1
|
Sasaki Y, Kagohashi K, Kawahara S, Kitai Y, Muromoto R, Oritani K, Kashiwakura JI, Matsuda T. STAP-1-derived peptide suppresses TCR-mediated T cell activation and ameliorates immune diseases by inhibiting STAP-1-LCK binding. Immunohorizons 2025; 9:vlaf015. [PMID: 40288812 PMCID: PMC12034384 DOI: 10.1093/immhor/vlaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 04/29/2025] Open
Abstract
Signal-transducing adaptor protein-1 (STAP-1) is an adaptor protein specifically expressed in immune cells, such as T cells. We previously demonstrated that STAP-1 positively upregulates T cell receptor (TCR)-mediated T cell activation by interacting with LCK and phospholipase C-γ1 and affecting autoimmune demyelination and airway inflammation. In this study, we aimed to generate a new STAP-1-derived peptide, iSP1, to inhibit the STAP-1-LCK interaction. We also analyzed its function in vitro and in vivo. iSP1 successfully interfered with STAP-1-LCK binding and suppressed TCR-mediated signal transduction, interleukin-2 production, and human and murine T cell proliferation. Additionally, iSP1 prevented the progression of experimental autoimmune encephalomyelitis by inhibiting Th1 and Th17 cell infiltration. Our findings suggest iSP1 as a new therapeutic immunomodulatory agent for T cell-mediated autoimmune diseases.
Collapse
MESH Headings
- Animals
- Humans
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Peptides/pharmacology
- Protein Binding/drug effects
- Cell Proliferation/drug effects
- Th17 Cells/immunology
- Interleukin-2/metabolism
- T-Lymphocytes/immunology
- Th1 Cells/immunology
- Female
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Yuan Y, Wei X, Xiong X, Wang X, Jiang W, Kuang Q, Zhu K, Chen C, Gan J, Li J, Yang J, Li L, Luo P. STAP2 promotes the progression of renal fibrosis via HSP27. J Transl Med 2024; 22:1018. [PMID: 39533293 PMCID: PMC11556045 DOI: 10.1186/s12967-024-05776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Renal fibrosis is a key process in the progression from acute kidney injury (AKI) to chronic kidney disease (CKD), while the intricate mechanisms of renal fibrosis remain obscure. While the signal-transducing adaptor protein 2 (STAP2) was well-studied for its notable function in inflammation and immune-related disorders, its specific implication in renal fibrosis remains unclear. This study assessed the mechanism by which STAP2 could promote the progression of renal fibrosis. METHODS The expression level of STAP2 in fibrotic human samples, murine fibrosis models, and cellular fibrosis models was measured, respectively. Subsequently, immunoprecipitation (IP), mass spectrometry, and RNA sequencing (RNA-seq) were employed to identify HSP27 as an interacting protein and the PI3K-AKT signaling pathway. STAP2 was thereafter knocked down or overexpressed in both in vivo and in vitro models to assess the expression levels of pathway-related and fibrosis-related proteins. Finally, the important role of STAP2 in the fibrosis process in animal models induced by ischemia-reperfusion injury (IRI) and cisplatin was validated. RESULTS Functionally, in vivo assays demonstrated that the genetic knockout of STAP2 could remarkably mitigate epithelial-mesenchymal transition (EMT), diminish inflammatory cell infiltration, and reduce collagen deposition in mice with renal fibrosis. Conversely, in vitro assays employing STAP2-overexpressing cell models exacerbated the expression levels of fibrosis markers. The outcomes uncovered a potential mechanism by which STAP2 could modulate renal fibrosis through its impact on the expression level of phosphorylated HSP27, as well as modulating the PI3K/AKT signaling pathway. CONCLUSIONS This comprehensive investigation delineated the noticeable function of STAP2 in the advancement of renal fibrosis, and the outcomes might contribute to the development of targeted therapies concentrated on STAP2 to mitigate renal fibrosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Wei
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, 430060, China
| | - Wei Jiang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University Huangshi, Huangshi, 435000, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430060, China
| | - Jingzheng Gan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430060, China
| | - Junjie Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430060, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Wuhan, 430060, China.
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Kagohashi K, Sasaki Y, Ozawa K, Tsuchiya T, Kawahara S, Saitoh K, Ichii M, Toda J, Harada Y, Kubo M, Kitai Y, Muromoto R, Oritani K, Kashiwakura JI, Matsuda T. Role of Signal-Transducing Adaptor Protein-1 for T Cell Activation and Pathogenesis of Autoimmune Demyelination and Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:951-961. [PMID: 38315039 DOI: 10.4049/jimmunol.2300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Signal-transducing adaptor protein (STAP)-1 is an adaptor protein that is widely expressed in T cells. In this article, we show that STAP-1 upregulates TCR-mediated T cell activation and T cell-mediated airway inflammation. Using STAP-1 knockout mice and STAP-1-overexpressing Jurkat cells, we found that STAP-1 enhanced TCR signaling, resulting in increased calcium mobilization, NFAT activity, and IL-2 production. Upon TCR engagement, STAP-1 binding to ITK promoted formation of ITK-LCK and ITK-phospholipase Cγ1 complexes to induce downstream signaling. Consistent with the results, STAP-1 deficiency reduced the severity of symptoms in experimental autoimmune encephalomyelitis. Single-cell RNA-sequencing analysis revealed that STAP-1 is essential for accumulation of T cells and Ifng and Il17 expression in spinal cords after experimental autoimmune encephalomyelitis induction. Th1 and Th17 development was also attenuated in STAP-1 knockout naive T cells. Taken together, STAP-1 enhances TCR signaling and plays a role in T cell-mediated immune disorders.
Collapse
Affiliation(s)
- Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyotaka Ozawa
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Tsuchiya
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Maemoto T, Sasaki Y, Okuyama F, Kitai Y, Oritani K, Matsuda T. Potential of targeting signal-transducing adaptor protein-2 in cancer therapeutic applications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:251-259. [PMID: 38745775 PMCID: PMC11090684 DOI: 10.37349/etat.2024.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 05/16/2024] Open
Abstract
Adaptor proteins play essential roles in various intracellular signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that possesses pleckstrin homology (PH) and Src homology 2 (SH2) domains, as well as a YXXQ signal transducer and activator of transcription 3 (STAT3)-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (BRK). STAP-2/BRK expression is deregulated in breast cancers and enhances STAT3-dependent cell proliferation. In prostate cancer cells, STAP-2 interacts with and stabilizes epidermal growth factor receptor (EGFR) after stimulation, resulting in the upregulation of EGFR signaling, which contributes to cancer-cell proliferation and tumor progression. Therefore, inhibition of the interaction between STAP-2 and BRK/EGFR may be a possible therapeutic strategy for these cancers. For this purpose, peptides that interfere with STAP-2/BRK/EGFR binding may have great potential. Indeed, the identified peptide inhibitor successfully suppressed the STAP-2/EGFR protein interaction, EGFR stabilization, and cancer-cell growth. Furthermore, the peptide inhibitor suppressed tumor formation in human prostate- and lung-cancer cell lines in a murine xenograft model. This review focuses on the inhibitory peptide as a promising candidate for the treatment of prostate and lung cancers.
Collapse
Affiliation(s)
- Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Fumiya Okuyama
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Departmrnt of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Sasaki Y, Saitoh K, Kagohashi K, Ose T, Kawahara S, Kitai Y, Muromoto R, Sekine Y, Ichii M, Yoshimura A, Oritani K, Kashiwakura JI, Matsuda T. STAP-2-Derived Peptide Suppresses TCR-Mediated Signals to Initiate Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:755-766. [PMID: 37417746 DOI: 10.4049/jimmunol.2200942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a proline-rich region in its C-terminal region. Our previous study demonstrated that STAP-2 positively regulates TCR signaling by associating with TCR-proximal CD3ζ ITAMs and the lymphocyte-specific protein tyrosine kinase. In this study, we identify the STAP-2 interacting regions of CD3ζ ITAMs and show that the STAP-2-derived synthetic peptide (iSP2) directly interacts with the ITAM sequence and blocks the interactions between STAP-2 and CD3ζ ITAMs. Cell-penetrating iSP2 was delivered into human and murine T cells. iSP2 suppressed cell proliferation and TCR-induced IL-2 production. Importantly, iSP2 treatment suppressed TCR-mediated activation of naive CD4+ T cells and decreased immune responses in CD4+ T cell-mediated experimental autoimmune encephalomyelitis. It is likely that iSP2 is a novel immunomodulatory tool that modulates STAP-2-mediated activation of TCR signaling and represses the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
7
|
Wang YS, Chen YT, Wu CY. Functional characterization of stap2b in zebrafish vascular development. FASEB J 2023; 37:e23053. [PMID: 37342918 DOI: 10.1096/fj.202201314rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
The genetic control and signaling pathways of vascular development are not comprehensively understood. Transcription factors Islet2 (Isl2) and nr2f1b are critical for vascular growth in zebrafish, and further transcriptome analysis has revealed potential targets regulated by isl2/nr2f1b. In this study, we focused on the potential activation gene signal-transducing adaptor protein 2b (stap2b) and revealed a novel role of stap2b in vascular development. stap2b mRNA was expressed in developing vessels, suggesting stap2b plays a role in vascularization. Knocking down stap2b expression by morpholino injection or Crispr-Cas9-generated stap2b mutants caused vascular defects, suggesting a role played by stap2b in controlling the patterning of intersegmental vessels (ISVs) and the caudal vein plexus (CVP). The vessel abnormalities associated with stap2b deficiency were found to be due to dysregulated cell migration and proliferation. The decreased expression of vascular-specific markers in stap2b morphants was consistent with the vascular defects observed. In contrast, overexpression of stap2b enhanced the growth of ISVs and reversed the vessel defects in stap2b morphants. These data suggest that stap2b is necessary and sufficient to promote vascular development. Finally, we examined the interaction between stap2b and multiple signaling. We showed that stap2b regulated ISV growth through the JAK-STAT pathway. Moreover, we found that stap2b was regulated by Notch signaling to control ISV growth, and stap2b interacted with bone morphogenetic protein signaling to contribute to CVP formation. Altogether, we demonstrated that stap2b acts downstream of the isl2/nr2f1b pathway to play a pivotal role in vascular development via interaction with multiple signaling pathways.
Collapse
Affiliation(s)
- Yi-Shan Wang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Maemoto T, Kitai Y, Takahashi R, Shoji H, Yamada S, Takei S, Ito D, Muromoto R, Kashiwakura JI, Handa H, Hashimoto A, Hashimoto S, Ose T, Oritani K, Matsuda T. A peptide derived from adaptor protein STAP-2 inhibits tumor progression by downregulating epidermal growth factor receptor signaling. J Biol Chem 2022; 299:102724. [PMID: 36410436 PMCID: PMC9800302 DOI: 10.1016/j.jbc.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signals. We previously demonstrated that STAP-2 binds to epidermal growth factor receptor (EGFR) and facilitates its stability and activation of EGFR signaling in prostate cancer cells. Inhibition of this interaction may be a promising direction for cancer treatment. Here, we found that 2D5 peptide, a STAP-2-derived peptide, blocked STAP-2-EGFR interactions and suppressed EGFR-mediated proliferation in several cancer cell lines. 2D5 peptide inhibited tumor growth of human prostate cancer cell line DU145 and human lung cancer cell line A549 in murine xenograft models. Additionally, we determined that EGFR signaling and its stability were decreased by 2D5 peptide treatment during EGF stimulation. In conclusion, our study shows that 2D5 peptide is a novel anticancer peptide that inhibits STAP-2-mediated activation of EGFR signaling and suppresses prostate and lung cancer progression.
Collapse
Affiliation(s)
- Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,For correspondence: Yuichi Kitai; Tadashi Matsuda
| | - Runa Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Shoji
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Yamada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daiki Ito
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,For correspondence: Yuichi Kitai; Tadashi Matsuda
| |
Collapse
|
9
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
11
|
Eisenhardt AE, Brugger Z, Lausch U, Kiefer J, Zeller J, Runkel A, Schmid A, Bronsert P, Wehrle J, Leithner A, Liegl-Atzwanger B, Giunta RE, Eisenhardt SU, Braig D. Genotyping of Circulating Free DNA Enables Monitoring of Tumor Dynamics in Synovial Sarcomas. Cancers (Basel) 2022; 14:cancers14092078. [PMID: 35565213 PMCID: PMC9105697 DOI: 10.3390/cancers14092078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Synovial sarcomas (SS) are rare soft tissue tumors of mesenchymal origin. Following resection of the primary tumor, about one third to half of the patients suffer from recurrence. Detection of local and distant recurrence during follow-up is commonly accomplished by imaging. There are no biomarkers available for routine diagnostics. We employ a highly sensitive targeted next-generation sequencing approach to monitor tumor dynamics by genotyping of circulating free DNA (cfDNA) in SS patients. cfDNA which harbors tumor-specific mutations (circulating tumor-DNA; ctDNA) correlated with the presence of viable tumor tissue. This enables timely and non-invasive detection of tumor recurrence and monitoring of treatment response independent of the anatomic location. Abstract Background: Synovial sarcoma (SS) is a malignant soft tissue tumor of mesenchymal origin that frequently occurs in young adults. Translocation of the SYT gene on chromosome 18 to the SSX genes on chromosome X leads to the formation of oncogenic fusion genes, which lead to initiation and proliferation of tumor cells. The detection and quantification of circulating tumor DNA (ctDNA) can serve as a non-invasive method for diagnostics of local or distant tumor recurrence, which could improve survival rates due to early detection. Methods: We developed a subtype-specific targeted next-generation sequencing (NGS) approach specifically targeting SS t(X;18)(p11;q11), which fuses SS18 (SYT) in chromosome 18 to SSX1 or SSX2 in chromosome x, and recurrent point mutations. In addition, patient-specific panels were designed from tumor exome sequencing. Both approaches were used to quantify ctDNA in patients’ plasma. Results: The subtype-specific assay allowed detection of somatic mutations from 25/25 tumors with a mean of 1.68 targetable mutations. The minimal limit of detection was determined at a variant allele frequency of 0.05%. Analysis of 29 plasma samples from 15 tumor patients identified breakpoint ctDNA in 6 patients (sensitivity: 40%, specificity 100%). The addition of more mutations further increased assay sensitivity. Quantification of ctDNA in plasma samples (n = 11) from one patient collected over 3 years, with a patient-specific panel based on tumor exome sequencing, correlated with the clinical course, response to treatment and tumor volume. Conclusions: Targeted NGS allows for highly sensitive tumor profiling and non-invasive detection of ctDNA in SS patients, enabling non-invasive monitoring of tumor dynamics.
Collapse
Affiliation(s)
- Anja E. Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Zacharias Brugger
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Ute Lausch
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Alexander Runkel
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Adrian Schmid
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| | | | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian University of Munich, 80336 Munich, Germany;
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.E.E.); (Z.B.); (U.L.); (J.K.); (J.Z.); (A.R.); (A.S.); (S.U.E.)
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian University of Munich, 80336 Munich, Germany;
- Correspondence:
| |
Collapse
|
12
|
Zhou Q, Gong J, Bi J, Yang X, Zhang L, Lu C, Li L, Chen M, Cai J, Yang R, Li X, Li Z, Wang X. Keratinocyte growth factor-2 regulates signal-transducing adaptor protein-2-mediated signal transducer and activator of transcription 3 signaling and reduces skin scar formation. J Invest Dermatol 2022; 142:2003-2013.e5. [PMID: 34999107 DOI: 10.1016/j.jid.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Hypertrophic scar (HS) is a common complication of burns, skin trauma, and postoperative trauma, which involves excessive proliferation of fibroblasts and accumulation of a large amount of disorganized collagen fibers and extracellular matrix (ECM). Keratinocyte growth factor-2 (KGF-2) plays important roles in the regulation of cellular homeostasis and wound healing. In this study, we investigate the effect and underlying mechanism of KGF-2 on scar formation following wound healing both in vitro and in vivo. We show that KGF-2 attenuates mechanical stress-induced scar formation while promoting wound healing. Mechanistically, KGF-2 inhibits STAP2 expression and STAT3 activation, leading to significantly reduced COLI and COLIII levels. Our results provide a insight into the role of KGF-2 in wound healing and scar formation, and the therapeutic potential for reducing scarring while promoting wound healing.
Collapse
Affiliation(s)
- Qingde Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianxiang Gong
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianing Bi
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Xuanxin Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Li Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Lu
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Lijia Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Min Chen
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianqiu Cai
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Rongshuai Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science
| | - Zhiming Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaojie Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science.
| |
Collapse
|
13
|
Matsuda T, Oritani K. Possible Therapeutic Applications of Targeting STAP Proteins in Cancer. Biol Pharm Bull 2021; 44:1810-1818. [PMID: 34853263 DOI: 10.1248/bpb.b21-00672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal-transducing adaptor protein (STAP) family, including STAP-1 and STAP-2, contributes to a variety of intracellular signaling pathways. The proteins in this family contain typical structures for adaptor proteins, such as Pleckstrin homology in the N-terminal regions and SRC homology 2 domains in the central regions. STAP proteins bind to inhibitor of kappaB kinase complex, breast tumor kinase, signal transducer and activator of transcription 3 (STAT3), and STAT5, during tumorigenesis and inflammatory/immune responses. STAP proteins positively or negatively regulate critical steps in intracellular signaling pathways through individually unique mechanisms. This article reviews the roles of the novel STAP family and the possible therapeutic applications of targeting STAP proteins in cancer.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare
| |
Collapse
|
14
|
Ichii M, Oritani K, Toda J, Hosen N, Matsuda T, Kanakura Y. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp Hematol 2021; 105:10-17. [PMID: 34780812 DOI: 10.1016/j.exphem.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.
Collapse
Affiliation(s)
- Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Kenji Oritani
- Department of Hematology, Graduate School of Medical Science, International University of Health and Welfare, Narita, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
15
|
Matsuda T, Oritani K. STAP-2 Adaptor Protein Regulates Multiple Steps of Immune and Inflammatory Responses. Biol Pharm Bull 2021; 44:895-901. [PMID: 34193686 DOI: 10.1248/bpb.b21-00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal-transducing adaptor protein (STAP)-2 is an adaptor molecule involved in regulation of several intracellular signaling events in immune cells. STAP-2 contains a pleckstrin homology domain at the N-terminus, an src homology domain in the central portion and a proline-rich region at the C-terminus. STAP-2 also has a YXXQ motif, which is a potential signal transducer and activator of transcription (STAT)3-binding site. STAP-2 influences the STAT3 and STAT5 activity, integrin-mediated T cell adhesion, chemokine-induced T cell migration, Fas-mediated T cell apoptosis, Toll-like receptor-mediated macrophage functions, macrophage colony-stimulating factor-induced macrophage activation, and the high-affinity immunoglobulin E receptor-mediated mast cell activation. This article reviews the current understanding of roles of the STAP-2 during immune and/or inflammatory responses, and discusses possible therapeutic applications of targeting STAP-2 proteins in immune-related disorders.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare
| |
Collapse
|
16
|
Ichii M, Oritani K, Toda J, Saito H, Shi H, Shibayama H, Motooka D, Kitai Y, Muromoto R, Kashiwakura JI, Saitoh K, Okuzaki D, Matsuda T, Kanakura Y. Signal-transducing adaptor protein-2 delays recovery of B lineage lymphocytes during hematopoietic stress. Haematologica 2021; 106:424-436. [PMID: 31974192 PMCID: PMC7849758 DOI: 10.3324/haematol.2019.225573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Signal-transducing adaptor protein-2 (STAP-2) was discovered as a C-FMS/M-CSFR interacting protein and subsequently found to function as an adaptor of signaling or transcription factors. These include STAT5, MyD88 and IB kinase in macrophages, mast cells, and T cells. There is additional information about roles for STAP-2 in several types of malignant diseases including chronic myeloid leukemia; however, none have been reported concerning B-lineage lymphocytes. We have now exploited gene targeted and transgenic mice to address this lack of knowledge, and demonstrated that STAP-2 is not required under normal, steadystate conditions. However, recovery of B cells following transplantation was augmented in the absence of STAP-2. This appeared to be restricted to cells of B-cell lineage with myeloid rebound noted as unremarkable. Furthermore, all hematologic parameters were observed to be normal once recovery from transplantation was complete. In addition, overexpression of STAP-2, specifically in lymphoid cells, resulted in reduced numbers of latestage B-cell progenitors within the bone marrow. While numbers of mature peripheral B and T cells were unaffected, recovery from sub-lethal irradiation or transplantation was dramatically reduced. Lipopolysaccharide (LPS) normally suppresses B precursor expansion in response to interleukin 7; however, STAP-2 deficiency made these cells more resistant. Preliminary RNA-sequencing analyses indicated multiple signaling pathways in B progenitors to be STAP-2-dependent. These findings suggest that STAP-2 modulates formation of B lymphocytes in demand conditions. Further study of this adapter protein could reveal ways to speed recovery of humoral immunity following chemotherapy or transplantation.
Collapse
Affiliation(s)
- Michiko Ichii
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun Toda
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideaki Saito
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Henyun Shi
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohiko Shibayama
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Res Institute for Microbial Diseases, Osaka University, Japan
| | - Yuichi Kitai
- Dept of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Muromoto
- Dept of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Kashiwakura
- Dept of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kodai Saitoh
- Dept of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Res Institute for Microbial Diseases, Osaka University, Japan
| | - Tadashi Matsuda
- Dept of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuzuru Kanakura
- Department of Hematology, Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
17
|
Ang HL, Yuan Y, Lai X, Tan TZ, Wang L, Huang BB, Pandey V, Huang RYJ, Lobie PE, Goh BC, Sethi G, Yap CT, Chan CW, Lee SC, Kumar AP. Putting the BRK on breast cancer: From molecular target to therapeutics. Am J Cancer Res 2021; 11:1115-1128. [PMID: 33391524 PMCID: PMC7738883 DOI: 10.7150/thno.49716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
BReast tumor Kinase (BRK, also known as PTK6) is a non-receptor tyrosine kinase that is highly expressed in breast carcinomas while having low expression in the normal mammary gland, which hints at the oncogenic nature of this kinase in breast cancer. In the past twenty-six years since the discovery of BRK, an increasing number of studies have strived to understand the cellular roles of BRK in breast cancer. Since then, BRK has been found both in vitro and in vivo to activate a multitude of oncoproteins to promote cell proliferation, metastasis, and cancer development. The compelling evidence concerning the oncogenic roles of BRK has also led, since then, to the rapid and exponential development of inhibitors against BRK. This review highlights recent advances in BRK biology in contributing to the “hallmarks of cancer”, as well as BRK's therapeutic significance. Importantly, this review consolidates all known inhibitors of BRK activity and highlights the connection between drug action and BRK-mediated effects. Despite the volume of inhibitors designed against BRK, none have progressed into clinical phase. Understanding the successes and challenges of these inhibitor developments are crucial for the future improvements of new inhibitors that can be clinically relevant.
Collapse
|
18
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
19
|
Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis 2020; 41:249-256. [PMID: 31930327 PMCID: PMC7221501 DOI: 10.1093/carcin/bgaa003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed ‘Hallmarks of Cancer’. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Christopher T Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Dittmer A, Lange T, Leyh B, Dittmer J. Protein‑ and growth‑modulatory effects of carcinoma‑associated fibroblasts on breast cancer cells: Role of interleukin‑6. Int J Oncol 2019; 56:258-272. [PMID: 31789400 PMCID: PMC6910226 DOI: 10.3892/ijo.2019.4918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) secrete factors that increase the expression and/or activities of proteins in breast cancer cells and induce resistance to anti-estrogens, such as fulvestrant. A major factor is interleukin-6 (IL-6). This study demonstrated that, across estrogen receptor (ER) α-positive and -negative cell lines, recombinant human IL-6 (rhIL-6) mimicked most of the CAF-conditioned medium (CM)-induced changes in protein expression patterns; however, in most cases, it failed to recapitulate CAF-CM-triggered alterations in ERK1/2 and AKT activities. The ability of rhIL-6 to induce fulvestrant resistance was dependent upon the culture conditions. In 3D, but not in 2D cultures, rhIL-6 increased the survival of fulvestrant-treated cells, although not to the same extent as observed with CAF-CM. In 2D cultures, rhIL-6 acted in a pro-apoptotic manner and decreased the expression of ATP-binding cassette transporter G2 (ABCG2). The inhibition of the PI3K/AKT pathway had similar effects on apoptosis and ABCG2 expression, linking the failure of rhIL-6 to induce fulvestrant resistance to its inability to activate the PI3K/AKT pathway. In 3D cultures, both CAF-CM and rhIL-6 acted in an anti-apoptotic manner. These activities are likely independent on the PI3K/AKT pathway and ABCG2. Experiments on ERα-negative breast cancer cells revealed a growth-inhibitory effects of both CAF-CM and rhIL-6, which coincided with a reduction in the c-Myc level. These data suggest that IL-6 plays a role in several effects of CAF-CM, including alterations in protein expression patterns, fulvestrant resistance in 3D cultures and growth inhibition. By contrast, IL-6 is unlikely to be responsible for the CAF-CM-induced activation of the PI3K/AKT pathway and fulvestrant resistance in 2D cultures.
Collapse
Affiliation(s)
- Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
21
|
STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19061787. [PMID: 29914167 PMCID: PMC6032216 DOI: 10.3390/ijms19061787] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signaling pathways in different biological processes, including immune responses, hematopoiesis, and neurogenesis. Among the STAT members, STAT3 plays crucial roles in cell proliferation, survival, and differentiation. While STAT3 activation is transient in physiological conditions, STAT3 becomes persistently activated in a high percentage of solid and hematopoietic malignancies (e.g., melanoma, multiple myeloma, breast, prostate, ovarian, and colon cancers), thus contributing to malignant transformation and progression. This makes STAT3 an attractive therapeutic target for cancers. Initial strategies aimed at inhibiting STAT3 functions have focused on blocking the action of its activating kinases or sequestering its DNA binding ability. More recently, the diffusion of proteomic-based techniques, which have allowed for the identification and characterization of novel STAT3-interacting proteins able to modulate STAT3 activity via its subcellular localization, interact with upstream kinases, and recruit transcriptional machinery, has raised the possibility to target such cofactors to specifically restrain STAT3 oncogenic functions. In this article, we summarize the available data about the function of STAT3 interactors in malignant cells and discuss their role as potential therapeutic targets for cancer treatment.
Collapse
|
22
|
Wierinckx A, Delgrange E, Bertolino P, François P, Chanson P, Jouanneau E, Lachuer J, Trouillas J, Raverot G. Sex-Related Differences in Lactotroph Tumor Aggressiveness Are Associated With a Specific Gene-Expression Signature and Genome Instability. Front Endocrinol (Lausanne) 2018; 9:706. [PMID: 30555413 PMCID: PMC6283894 DOI: 10.3389/fendo.2018.00706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-related differences have been reported in various cancers, in particular men with lactotroph tumors have a worse prognosis than women. While the underlying mechanism of this sexual dimorphism remains unclear, it has been suggested that a lower estrogen receptor alpha expression may drive the sex differences observed in aggressive and malignant lactotroph tumors that are resistant to dopamine agonists. Based on this observation, we aimed to explore the molecular importance of the estrogen pathway through a detailed analysis of the transcriptomic profile of lactotroph tumors from 20 men and 10 women. We undertook gene expression analysis of the selected lactotroph tumors following their pathological grading using the five-tiered classification. Chromosomic alterations were further determined in 13 tumors. Functional analysis showed that there were differences between tumors from men and women in gene signatures associated with cell morphology, cell growth, cell proliferation, development, and cell movement. Hundred-forty genes showed an increased or decreased expression with a minimum 2-fold change. A large subset of those genes belonged to the estrogen receptor signaling pathway, therefore confirming the potent role of this pathway in lactotroph tumor sex-associated aggressiveness. Genes belonging to the X chromosome, such as CTAG2, FGF13, and VEGF-D, were identified as appealing candidates with a sex-linked dysregulation in lactotroph tumors. Through our comparative genomic hybridization analyses (CGH), chromosomic gain, in particular chromosome 19p, was found only in tumors from men, while deletion of chromosome 11 was sex-independent, as it was found in most (5/6) of the aggressive and malignant tumors. Comparison of transcriptomic and CGH analysis revealed four genes (CRB3, FAM138F, MATK, and STAP2) located on gained regions of chromosome 19 and upregulated in lactotroph tumors from men. MATK and STAP2 are both implicated in cell growth and are reported to be associated with the estrogen signaling pathway. Our work confirms the proposed involvement of the estrogen signaling pathway in favoring the increased aggressiveness of lactotroph tumors in men. More importantly, we highlight a number of ER-related candidate genes and further identify a series of target molecules with sex-specific expression that could contribute to the aggressive behavior of lactotroph tumors in men.
Collapse
Affiliation(s)
- Anne Wierinckx
- Institut Universitaire de Technologie, Université Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
- *Correspondence: Anne Wierinckx
| | - Etienne Delgrange
- Service d'Endocrinologie, CHU UCL Namur, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, Assistance Publique-Hôpitaux de Paris, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- Faculté de Médecine Paris-Sud, UMR S-1185, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Jouanneau
- Service de Neurochirurgie Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon-Est, Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Institut Universitaire de Technologie, Université Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Jacqueline Trouillas
- Institut Universitaire de Technologie, Université Lyon 1, Université de Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université Lyon 1, Université de Lyon, Lyon, France
| | - Gérald Raverot
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université Lyon 1, Université de Lyon, Lyon, France
- Département d'Endocrinologie, Centre de Référence pour les Maladies Hypophysaires Rares (HYPO), Groupement Hospitalier EST, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Kitai Y, Iwakami M, Saitoh K, Togi S, Isayama S, Sekine Y, Muromoto R, Kashiwakura JI, Yoshimura A, Oritani K, Matsuda T. STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization. J Biol Chem 2017; 292:19392-19399. [PMID: 28986450 DOI: 10.1074/jbc.m117.802884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/03/2017] [Indexed: 11/06/2022] Open
Abstract
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signaling pathways and promotes tumorigenesis in melanoma and breast cancer cells. However, the contribution of STAP-2 to the behavior of other types of cancer cells is unclear. Here, we show that STAP-2 promotes tumorigenesis of prostate cancer cells through up-regulation of EGF receptor (EGFR) signaling. Tumor growth of a prostate cancer cell line, DU145, was strongly decreased by STAP-2 knockdown. EGF-induced gene expression and phosphorylation of AKT, ERK, and STAT3 were significantly decreased in STAP-2-knockdown DU145 cells. Mechanistically, we found that STAP-2 interacted with EGFR and enhanced its stability by inhibiting c-CBL-mediated EGFR ubiquitination. Our results indicate that STAP-2 promotes prostate cancer progression via facilitating EGFR activation.
Collapse
Affiliation(s)
- Yuichi Kitai
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Masashi Iwakami
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Kodai Saitoh
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Sumihito Togi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Serina Isayama
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Yuichi Sekine
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Jun-Ichi Kashiwakura
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812
| | - Akihiko Yoshimura
- the the Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, and
| | - Kenji Oritani
- the Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba 286-8686, Japan
| | - Tadashi Matsuda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo, Hokkaido 060-0812,
| |
Collapse
|
24
|
Beigbeder A, Chartier FJM, Bisson N. MPZL1 forms a signalling complex with GRB2 adaptor and PTPN11 phosphatase in HER2-positive breast cancer cells. Sci Rep 2017; 7:11514. [PMID: 28912526 PMCID: PMC5599542 DOI: 10.1038/s41598-017-11876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
Abstract
HER2/ErbB2 is overexpressed in a significant fraction of breast tumours and is associated with a poor prognosis. The adaptor protein GRB2 interacts directly with activated HER2 and is sufficient to transmit oncogenic signals. However, the consequence of HER2 activation on global GRB2 signalling networks is poorly characterized. We performed GRB2 affinity purification combined with mass spectrometry analysis of associated proteins in a HER2+ breast cancer model to delineate GRB2-nucleated protein interaction networks. We report the identification of the transmembrane protein MPZL1 as a new GRB2-associated protein. Our data show that the PTPN11 tyrosine phosphatase acts as a scaffold to bridge the association between GRB2 and MPZL1 in a phosphotyrosine-dependent manner. We further demonstrate that the formation of this MPZL1-PTPN11-GRB2 complex is triggered by cell attachment to fibronectin. Thus, our data support the importance of this new signalling complex in the control of cell adhesion of HER2+ breast cancer cells, a key feature of the metastatic process.
Collapse
Affiliation(s)
- Alice Beigbeder
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada.
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
25
|
Saitoh K, Tsuchiya T, Kashiwakura JI, Muromoto R, Kitai Y, Sekine Y, Oritani K, Matsuda T. STAP-2 interacts with Pyk2 and enhances Pyk2 activity in T-cells. Biochem Biophys Res Commun 2017; 488:81-87. [DOI: 10.1016/j.bbrc.2017.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
|
26
|
Thakur MK, Kumar A, Birudukota S, Swaminathan S, Tyagi R, Gosu R. Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution. Biochem Biophys Res Commun 2016; 478:637-42. [DOI: 10.1016/j.bbrc.2016.07.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022]
|
27
|
Chen YC, Zhang Z, Fouladdel S, Deol Y, Ingram PN, McDermott SP, Azizi E, Wicha MS, Yoon E. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. LAB ON A CHIP 2016; 16:2935-45. [PMID: 27381658 PMCID: PMC4977365 DOI: 10.1039/c6lc00062b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Togi S, Muromoto R, Hirashima K, Kitai Y, Okayama T, Ikeda O, Matsumoto N, Kon S, Sekine Y, Oritani K, Matsuda T. A New STAT3-binding Partner, ARL3, Enhances the Phosphorylation and Nuclear Accumulation of STAT3. J Biol Chem 2016; 291:11161-71. [PMID: 27048653 DOI: 10.1074/jbc.m116.724849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is involved in cell proliferation, differentiation, and cell survival during immune responses, hematopoiesis, neurogenesis, and other biological processes. STAT3 activity is regulated by a variety of mechanisms, including phosphorylation and nuclear translocation. To clarify the molecular mechanisms underlying the regulation of STAT3 activity, we performed yeast two-hybrid screening. We identified ARL3 (ADP-ribosylation factor-like 3) as a novel STAT3-binding partner. ARL3 recognizes the DNA-binding domain as well as the C-terminal region of STAT3 in vivo, and their binding was the strongest when both proteins were activated. Importantly, small interfering RNA-mediated reduction of endogenous ARL3 expression decreased IL-6-induced tyrosine phosphorylation, nuclear accumulation, and transcriptional activity of STAT3. These results indicate that ARL3 interacts with STAT3 and regulates the transcriptional activation of STAT3 by influencing its nuclear accumulation of STAT3.
Collapse
Affiliation(s)
- Sumihito Togi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Koki Hirashima
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Yuichi Kitai
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Taichiro Okayama
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Osamu Ikeda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Naoki Matsumoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Shigeyuki Kon
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Yuichi Sekine
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| | - Kenji Oritani
- the Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadashi Matsuda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812 and
| |
Collapse
|
29
|
Matsuda T, Muromoto R, Sekine Y, Togi S, Kitai Y, Kon S, Oritani K. Signal transducer and activator of transcription 3 regulation by novel binding partners. World J Biol Chem 2015; 6:324-332. [PMID: 26629315 PMCID: PMC4657126 DOI: 10.4331/wjbc.v6.i4.324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/02/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signals for various biological processes, including immune responses, hematopoiesis, and neurogenesis. STAT3, for example, is involved in the pathogenesis of various human diseases, including cancers, autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2, in the regulation of STAT3-mediated signaling.
Collapse
|
30
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
31
|
A systematic analysis of miRNA-mRNA paired variations reveals widespread miRNA misregulation in breast cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:291280. [PMID: 24949432 PMCID: PMC4052615 DOI: 10.1155/2014/291280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/16/2014] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that can regulate gene expression by binding to target mRNAs and induce translation repression or RNA degradation. There have been many studies indicating that both miRNAs and mRNAs display aberrant expression in breast cancer. Previously, most researches into the molecular mechanism of breast cancer examined miRNA expression patterns and mRNA expression patterns separately. In this study, we systematically analysed miRNA-mRNA paired variations (MMPVs), which are miRNA-mRNA pairs whose pattern of regulation can vary in association with biopathological features, such as the oestrogen receptor (ER), TP53 and human epidermal growth factor receptor 2 (HER2) genes, survival time, and breast cancer subtypes. We demonstrated that the existence of MMPVs is general and widespread but that there is a general unbalance in the distribution of MMPVs among the different biopathological features. Furthermore, based on studying MMPVs that are related to multiple biopathological features, we propose a potential crosstalk mechanism between ER and HER2.
Collapse
|
32
|
Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014; 9:e87684. [PMID: 24523872 PMCID: PMC3921129 DOI: 10.1371/journal.pone.0087684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Kalra
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Beaton-Brown
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edward T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
33
|
SH2B1β interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Mol Cell Biol 2014; 34:1003-19. [PMID: 24396070 DOI: 10.1128/mcb.00940-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite outgrowth is an essential process during neuronal differentiation as well as neuroregeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neurological diseases. We have previously shown that overexpression of the signaling adaptor protein SH2B1β promotes fibroblast growth factor 1 (FGF1)-induced neurite outgrowth (W. F. Lin, C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu, and L. Chen, Cell. Signal. 21:1060-1072, 2009). SH2B1β also undergoes nucleocytoplasmic shuttling and regulates a subset of neurotrophin-induced genes. Although these findings suggest that SH2B1β regulates gene expression, the nuclear role of SH2B1β was not known. In this study, we show that SH2B1β interacts with the transcription factor, signal transducer, and activator of transcription 3 (STAT3) in neuronal PC12 cells, cortical neurons, and COS7 fibroblasts. By affecting the subcellular distribution of STAT3, SH2B1β increased serine phosphorylation and the concomitant transcriptional activity of STAT3. As a result, overexpressing SH2B1β enhanced FGF1-induced expression of STAT3 target genes Egr1 and Cdh2. Chromatin immunoprecipitation assays further reveal that, in response to FGF1, overexpression of SH2B1β promotes the in vivo occupancy of STAT3-Sp1 heterodimers at the promoter of Egr1 and Cdh2. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
Collapse
|
34
|
Protein tyrosine kinase 6 regulates mammary gland tumorigenesis in mouse models. Oncogenesis 2013; 2:e81. [PMID: 24323291 PMCID: PMC3940860 DOI: 10.1038/oncsis.2013.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the majority of human breast tumors and breast cancer cell lines, but its expression has not been reported in normal mammary gland. To study functions of PTK6 in vivo, we generated and characterized several transgenic mouse lines with expression of human PTK6 under control of the mouse mammary tumor virus (MMTV) long terminal repeat. Ectopic active PTK6 was detected in luminal epithelial cells of mature transgenic mammary glands. Lines expressing the MMTV-PTK6 transgene exhibited more than a two-fold increase in mammary gland tumor formation compared with nontransgenic control animals. PTK6 activates signal transducer and activator of transcription 3 (STAT3), and active STAT3 was detected in PTK6-positive mammary gland epithelial cells. Endogenous mouse PTK6 was not detected in the normal mouse mammary gland, but it was induced in mouse mammary gland tumors of different origin, including spontaneous tumors that developed in control mice, and tumors that formed in PTK6, H-Ras, ERBB2 and PyMT transgenic models. MMTV-PTK6 and MMTV-ERBB2 transgenic mice were crossed to explore crosstalk between PTK6 and ERBB2 signaling in vivo. We found no significant increase in tumor incidence, size or metastasis in ERBB2/PTK6 double transgenic mice. Although we detected increased proliferation in ERBB2/PTK6 double transgenic tumors, an increase in apoptosis was also observed. MMTV-PTK6 clearly promotes mammary gland tumorigenesis in vivo, but its impact may be underrepresented in our transgenic models because of induction of endogenous PTK6 expression.
Collapse
|
35
|
Moon YJ, Bai SW, Jung CY, Kim CH. Estrogen-related genome-based expression profiling study of uterosacral ligaments in women with pelvic organ prolapse. Int Urogynecol J 2013; 24:1961-7. [PMID: 23700042 DOI: 10.1007/s00192-013-2124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The aim of the study was to identify the differential expression of estrogen-related genes that may be involved in the menopause and pelvic organ prolapse (POP) using microarray analysis. METHODS An age, parity, and menopausal status-matched case-control study with 12 POP patients and 5 non-POP patients was carried out. The study was conducted from January to December 2010 at Yonsei University, Severance Hospital. We examined microarray gene expression profiles in uterosacral ligaments (USLs) from POP and non-POP patients. Total RNA was extracted from USL samples to generate labeled cDNA, which was hybridized to microarrays and analyzed for the expression of 44,049 genes. We identified differentially expressed genes and performed functional clustering. After clustering, we focused on transcriptional response and signal transduction gene clusters, which are associated with estrogen, and then validated the changes of gene expression levels observed with the microarray analysis using quantitative polymerase chain reaction (qPCR). RESULTS The data from the microarray analysis using more than a 1.5-fold change with p value <0.05 resulted in 143 upregulated genes and 87 downregulated genes. Of 59 genes identified to be associated with signal transduction and transcription, 4 genes were chosen for qPCR that have been classified to be associated with estrogen. We found that estrogen receptor-related receptor-α (ERRα) was downregulated and that the expression of death-associated protein kinase 2 (DAPK 2), signal-transducing adaptor protein-2 (STAP-2), and interleukin (IL)-15 were upregulated. CONCLUSIONS We found four differentially expressed genes by microarray analysis that may account for the way in which changes in estrogen level affect POP pathophysiology.
Collapse
Affiliation(s)
- Yeo Jung Moon
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seonsan-ro 250, Seodaemun-gu, Seoul, Korea, 120-749
| | | | | | | |
Collapse
|
36
|
Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest 2013; 43:397-404. [PMID: 23398121 PMCID: PMC3602132 DOI: 10.1111/eci.12050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to SRC family kinases. PTK6 is nuclear in normal prostate epithelia, but nuclear localization is lost in prostate tumours. Increased expression of PTK6 is detected in human prostate cancer, especially at metastatic stages, and in other types of cancers, including breast, colon, head and neck cancers, and serous carcinoma of the ovary. MATERIALS AND METHODS Potential novel substrates of PTK6 identified by mass spectrometry were validated in vitro. The significance of PTK6-induced phosphorylation of these substrates was addressed using human prostate cell lines by knockdown of endogenous PTK6 or overexpression of targeted PTK6 to different intracellular compartments. RESULTS We identified AKT, p130CAS and focal adhesion kinase (FAK) as novel PTK6 substrates and demonstrated their roles in promoting cell proliferation, migration and resistance to anoikis. In prostate cancer cells, active PTK6 is primarily associated with membrane compartments, although the majority of total PTK6 is localized within the cytoplasm. Ectopic expression of membrane-targeted PTK6 transforms immortalized fibroblasts. Knockdown of endogenous cytoplasmic PTK6 in PC3 prostate cancer cells impairs proliferation, migration and anoikis resistance. However, re-introduction of PTK6 into the nucleus significantly decreases cell proliferation, suggesting context-specific functions for nuclear PTK6. CONCLUSIONS In human prostate cancer, elevated PTK6 expression, translocation of PTK6 from the nucleus to the cytoplasm and its activation at the plasma membrane contribute to increased phosphorylation and activation of its substrates such as AKT, p130CAS and FAK, thereby promoting prostate cancer progression.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
37
|
Gierut J, Zheng Y, Bie W, Carroll RE, Ball-Kell S, Haegebarth A, Tyner AL. Disruption of the mouse protein tyrosine kinase 6 gene prevents STAT3 activation and confers resistance to azoxymethane. Gastroenterology 2011; 141:1371-80, 1380.e1-2. [PMID: 21741923 PMCID: PMC3448944 DOI: 10.1053/j.gastro.2011.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/18/2011] [Accepted: 06/24/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Protein tyrosine kinase 6 (PTK6) is expressed throughout the gastrointestinal tract and is a negative regulator of proliferation that promotes differentiation and DNA-damage-induced apoptosis in the small intestine. PTK6 is not expressed in normal mammary gland, but is induced in most human breast tumors. Signal transducer and activator of transcription 3 (STAT3) mediates pathogenesis of colon cancer and is a substrate of PTK6. We investigated the role of PTK6 in colon tumorigenesis. METHODS Ptk6+/+ and Ptk6-/- mice were injected with azoxymethane alone or in combination with dextran sodium sulfate; formation of aberrant crypt foci and colon tumors was examined. Effects of disruption of Ptk6 on proliferation, apoptosis, and STAT3 activation were examined by immunoblot and immunohistochemical analyses. Regulation of STAT3 activation was examined in the HCT116 colon cancer cell line and young adult mouse colon cells. RESULTS Ptk6-/- mice developed fewer azoxymethane-induced aberrant crypt foci and tumors. Induction of PTK6 increased apoptosis, proliferation, and STAT3 activation in Ptk6+/+ mice injected with azoxymethane. Disruption of Ptk6 impaired STAT3 activation following azoxymethane injection, and reduced active STAT3 levels in Ptk6-/- tumors. Stable knockdown of PTK6 reduced basal levels of active STAT3, as well as activation of STAT3 by epidermal growth factor in HCT116 cells. Disruption of Ptk6 reduced activity of STAT3 in young adult mouse colon cells. CONCLUSIONS PTK6 promotes STAT3 activation in the colon following injection of the carcinogen azoxymethane and regulates STAT3 activity in mouse colon tumors and in the HCT116 and young adult mouse colon cell lines. Disruption of Ptk6 decreases azoxymethane-induced colon tumorigenesis in mice.
Collapse
Affiliation(s)
- Jessica Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Robert E. Carroll
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Susan Ball-Kell
- University of Illinois College of Veterinary Medicine Veterinary Diagnostic Laboratory Urbana, IL 61802
| | - Andrea Haegebarth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607,Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607,Corresponding author: University of Illinois College of Medicine, Department of Biochemistry and Molecular Genetics, M/C 669, 900 South Ashland Avenue, Chicago, Illinois 60607, Phone: 312-996-7964, Fax. 312-413-4892,
| |
Collapse
|
38
|
Ikeda O, Mizushima A, Sekine Y, Yamamoto C, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T. Involvement of STAP-2 in Brk-mediated phosphorylation and activation of STAT5 in breast cancer cells. Cancer Sci 2011; 102:756-61. [PMID: 21205088 DOI: 10.1111/j.1349-7006.2010.01842.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Signal-transducing adaptor protein (STAP)-2 is a recently identified adaptor protein that contains Pleckstrin homology and Src homology 2-like domains, and is also known to be a substrate of breast tumor kinase (Brk). In a previous study, we found that STAP-2 upregulated Brk-mediated activation of signal transducer and activator of transcription (STAT) 3 in breast cancer cells. Here, we examined the involvement of STAP-2 in Brk-mediated STAT5 activation in breast cancer cells. Ectopic expression of STAP-2 induced Brk-mediated transcriptional activity of STAT5. Furthermore, STAP-2-knockdown in T47D breast cancer cells induced a marked decrease in proliferation that was as strong as that after Brk- or STAT5b-knockdown. Regarding the mechanism, the Pleckstrin homology domain of STAP-2 is likely to participate in the process by which Brk phosphorylates and activates STAT5. Taken together, our findings provide insights toward the development of novel therapeutic strategies as well as novel prognostic values in breast carcinomas.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|