understanding biosynthetic pathways to one incorporating the full force of modern molecular biology and bioinformatics. Fusion of chemical and biological approaches yielded great advances in understanding the genetic and enzymatic basis for marine natural product biosynthesis. Progress was particularly pronounced for marine microbes, especially actinomycetes and cyanobacteria. During this single decade, both the first complete marine microbial natural product biosynthetic gene cluster sequence was released as well as the first entire genome sequence for a secondary metabolite-rich marine microbe. The decade also saw tremendous progress in recognizing the key role of marine microbial symbionts of invertebrates in natural product biosynthesis. Application of genetic and enzymatic knowledge led to genetic engineering of novel “unnatural” natural products during this time, as well as opportunities for discovery of novel natural products through genome mining. The current review highlights selected seminal studies from 2000 through to June 2010 that illustrate breakthroughs in understanding of marine natural product biosynthesis at the genetic, enzymatic, and small-molecule natural product levels. A total of 154 references are cited.
Collapse
Affiliation(s)
- Amy L. Lane
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Chang CC, Chen WC, Ho TF, Wu HS, Wei YH. Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 2011; 111:501-11. [PMID: 21277252 DOI: 10.1016/j.jbiosc.2010.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Discoveries of tumor-resistant pharmacological drugs have mainly resulted from screening of natural products and their analogs. Some are also discovered incidentally when studying organisms. The great biodiversity of microorganisms raises the possibility of producing secondary metabolites (e.g., mevastatin, lovastatin, epothilone, salinosporamide A) to cope with adverse environments. Recently, natural plant pigments with anti-tumor activities such as β-carotene, lycopene, curcumin and anthocyanins have been proposed. However, many plants have a long life cycle. Therefore, pigments from microorganisms represent another option for the development of novel anti-tumor drugs. Prodigiosin (PG) is a natural red pigment produced by microorganisms, i.e., Serratia marcescens and other gram-negative bacteria. The anti-tumor potential of PG has been widely demonstrated. The families of PG (PGs), which share a common pyrrolylpyrromethene (PPM) skeleton, are produced by various bacteria. PGs are bioactive pigments and are known to exert immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. Currently the most common strain used for producing PGs is S. marcescens. However, few reports have discussed PGs production. This review therefore describes the development of an anti-tumor drug, PG, that can be naturally produced by microorganisms, and evaluates the microbial production system, fermentation strategies, purification and identification processes. The application potential of PGs is also discussed.
Collapse
Affiliation(s)
- Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|