1
|
Shao M, Pan Q, Tan H, Wu J, Lee HW, Huber AD, Wright WC, Cho JH, Yu J, Peng J, Chen T. CYP3A5 unexpectedly regulates glucose metabolism through the AKT-TXNIP-GLUT1 axis in pancreatic cancer. Genes Dis 2024; 11:101079. [PMID: 38560501 PMCID: PMC10980945 DOI: 10.1016/j.gendis.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024] Open
Abstract
CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Shao
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Taylor CA, Jung JU, Kankanamalage SG, Li J, Grzemska M, Jaykumar AB, Earnest S, Stippec S, Saha P, Sauceda E, Cobb MH. Predictive and Experimental Motif Interaction Analysis Identifies Functions of the WNK-OSR1/SPAK Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600905. [PMID: 38979344 PMCID: PMC11230372 DOI: 10.1101/2024.06.26.600905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The WNK-OSR1/SPAK protein kinase signaling pathway regulates ion homeostasis and cell volume, but its other functions are poorly understood. To uncover undefined signaling functions of the pathway we analyzed the binding specificity of the conserved C-terminal (CCT) domains of OSR1 and SPAK to find all possible interaction motifs in human proteins. These kinases bind the core consensus sequences R-F-x-V/I and R-x-F-x-V/I. Motifs were ranked based on sequence, conservation, cellular localization, and solvent accessibility. Out of nearly 3,700 motifs identified, 90% of previously published motifs were within the top 2% of those predicted. Selected candidates (TSC22D1, CAVIN1, ATG9A, NOS3, ARHGEF5) were tested. Upstream kinases WNKs 1-4 and their close relatives, the pseudokinases NRBP1/2, contain CCT-like domains as well. We identified additional distinct motif variants lacking the conserved arginine previously thought to be required, and found that the NRBP1 CCT-like domain binds TSC22D1 via the same motif as OSR1 and SPAK. Our results further highlight the rich and diverse functionality of CCT and CCT-like domains in connecting WNK signaling to cellular processes.
Collapse
|
3
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
4
|
Wang C, Lin R, Qi X, Xu Q, Sun X, Zhao Y, Jiang T, Jiang J, Sun Y, Deng Y, Wen J. Alternative glucose uptake mediated by β-catenin/RSK1 axis under stress stimuli in mammalian cells. Biochem Pharmacol 2023:115645. [PMID: 37321415 DOI: 10.1016/j.bcp.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Cells adapt to stress conditions by increasing glucose uptake as cytoprotective strategy. The efficiency of glucose uptake is determined by the translocation of glucose transporters (GLUTs) from cytosolic vesicles to cellular membranes in many tissues and cells. GLUT translocation is tightly controlled by the activation of Tre-2/BUB2/CDC16 1 domain family 4 (TBC1D4) via its phosphorylation. The mechanisms of glucose uptake under stress conditions remain to be clarified. In this study, we surprisingly found that glucose uptake is apparently increased for the early response to three stress stimuli, glucose starvation and the exposure to lipopolysaccharide (LPS) or deoxynivalenol (DON). The stress-induced glucose uptake was mainly controlled by the increment of β-catenin level and the activation of RSK1. Mechanistically, β-catenin directly interacted with RSK1 and TBC1D4, acting as the scaffold protein to recruit activated RSK1 to promote the phosphorylation of TBC1D4. In addition, β-catenin was further stabilized due to the inhibition of GSK3β kinase activity which is caused by activated RSK1 phosphorylating GSK3β at Ser9. In general, this triple protein complex consisting of β-catenin, phosphorylated RSK1, and TBC1D4 were increased in the early response to these stress signals, and consequently, further promoted the phosphorylation of TBC1D4 to facilitate the translocation of GLUT4 to the cell membrane. Our study revealed that the β-catenin/RSK1 axis contributed to the increment of glucose uptake for cellular adaption to these stress conditions, shedding new insights into cellular energy utilization under stress.
Collapse
Affiliation(s)
- Caizhu Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xueying Qi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qiang Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xingsheng Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
5
|
Hayward DA, Vanes L, Wissmann S, Sivapatham S, Hartweger H, Biggs O’May J, de Boer LL, Mitter R, Köchl R, Stein JV, Tybulewicz VL. B cell-intrinsic requirement for WNK1 kinase in antibody responses in mice. J Exp Med 2023; 220:e20211827. [PMID: 36662229 PMCID: PMC9872328 DOI: 10.1084/jem.20211827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.
Collapse
Affiliation(s)
| | | | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Sujana Sivapatham
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
6
|
Nakamura M, Satoh N, Horita S, Nangaku M. Insulin-induced mTOR signaling and gluconeogenesis in renal proximal tubules: A mini-review of current evidence and therapeutic potential. Front Pharmacol 2022; 13:1015204. [PMID: 36299884 PMCID: PMC9589488 DOI: 10.3389/fphar.2022.1015204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Energy is continuously expended in the body, and gluconeogenesis maintains glucose homeostasis during starvation. Gluconeogenesis occurs in the liver and kidneys. The proximal tubule is the primary location for renal gluconeogenesis, accounting for up to 25% and 60% of endogenous glucose production during fasting and after a meal, respectively. The mechanistic target of rapamycin (mTOR), which exists downstream of the insulin pathway, plays an important role in regulating proximal tubular gluconeogenesis. mTOR is an atypical serine/threonine kinase present in two complexes. mTORC1 phosphorylates substrates that enhance anabolic processes such as mRNA translation and lipid synthesis and catabolic processes such as autophagy. mTORC2 regulates cytoskeletal dynamics and controls ion transport and proliferation via phosphorylation of SGK1. Therefore, mTOR signaling defects have been implicated in various pathological conditions, including cancer, cardiovascular disease, and diabetes. However, concrete elucidations of the associated mechanisms are still unclear. This review provides an overview of mTOR and describes the relationship between mTOR and renal.
Collapse
Affiliation(s)
- Motonobu Nakamura
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Jung JU, Jaykumar AB, Cobb MH. WNK1 in Malignant Behaviors: A Potential Target for Cancer? Front Cell Dev Biol 2022; 10:935318. [PMID: 35813203 PMCID: PMC9257110 DOI: 10.3389/fcell.2022.935318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress. In this review we will discuss its actions in tumor malignancy in human cancers and present evidence for its function in invasion, migration, angiogenesis and mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Hou CY, Ma CY, Yuh CH. WNK1 kinase signaling in metastasis and angiogenesis. Cell Signal 2022; 96:110371. [DOI: 10.1016/j.cellsig.2022.110371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
|
9
|
Taylor CA, Cobb MH. CCT and CCT-Like Modular Protein Interaction Domains in WNK Signaling. Mol Pharmacol 2022; 101:201-212. [PMID: 34312216 PMCID: PMC9092477 DOI: 10.1124/molpharm.121.000307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have well established functions in the maintenance of cell volume and ion homeostasis. Mutations in these kinases have been linked to an inherited form of hypertension, neurologic defects, and other pathologies. A rapidly expanding body of evidence points to the involvement of WNKs in regulating multiple diverse cellular processes as well as the progression of some forms of cancer. How OSR1 and SPAK contribute to these processes is well understood in some cases but completely unknown in others. OSR1 and SPAK are targeted to both WNKs and substrates via their conserved C-terminal (CCT) protein interaction domains. Considerable effort has been put forth to understand the structure, function, and interaction specificity of the CCT domains in relation to WNK signaling, and multiple inhibitors of WNK signaling target these domains. The domains bind RFxV and RxFxV protein sequence motifs with the consensus sequence R-F-x-V/I or R-x-F-x-V/I, but residues outside the core motif also contribute to specificity. CCT interactions are required for OSR1 and SPAK activation and deactivation as well as cation-chloride cotransporter substrate phosphorylation. All four WNKs also contain CCT-like domains that have similar structures and conserved binding residues when compared with CCT domains, but their functions and interaction specificities are mostly unknown. A better understanding of the varied actions of these domains and their interactions will better define the known signaling mechanisms of the WNK pathway as well as uncover new ones. SIGNIFICANCE STATEMENT: WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have been shown to be involved in an array of diverse cellular processes. Here we review the function of modular protein interaction domains found in OSR1 and SPAK as well as related domains found in WNKs.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Ni WJ, Guan XM, Zeng J, Zhou H, Meng XM, Tang LQ. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway. J Cell Mol Med 2022; 26:1144-1155. [PMID: 35001506 PMCID: PMC8831947 DOI: 10.1111/jcmm.17167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG‐induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 μmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 μmol/L) significantly reduced the expression of PI3K‐p85, p‐Akt, p‐AS160, membrane‐bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1‐mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG‐induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xi-Mei Guan
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li-Qin Tang
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Prisco SZ, Eklund M, Raveendran R, Thenappan T, Prins KW. With No Lysine Kinase 1 Promotes Metabolic Derangements and RV Dysfunction in Pulmonary Arterial Hypertension. JACC. BASIC TO TRANSLATIONAL SCIENCE 2021; 6:834-850. [PMID: 34869947 PMCID: PMC8617575 DOI: 10.1016/j.jacbts.2021.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- AS160, 160 kDa substrate of the Akt serine/threonine kinase
- DCA, dicarboxylic fatty acid
- FAO, fatty acid oxidation
- GLO1, glyoxalase 1
- GLO2, glyoxalase 2
- GLUT1, glucose transporter 1
- GLUT4, glucose transporter 4
- LV, left ventricle/ventricular
- MCT, monocrotaline
- MCT-V, monocrotaline-vehicle
- PAH, pulmonary arterial hypertension
- PTM, post-translationally modify/modifications
- PV, pressure-volume
- PVR, pulmonary vascular resistance
- RA, right atrial
- RV, right ventricle/ventricular
- RVD, right ventricular dysfunction
- TCA, tricarboxylic acid
- Tau/τ, right ventricular relaxation time
- UDP-GlcNAC, uridine diphosphate N-acetylglucosamine
- WNK, with no lysine kinase
- lipotoxicity
- metabolism
- mitochondria
- pulmonary arterial hypertension
- right ventricular dysfunction
- with no lysine kinase 1
Collapse
Affiliation(s)
| | | | | | | | - Kurt W. Prins
- Address for correspondence: Dr Kurt Prins, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, 312 Church Street Southeast, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
12
|
Iacobas DA, Iacobas S, Stout RF, Spray DC. Cellular Environment Remodels the Genomic Fabrics of Functional Pathways in Astrocytes. Genes (Basel) 2020; 11:genes11050520. [PMID: 32392822 PMCID: PMC7290327 DOI: 10.3390/genes11050520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
We profiled the transcriptomes of primary mouse cortical astrocytes cultured alone or co-cultured with immortalized precursor oligodendrocytes (Oli-neu cells). Filters between the cell types prevented formation of hetero-cellular gap junction channels but allowed for free exchange of the two culture media. We previously reported that major functional pathways in the Oli-neu cells are remodeled by the proximity of non-touching astrocytes and that astrocytes and oligodendrocytes form a panglial transcriptomic syncytium in the brain. Here, we present evidence that the astrocyte transcriptome likewise changes significantly in the proximity of non-touching Oli-neu cells. Our results indicate that the cellular environment strongly modulates the transcriptome of each cell type and that integration in a heterocellular tissue changes not only the expression profile but also the expression control and networking of the genes in each cell phenotype. The significant decrease of the overall transcription control suggests that in the co-culture astrocytes are closer to their normal conditions from the brain. The Oli-neu secretome regulates astrocyte genes known to modulate neuronal synaptic transmission and remodels calcium, chemokine, NOD-like receptor, PI3K-Akt, and thyroid hormone signaling, as well as actin-cytoskeleton, autophagy, cell cycle, and circadian rhythm pathways. Moreover, the co-culture significantly changes the gene hierarchy in the astrocytes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, RG Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Correspondence: ; Tel.: +1-936-261-9926
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - David C Spray
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
13
|
Prins KW, Kalra R, Rose L, Assad TR, Archer SL, Bajaj NS, Weir EK, Prisco SZ, Pritzker M, Lutsey PL, Brittain EL, Thenappan T. Hypochloremia Is a Noninvasive Predictor of Mortality in Pulmonary Arterial Hypertension. J Am Heart Assoc 2020; 9:e015221. [PMID: 32079477 PMCID: PMC7335577 DOI: 10.1161/jaha.119.015221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a lethal disease. In resource‐limited countries PAH outcomes are worse because therapy costs are prohibitive. To improve global outcomes, noninvasive and widely available biomarkers that identify high‐risk patients should be defined. Serum chloride is widely available and predicts mortality in left heart failure, but its prognostic utility in PAH requires further investigation. Methods and Results In this study 475 consecutive PAH patients evaluated at the University of Minnesota and Vanderbilt University PAH clinics were examined. Clinical characteristics were compared by tertiles of serum chloride. Both the Kaplan‐Meier method and Cox regression analysis were used to assess survival and predictors of mortality, respectively. Categorical net reclassification improvement and relative integrated discrimination improvement compared prediction models. PAH patients in the lowest serum chloride tertile (≤101 mmol/L: hypochloremia) had the lowest 6‐minute walk distance and highest right atrial pressure despite exhibiting no differences in pulmonary vascular disease severity. The 1‐, 3‐, and 5‐year survival was reduced in hypochloremic patients when compared with the middle‐ and highest‐tertile patients (86%/64%/44%, 95%/78%/59%, and, 91%/79%/66%). After adjustment for age, sex, diuretic use, serum sodium, bicarbonate, and creatinine, the hypochloremic patients had increased mortality when compared with the middle‐tertile and highest‐tertile patients. The Minnesota noninvasive model (functional class, 6‐minute walk distance, and hypochloremia) was as effective as the French noninvasive model (functional class, 6‐minute walk distance, and elevated brain natriuretic peptide or N‐terminal pro–brain natriuretic peptide) for predicting mortality. Conclusions Hypochloremia (≤101 mmol/L) identifies high‐risk PAH patients independent of serum sodium, renal function, and diuretic use.
Collapse
Affiliation(s)
- Kurt W Prins
- Cardiovascular Division University of Minnesota Minneapolis MN
| | - Rajat Kalra
- Cardiovascular Division University of Minnesota Minneapolis MN
| | - Lauren Rose
- Cardiovascular Division University of Minnesota Minneapolis MN
| | | | | | | | - E Kenneth Weir
- Cardiovascular Division University of Minnesota Minneapolis MN
| | - Sasha Z Prisco
- Cardiovascular Division University of Minnesota Minneapolis MN
| | - Marc Pritzker
- Cardiovascular Division University of Minnesota Minneapolis MN
| | - Pamela L Lutsey
- School of Public Health University of Minnesota Minneapolis MN
| | - Evan L Brittain
- Vanderbilt University Medical Center and Vanderbilt Translational and Clinical Cardiovascular Research Center Nashville TN
| | | |
Collapse
|
14
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
15
|
Henriques AFA, Matos P, Carvalho AS, Azkargorta M, Elortza F, Matthiesen R, Jordan P. WNK1 phosphorylation sites in TBC1D1 and TBC1D4 modulate cell surface expression of GLUT1. Arch Biochem Biophys 2019; 679:108223. [PMID: 31816312 DOI: 10.1016/j.abb.2019.108223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
Glucose uptake by mammalian cells is a key mechanism to maintain cell and tissue homeostasis and relies mostly on plasma membrane-localized glucose transporter proteins (GLUTs). Two main cellular mechanisms regulate GLUT proteins in the cell: first, expression of GLUT genes is under dynamic transcriptional control and is used by cancer cells to increase glucose availability. Second, GLUT proteins are regulated by membrane traffic from storage vesicles to the plasma membrane (PM). This latter process is triggered by signaling mechanisms and well-studied in the case of insulin-responsive cells, which activate protein kinase AKT to phosphorylate TBC1D4, a RAB-GTPase activating protein involved in membrane traffic regulation. Previously, we identified protein kinase WNK1 as another kinase able to phosphorylate TBC1D4 and regulate the surface expression of the constitutive glucose transporter GLUT1. Here we describe that downregulation of WNK1 through RNA interference in HEK293 cells led to a 2-fold decrease in PM GLUT1 expression, concomitant with a 60% decrease in glucose uptake. By mass spectrometry, we identified serine (S) 704 in TBC1D4 as a WNK1-regulated phosphorylation site, and also S565 in the paralogue TBC1D1. Transfection of the respective phosphomimetic or unphosphorylatable TBC1D mutants into cells revealed that both affected the cell surface abundance of GLUT1. The results reinforce a regulatory role for WNK1 in cell metabolism and have potential impact for the understanding of cancer cell metabolism and therapeutic options in type 2 diabetes.
Collapse
Affiliation(s)
- Andreia F A Henriques
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Sofia Carvalho
- CEDOC-Chronic Diseases Research Centre, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Building 800, Science and Technology Park of Bizkaia, 48160, Derio, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Building 800, Science and Technology Park of Bizkaia, 48160, Derio, Spain
| | - Rune Matthiesen
- CEDOC-Chronic Diseases Research Centre, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
16
|
He X, Wang L, Chen XF, Liang Q, Wang WQ, Lin AQ, Yi L, Wang Y, Gao Q. Metformin improved oxidized low-density lipoprotein-impaired mitochondrial function and increased glucose uptake involving Akt-AS160 pathway in raw264.7 macrophages. Chin Med J (Engl) 2019; 132:1713-1722. [PMID: 31268904 PMCID: PMC6759109 DOI: 10.1097/cm9.0000000000000333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Macrophage accumulation in the vascular wall is a hallmark of atherosclerosis. Studies showed that shifting of oxidized lipids-induced inflammatory macrophages towards an anti-inflammatory phenotype by promoting oxidative metabolism attenuated atherosclerosis progression. Therefore, this study aimed to investigate whether metformin, which has ameliorated atherosclerosis in animal models and clinical trials, modulated oxidized low-density lipoprotein (Ox-LDL) induced inflammatory status in macrophages by regulating cellular oxidative metabolism. METHODS Murine raw264.7 macrophages were incubated with Ox-LDL (50 μg/mL) in the presence or absence of metformin (15 μmol/L) for 24 h. Real-time polymerase chain reaction was used to quantify the transcription of classically activated (M1) pro-inflammatory and alternatively activated (M2) anti-inflammatory markers and mitochondrial DNA copy numbers. Cellular reactive oxygen species (ROS) production and mitochondrial membrane potential were detected by immunofluorescence. Cellular adenosine triphosphate (ATP) synthesis, glucose uptake, and lactic acid production were measured by commercial kit and normalized to cellular lysates. Western blotting analysis was performed to detect the expression of mitochondrial fusion/fission related proteins, enzymes mediating lipid metabolism and signaling pathway of glucose transport. Differences between groups were analyzed using one-way analysis of variance. RESULTS Metformin improved Ox-LDL-impaired anti-inflammatory phenotype in raw264.7 macrophages as shown by up-regulated transcription of anti-inflammatory markers including interleukin 10 (0.76 ± 0.04 vs. 0.94 ± 0.01, P = 0.003) and Resistin-like molecule alpha (0.67 ± 0.08 vs. 1.78 ± 0.34, P = 0.030). Conversely, Ox-LDL-diminished phosphorylation of Akt was up-regulated by metformin treatment (0.47 ± 0.05 vs. 1.02 ± 0.08, P = 0.040), associated with an improvement of mitochondrial function, characterized by decreased ROS generation (2.50 ± 0.07 vs. 2.15 ± 0.04, P = 0.040), increased lipid oxidation, and elevated cellular ATP production (0.026 ± 0.001 vs. 0.035 ± 0.003, P = 0.020). Moreover, metformin-mediated Akt activation increased Akt substrate of 160 kDa (AS160) phosphorylation (0.51 ± 0.04 vs. 1.03 ± 0.03, P = 0.0041), promoted membrane translocation of glucose transporter 1, and increased glucose influx into the cells (4.78 ± 0.04 vs. 5.47 ± 0.01, P < 0.001). CONCLUSION This study suggested that targeting macrophage metabolism with new or existing drugs had therapeutic potential for the prevention and treatment of diabetes-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Xuan He
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Wang
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiu-Fang Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiao Liang
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wen-Qing Wang
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - An-Qi Lin
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Long Yi
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qian Gao
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
17
|
Interaction of mammalian and plant H +/sucrose transporters with 14-3-3 proteins. Biochem J 2018; 475:3239-3254. [PMID: 30237153 DOI: 10.1042/bcj20180293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
The solute carrier 45 family (SLC45) was defined in the course of the Human Genome Project and consists of four members, A1-A4, which show only 20-30% identity of amino acid sequences among each other. All these members exhibit an identity of ∼20% to plant H+/sucrose cotransporters. Recently, we expressed members of the murine SLC45 family in yeast cells and demonstrated that they are, like their plant counterparts, H+/sucrose cotransporters. In contrast with the plant proteins, SLC45 transporters recognise also the monosaccharides glucose and fructose as physiological substrates and seem to be involved in alternative sugar supply as well as in osmoregulation of several mammalian tissues. In the present study, we provide novel insights into the regulation of SLC45 transporters. By screening for interaction partners, we found a 14-3-3 protein as a promising candidate for control of transport activity. Indeed, co-expression of the gamma isoform of murine 14-3-3 protein in yeast and Xenopus oocytes led to a significant decrease in transport rates of the murine SLC45 transporters as well as of the plant H+/sucrose transporter Sut1.
Collapse
|
18
|
Kim JH, Kim H, Hwang KH, Chang JS, Park KS, Cha SK, Kong ID. WNK1 kinase is essential for insulin-stimulated GLUT4 trafficking in skeletal muscle. FEBS Open Bio 2018; 8:1866-1874. [PMID: 30410865 PMCID: PMC6212645 DOI: 10.1002/2211-5463.12528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
With‐no‐lysine 1 (WNK1) kinase is a substrate of the insulin receptor/Akt pathway. Impaired insulin signaling in skeletal muscle disturbs glucose transporter 4 (GLUT4) translocation associated with the onset of type 2 diabetes (T2D). WNK1 is highly expressed in skeletal muscle. However, it is currently unknown how insulin signaling targeting WNK1 regulates GLUT4 trafficking in skeletal muscle, and whether this regulation is perturbed in T2D. Hereby, we show that insulin phosphorylates WNK1 at its activating site via a phosphatidylinositol 3‐kinase‐dependent mechanism. WNK1 promotes the cell surface abundance of GLUT4 via regulating TBC1D4. Of note, we observed insulin resistance and decreased WNK1 phosphorylation in T2D db/db mice as compared to the control mice. These results provide a new perspective on WNK1 function in the pathogenesis of hyperglycemia in T2D.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Department of Global Medical Science Yonsei University Wonju College of Medicine Korea.,Mitohormesis Research Center Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| | - Hanul Kim
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Department of Global Medical Science Yonsei University Wonju College of Medicine Korea
| | - Kyu-Hee Hwang
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Department of Global Medical Science Yonsei University Wonju College of Medicine Korea.,Mitohormesis Research Center Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| | - Jae Seung Chang
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Mitohormesis Research Center Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| | - Kyu-Sang Park
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Department of Global Medical Science Yonsei University Wonju College of Medicine Korea.,Mitohormesis Research Center Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| | - Seung-Kuy Cha
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Department of Global Medical Science Yonsei University Wonju College of Medicine Korea.,Mitohormesis Research Center Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| | - In Deok Kong
- Department of Physiology Yonsei University Wonju College of Medicine Korea.,Institute of Lifestyle Medicine Yonsei University Wonju College of Medicine Korea.,Institute of Mitochondrial Medicine Yonsei University Wonju College of Medicine Korea
| |
Collapse
|
19
|
Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, Choi S, Park C, Han J, Son WC, Yoo KH, Cheong JH, Oh GT, Lee WY, Kim J, Suh SH, Lee SH, Lim JS, Lee MS, Yang Y. C1q/TNF-α–Related Protein 1 (CTRP1) Maintains Blood Pressure Under Dehydration Conditions. Circ Res 2018; 123:e5-e19. [DOI: 10.1161/circresaha.118.312871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sora Han
- From the Research Institute of Women’s Health (S.H.)
| | - Ae Lee Jeong
- Sookmyung Women’s University, Seoul, Korea; New Drug Development Center, Osong Medical Innovation Foundation, Korea (A.L.J.)
| | - Sunyi Lee
- Research and Development Center, CJ HealthCare, Icheon, Korea (S.L.)
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute (J.S.P.)
| | | | - Wonku Kang
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Seungmok Choi
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Changmin Park
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea (J.H.)
| | - Woo-Chan Son
- Pathology Department, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (W.-C.S.)
| | - Kyung Hyun Yoo
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, Korea (J.H.C.)
| | | | - Won-Young Lee
- Ewha Womans University, Seoul, Korea; Department of Endocrinology (W.-Y.L.)
- Department of Metabolism (W.-Y.L.)
| | - Jongwan Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; and Department of Laboratory Medicine, Dankook University School of Medicine, Cheonan, Korea (J.K.)
| | - Suk Hyo Suh
- Department of Physiology, Medical School (S.H.S.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital (S.-H.L.)
| | - Jong-Seok Lim
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Myeong-Sok Lee
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Young Yang
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| |
Collapse
|
20
|
Chen W, Zebaze LN, Dong J, Chézeau L, Inquimbert P, Hugel S, Niu S, Bihel F, Boutant E, Réal E, Villa P, Junier MP, Chneiweiss H, Hibert M, Haiech J, Kilhoffer MC, Zeniou M. WNK1 kinase and its partners Akt, SGK1 and NBC-family Na +/HCO3 - cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget 2018; 9:27197-27219. [PMID: 29930759 PMCID: PMC6007472 DOI: 10.18632/oncotarget.25509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a highly heterogeneous brain tumor. The presence of cancer cells with stem-like and tumor initiation/propagation properties contributes to poor prognosis. Glioblastoma cancer stem-like cells (GSC) reside in hypoxic and acidic niches favoring cell quiescence and drug resistance. A high throughput screening recently identified the laxative Bisacodyl as a cytotoxic compound targeting quiescent GSC placed in acidic microenvironments. Bisacodyl activity requires its hydrolysis into DDPM, its pharmacologically active derivative. Bisacodyl was further shown to induce tumor shrinking and increase survival in in vivo glioblastoma models. Here we explored the cellular mechanism underlying Bisacodyl cytotoxic effects using quiescent GSC in an acidic microenvironment and GSC-derived 3D macro-spheres. These spheres mimic many aspects of glioblastoma tumors in vivo, including hypoxic/acidic areas containing quiescent cells. Phosphokinase protein arrays combined with pharmacological and genetic modulation of signaling pathways point to the WNK1 serine/threonine protein kinase as a mediator of Bisacodyl cytotoxic effect in both cell models. WNK1 partners including the Akt and SGK1 protein kinases and NBC-family Na+/HCO3− cotransporters were shown to participate in the compound’s effect on GSC. Overall, our findings uncover novel potential therapeutic targets for combatting glioblastoma which is presently an incurable disease.
Collapse
Affiliation(s)
- Wanyin Chen
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Leonel Nguekeu Zebaze
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Jihu Dong
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Laëtitia Chézeau
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Perrine Inquimbert
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 67084 Strasbourg, France; Université de Strasbourg, Strasbourg 67084, France
| | - Sylvain Hugel
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 67084 Strasbourg, France; Université de Strasbourg, Strasbourg 67084, France
| | - Songlin Niu
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Fréderic Bihel
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies - LBP, UMR7021, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, Illkirch 67401, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies - LBP, UMR7021, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, Illkirch 67401, France
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg/CNRS UMS 3286, Laboratoire d'Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, Illkirch 67401, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/Inserm U1130/UPMC UMCR18, Paris 75005, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/Inserm U1130/UPMC UMCR18, Paris 75005, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| |
Collapse
|
21
|
Kurihara C, Tanaka T, Yamanouchi D. Hyperglycemia attenuates receptor activator of NF-κB ligand-induced macrophage activation by suppressing insulin signaling. J Surg Res 2017. [PMID: 28624040 DOI: 10.1016/j.jss.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although male gender, aging, hypertension, dyslipidemia, and smoking are common risk factors for abdominal aortic aneurysm, diabetes mellitus is an independent negative risk factor. In aneurysm tissue, matrix metalloproteinases (MMPs) expressed by activated macrophages degrades extracellular matrix proteins. In our previous experimental study, we demonstrated that the aneurysmal formation and macrophage activity were suppressed by inhibiting mimicking hyperglycemia (HG) through upregulation of glucose-sensing nuclear receptor, Nr1h2. Here in this study, we focused on the role of HG-induced altered glucose uptake on macrophage activation. METHODS RAW264.7 murine macrophage cells were pretreated in cultures containing HG (HG group, 15.5 mM) or normal glucose (NG) concentrations (NG group, 5.5 mM) for 7 d. The culture medium was then changed in both groups to NG conditions, and the cells were stimulated with recombinant murine soluble receptor activator of NF-κB ligand (sRANKL). Macrophage activation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS Compared with the NG group, MMP-9 expression in the HG group was significantly suppressed. Glucose uptake was increased in the NG group but not in the HG group during macrophage activation. To determine the mechanism of activation, we studied the expression and distribution of glucose transporters (Gluts) in the macrophages. Although Glut expression was unaffected by glucose pretreatment, membrane translocation of Glut-1 was significantly enhanced in macrophages in the NG group but not in the HG group during activation. Insulin receptor and insulin receptor substrate-1 (IRS-1) messenger RNA, known stimulate to membrane translocation of Gluts, were both decreased by the HG condition but not by the NG condition. CONCLUSIONS HG pretreatment suppressed the macrophage activation. sRANKL increased macrophage glucose uptake at NG concentrations, which was impaired by HG pretreatment through the inhibition of Glut1 membrane translocation and the insulin receptor and IRS-1 gene transcription. These data suggest that HG suppressed macrophage activation, through attenuation of glucose uptake via the suppression of the membrane translocation of Glut1 and insulin signaling.
Collapse
Affiliation(s)
- Chitaru Kurihara
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, Wisconsin
| | - Teruyoshi Tanaka
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, Wisconsin
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, Wisconsin.
| |
Collapse
|
22
|
Amaral MD, Farinha CM, Matos P, Botelho HM. Investigating Alternative Transport of Integral Plasma Membrane Proteins from the ER to the Golgi: Lessons from the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Methods Mol Biol 2016; 1459:105-126. [PMID: 27665554 DOI: 10.1007/978-1-4939-3804-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Secretory traffic became a topical field because many important cell regulators are plasma membrane proteins (transporters, channels, receptors), being thus key targets in biomedicine and drug discovery. Cystic fibrosis (CF), caused by defects in a single gene encoding the CF transmembrane conductance regulator (CFTR), constitutes the most common of rare diseases and certainly a paradigmatic one.Here we focus on five different approaches that allow biochemical and cellular characterization of CFTR from its co-translational insertion into the ER membrane to its delivery to the plasma membrane.
Collapse
Affiliation(s)
- Margarida D Amaral
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Carlos M Farinha
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Paulo Matos
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Hugo M Botelho
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
23
|
Liu CJ, Chang WJ, Chen CY, Sun FJ, Cheng HW, Chen TY, Lin SC, Li WC. Dynamic cellular and molecular modulations of diabetes mediated head and neck carcinogenesis. Oncotarget 2015; 6:29268-84. [PMID: 26337468 PMCID: PMC4745725 DOI: 10.18632/oncotarget.4922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. While numerous potent dietary insults were considered as oncogenic players for HNSCC development, the impact of metabolic imbalance was less emphasized during HNSCC carcinogenesis. Previous preclinical and epidemiological investigations showed that DM could possibly be correlated with greater incidence and poorer prognosis in HNSCC patients; however, the outcomes from different groups are contradictive and underlying mechanisms remains elusive. In the present study, the changes of cellular malignancy in response to prolonged glucose incubation in HNSCC cells were examined. The results demonstrated that hyperglycemia enhanced HNSCC cell malignancy over time through suppression of cell differentiation, promotion of cell motility, increased resistance to cisplatin, and up-regulation of the nutrient-sensing Akt/AMPK-mTORC1 pathway. Further analysis showed that a more aggressive tongue neoplastic progression was found under DM conditions compared to non-DM state whereas DM pathology led to a higher percentage of cervical lymph node metastasis and poorer prognosis in HNSCC patients. Taken together, the present study confirms that hyperglycemia and DM could enhance HNSCC malignancy and the outcomes are of great benefit in providing better anti-cancer treatment strategy for DM patients with HNSCC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adult
- Aged
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cisplatin/pharmacology
- Cytoskeleton/metabolism
- Diabetes Complications/etiology
- Diabetes Complications/genetics
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Drug Resistance, Neoplasm
- Epithelial-Mesenchymal Transition
- Female
- Glucose/metabolism
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/etiology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Mechanistic Target of Rapamycin Complex 1
- Mice, Inbred C57BL
- Middle Aged
- Multiprotein Complexes/metabolism
- Proportional Hazards Models
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Retrospective Studies
- Risk Factors
- Signal Transduction
- Squamous Cell Carcinoma of Head and Neck
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Jung Chang
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Mackay College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsai-Ying Chen
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Vasconcelos MG, Vasconcelos RG, Pereira de Oliveira DHI, de Moura Santos E, Pinto LP, da Silveira ÉJD, Queiroz LMG. Distribution of Hypoxia-Inducible Factor-1α and Glucose Transporter-1 in Human Tongue Cancers. J Oral Maxillofac Surg 2015; 73:1753-60. [PMID: 25863229 DOI: 10.1016/j.joms.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE Oral squamous cell carcinomas have the potential for rapid and unlimited growth. Therefore, hypoxic tissue areas are common in these malignant tumors and contribute to cancer progression, therapy resistance, and poor outcomes. The aim of the present study was to analyze the gene product distribution of hypoxia-inducible factor-1α (HIF-1α) and glucose transporter-1 (GLUT-1) in cases of tongue squamous cell carcinoma (TSCC) and to identify a preliminary correlation between these proteins and clinical staging and Brynes's histologic grading system (HGS). MATERIALS AND METHODS The sample included 57 cases of TSCC. Histologic sections of 3 μm were submitted to the immunoperoxidase method and semiquantitative analysis. The association between HIF-1α and GLUT-1 expression in TSCC and the clinical stage and the HGS of Bryne (1998) was evaluated using the χ(2) test, with the significance level set at 0.05 (α = 0.05). RESULTS HIF-1α was mainly expressed in the nucleus/cytoplasm of neoplastic cells, most specimens exhibited diffuse staining in neoplastic cells (84.2%), and focal staining was only observed in perinecrotic areas (15.8%). GLUT-1 was expressed in the cytoplasm and membrane of malignant cells, and diffuse staining was observed in all cases. The intensity of HIF-1α expression correlated significantly with clinical stage (P = .011) and HGS (P = .002). A significant association was observed between the distribution of HIF-1α expression and metastasis (P = .040). Immunoexpression of GLUT-1 correlated significantly with clinical stage (P = .002) and HGS (P = .000). GLUT-1 expression in the peripheral island was predominant in most low-grade tumors (78.6%); in the high-grade cases, the expression prevailed in the location center/periphery (55.8%). Comparison of the location of the tumor island in the different histologic grades showed a statistically significant difference (P = .025). CONCLUSION The expression of HIF and GLUT proteins within TSCC appears to be associated with disease stage, grade, and the presence of metastases. Additional studies are needed to evaluate the diagnostic and prognostic uses of these proteins in the treatment of TSCC.
Collapse
Affiliation(s)
| | | | | | - Edilmar de Moura Santos
- PhD Student, Postgraduate Program, Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Leão Pereira Pinto
- Professor, Postgraduate Program, Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Lélia Maria Guedes Queiroz
- Professor, Postgraduate Program, Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
25
|
Lier N, Gresko N, Chiara M, Loffing-Cueni D, Loffing J. Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney. Histochem Cell Biol 2012; 138:101-12. [DOI: 10.1007/s00418-012-0944-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
26
|
Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 2012; 53:709-17. [PMID: 22315395 DOI: 10.1194/jlr.m023424] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment.
Collapse
Affiliation(s)
- Dmitri Samovski
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|