1
|
Song MS, Sim HJ, Eun SH, Jung MK, Hwang SJ, Ham MH, Kwak K, Lee HJ, Kim JY, Jang DG, Chung HC, Shin DH, Kim YJ, Noh SH, Mun JY, Lee JM, Lee MG. Tubular ER structures shaped by ER-phagy receptors engage in stress-induced Golgi bypass. Dev Cell 2025:S1534-5807(25)00031-0. [PMID: 39919755 DOI: 10.1016/j.devcel.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Cellular stresses, particularly endoplasmic reticulum (ER) stress induced by ER-to-Golgi transport blockade, trigger Golgi-independent secretion of cytosolic and transmembrane proteins. However, the molecular mechanisms underlying this unconventional protein secretion (UPS) remain largely elusive. Here, we report that an ER tubulovesicular structure (ER tubular body [ER-TB]), shaped by the tubular ER-phagy receptors ATL3 and RTN3L, plays an important role in stress-induced UPS of transmembrane proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Correlative light-electron microscopy analyses demonstrate the formation of ER-TB under UPS-inducing conditions in HEK293 and HeLa cells. Individual gene knockdowns of ATL3 and RTN3 inhibit ER-TB formation and the UPS of trafficking-deficient ΔF508-CFTR. Combined supplementation of ATL3 and RTN3L induces ER-TB formation and UPS. ATL3 also participates in the SARS-CoV-2-associated convoluted membrane formation and Golgi-independent trafficking of SARS-CoV-2 spike protein. These findings suggest that ER-TB serves a common function in mediating stress-induced UPS, which participates in various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Physiology, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Hun Ju Sim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Ho Eun
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Gastroenterology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Min Kyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Su Jin Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Hee Ham
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hea Ji Lee
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong Geon Jang
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Chun Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye Jin Kim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Jung J, Joo SY, Min H, Roh JW, Kim KA, Ma JH, Rim JH, Kim JA, Kim SJ, Jang SH, Koh YI, Kim HY, Lee H, Kim BC, Gee HY, Bok J, Choi JY, Seong JK. MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss. Exp Mol Med 2024; 56:2423-2435. [PMID: 39482536 PMCID: PMC11612406 DOI: 10.1038/s12276-024-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
| | - Sun Young Joo
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Kyung Ah Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Jin Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Jang
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Byoung Choul Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Heon Yung Gee
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea.
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
5
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
6
|
Oh KS, Roh JW, Joo SY, Ryu K, Kim JA, Kim SJ, Jang SH, Koh YI, Kim DH, Kim HY, Choi M, Jung J, Namkung W, Nam JH, Choi JY, Gee HY. Overlooked KCNQ4 variants augment the risk of hearing loss. Exp Mol Med 2023; 55:844-859. [PMID: 37009795 PMCID: PMC10167218 DOI: 10.1038/s12276-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 04/04/2023] Open
Abstract
Pathogenic variants of KCNQ4 cause symmetrical, late-onset, progressive, high-frequency-affected hearing loss, which eventually involves all frequencies with age. To understand the contribution of KCNQ4 variants to hearing loss, we analyzed whole-exome and genome sequencing data from patients with hearing loss and individuals whose hearing phenotypes were unknown. In KCNQ4, we identified seven missense variants and one deletion variant in 9 hearing loss patients and 14 missense variants in the Korean population with an unknown hearing loss phenotype. The p.R420W and p.R447W variants were found in both cohorts. To investigate the effects of these variants on KCNQ4 function, we performed whole-cell patch clamping and examined their expression levels. Except for p.G435Afs*61, all KCNQ4 variants exhibited normal expression patterns similar to those of wild-type KCNQ4. The p.R331Q, p.R331W, p.G435Afs*61, and p.S691G variants, which were identified in patients with hearing loss, showed a potassium (K+) current density lower than or similar to that of p.L47P, a previously reported pathogenic variant. The p.S185W and p.R216H variants shifted the activation voltage to hyperpolarized voltages. The channel activity of the p.S185W, p.R216H, p.V672M, and p.S691G KCNQ4 proteins was rescued by the KCNQ activators retigabine or zinc pyrithione, whereas p.G435Afs*61 KCNQ4 proteins were partially rescued by sodium butyrate, a chemical chaperone. Additionally, the structure of the variants predicted using AlphaFold2 showed impaired pore configurations, as did the patch-clamp data. Our findings suggest that KCNQ4 variants may be overlooked in hearing loss that starts in adulthood. Some of these variants are medically treatable; hence, genetic screening for KCNQ4 is important.
Collapse
Affiliation(s)
- Kyung Seok Oh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Kunhi Ryu
- Yonsei University College of Pharmacy, Incheon, 21983, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Wan Namkung
- Yonsei University College of Pharmacy, Incheon, 21983, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do, 10326, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
8
|
Koh YI, Oh KS, Kim JA, Noh B, Choi HJ, Joo SY, Rim JH, Kim HY, Kim DY, Yu S, Kim DH, Lee SG, Jung J, Choi JY, Gee HY. OSBPL2 mutations impair autophagy and lead to hearing loss, potentially remedied by rapamycin. Autophagy 2022; 18:2593-2614. [PMID: 35253614 PMCID: PMC9629061 DOI: 10.1080/15548627.2022.2040891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracellular accumulation of mutant proteins causes proteinopathies, which lack targeted therapies. Autosomal dominant hearing loss (DFNA67) is caused by frameshift mutations in OSBPL2. Here, we show that DFNA67 is a toxic proteinopathy. Mutant OSBPL2 accumulated intracellularly and bound to macroautophagy/autophagy proteins. Consequently, its accumulation led to defective endolysosomal homeostasis and impaired autophagy. Transgenic mice expressing mutant OSBPL2 exhibited hearing loss, but osbpl2 knockout mice or transgenic mice expressing wild-type OSBPL2 did not. Rapamycin decreased the accumulation of mutant OSBPL2 and partially rescued hearing loss in mice. Rapamycin also partially improved hearing loss and tinnitus in individuals with DFNA67. Our findings indicate that dysfunctional autophagy is caused by mutant proteins in DFNA67; hence, we recommend rapamycin for DFNA67 treatment.Abbreviations: ABR: auditory brainstem response; ACTB: actin beta; CTSD: cathepsin D; dB: decibel; DFNA67: deafness non-syndromic autosomal dominant 67; DPOAE: distortion product otoacoustic emission; fs: frameshift; GFP: green fluorescent protein; HsQ53R-TG: human p.Q53Rfs*100-transgenic: HEK 293: human embryonic kidney 293; HFD: high-fat diet; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSHL: non-syndromic hearing loss; OHC: outer hair cells; OSBPL2: oxysterol binding protein-like 2; SEM: scanning electron microscopy; SGN: spiral ganglion neuron; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TG: transgenic; WES: whole-exome sequencing; YUHL: Yonsei University Hearing Loss; WT: wild-type.
Collapse
Affiliation(s)
- Young Ik Koh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Kyung Seok Oh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Byunghwa Noh
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Dong Yun Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, SeoulSeoul03722Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,CONTACT Jinsei Jung Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,Jae Young Choi Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seou, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,Heon Yung Gee Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Oh KS, Walls D, Joo SY, Kim JA, Yoo JE, Koh YI, Kim DH, Rim JH, Choi HJ, Kim HY, Yu S, Smith RJ, Choi JY, Gee HY, Jung J. COCH-related autosomal dominant nonsyndromic hearing loss: a phenotype-genotype study. Hum Genet 2022; 141:889-901. [PMID: 34529116 PMCID: PMC8924011 DOI: 10.1007/s00439-021-02368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
This phenotype-genotype study aimed to investigate the extent of audioprofile variability related to cochlin major domains and to identify potential ethnic-specific differences associated with COCH-related hearing loss. Eight Korean families (26 cases) were diagnosed with COCH-related hearing loss by exome sequencing. Audiometric test results were combined with those from nine published East Asian families (20 cases) and compared with those from 38 European-descent families (277 cases). Audioprofiles were created by grouping audiometric test results into age ranges by age at testing and then averaging hearing loss thresholds by frequency within age ranges. The functional impact of the identified variants was assessed in vitro by examining the intracellular trafficking, secretion, and cleavage of cochlin. In both East Asian and European-descent families segregating COCH-related hearing loss, deafness-associated variants in non-LCCL domains of cochlin were associated with hearing loss that was more severe earlier in life than hearing loss caused by variants in the LCCL domain. Consistent with this phenotypic difference, functional studies demonstrated distinct pathogenic mechanisms for COCH variants in a domain-dependent manner; specifically, a cytotoxic effect was observed for the p.Phe230Leu variant, which is located in the vWFA1 domain. No ethnic-specific differences in hearing loss progression were observed, except for those attributable to an overrepresentation of presymptomatic cases in the European-descent cohort.
Collapse
Affiliation(s)
- Kyung Seok Oh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Daniel Walls
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology‑Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jee Eun Yoo
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology‑Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Interdepartmental Ph.D. Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jinsei Jung
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Ilieva M, Miller HE, Agarwal A, Paulus GK, Madsen JH, Bishop AJR, Kauppinen S, Uchida S. FibroDB: Expression Analysis of Protein-Coding and Long Non-Coding RNA Genes in Fibrosis. Noncoding RNA 2022; 8:ncrna8010013. [PMID: 35202087 PMCID: PMC8877069 DOI: 10.3390/ncrna8010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes and their expression is often restricted to specific cell types, certain time points during development, and various stress and disease conditions, respectively. To revisit this long-held concept, we focused on fibroblasts, a common cell type in various organs and tissues. Using fibroblasts and changes in their expression profiles during fibrosis as a model system, we show that the overall expression level of lncRNA genes is significantly lower than that of protein-coding genes. Furthermore, we identified lncRNA genes whose expression is upregulated during fibrosis. Using dermal fibroblasts as a model, we performed loss-of-function experiments and show that the knockdown of the lncRNAs LINC00622 and LINC01711 result in gene expression changes associated with cellular and inflammatory responses, respectively. Since there are no lncRNA databases focused on fibroblasts and fibrosis, we built a web application, FibroDB, to further promote functional and mechanistic studies of fibrotic lncRNAs.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.); (S.K.)
| | - Henry E. Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (A.A.); (G.K.P.)
| | - Arav Agarwal
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (A.A.); (G.K.P.)
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Gabriela K. Paulus
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (A.A.); (G.K.P.)
- Osthus GmbH, 52068 Aachen, Germany
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.); (S.K.)
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.); (S.K.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.); (S.K.)
- Correspondence: or
| |
Collapse
|
11
|
Tang BL. Syntaxin 16's Newly Deciphered Roles in Autophagy. Cells 2019; 8:1655. [PMID: 31861136 PMCID: PMC6953085 DOI: 10.3390/cells8121655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Syntaxin 16, a Qa-SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor), is involved in a number of membrane-trafficking activities, particularly transport processes at the trans-Golgi network (TGN). Recent works have now implicated syntaxin 16 in the autophagy process. In fact, syntaxin 16 appears to have dual roles, firstly in facilitating the transport of ATG9a-containing vesicles to growing autophagosomes, and secondly in autolysosome formation. The former involves a putative SNARE complex between syntaxin 16, VAMP7 and SNAP-47. The latter occurs via syntaxin 16's recruitment by Atg8/LC3/GABARAP family proteins to autophagosomes and endo-lysosomes, where syntaxin 16 may act in a manner that bears functional redundancy with the canonical autophagosome Qa-SNARE syntaxin 17. Here, I discuss these recent findings and speculate on the mechanistic aspects of syntaxin 16's newly found role in autophagy.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
12
|
Jung J, Lin H, Koh YI, Ryu K, Lee JS, Rim JH, Choi HJ, Lee HJ, Kim HY, Yu S, Jin H, Lee JH, Lee MG, Namkung W, Choi JY, Gee HY. Rare KCNQ4 variants found in public databases underlie impaired channel activity that may contribute to hearing impairment. Exp Mol Med 2019; 51:1-12. [PMID: 31434872 PMCID: PMC6802650 DOI: 10.1038/s12276-019-0300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
KCNQ4 is frequently mutated in autosomal dominant non-syndromic hearing loss (NSHL), a typically late-onset, initially high-frequency loss that progresses over time (DFNA2). Most KCNQ4 mutations linked to hearing loss are clustered around the pore region of the protein and lead to loss of KCNQ4-mediated potassium currents. To understand the contribution of KCNQ4 variants to NSHL, we surveyed public databases and found 17 loss-of-function and six missense KCNQ4 variants affecting amino acids around the pore region. The missense variants have not been reported as pathogenic and are present at a low frequency (minor allele frequency < 0.0005) in the population. We examined the functional impact of these variants, which, interestingly, induced a reduction in potassium channel activity without altering expression or trafficking of the channel protein, being functionally similar to DFNA2-associated KCNQ4 mutations. Therefore, these variants may be risk factors for late-onset hearing loss, and individuals harboring any one of these variants may develop hearing loss during adulthood. Reduced channel activity could be rescued by KCNQ activators, suggesting the possibility of medical intervention. These findings indicate that KCNQ4 variants may contribute more to late-onset NSHL than expected, and therefore, genetic screening for this gene is important for the prevention and treatment of NSHL.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Haiyue Lin
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kunhi Ryu
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Joon Suk Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hak Joon Lee
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsoo Jin
- Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Wan Namkung
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
13
|
Abstract
Western blotting is the most extensively used technique for the identification and characterisation of proteins and their expression levels. One of the major issues with this technique is the loss of proteins from the blotted membrane during the incubation and washing steps, which affects its sensitivity and reproducibility. Here, we have optimised the fixation conditions for immunoblotting and lectin blotting on electroblotted polyvinylidene difluoride and nitrocellulose membranes, using a combination of organic solvents and heating. Loss of proteins from polyvinylidene difluoride membranes was greatly reduced using this approach, the intensity of lectin blotting and immunoblotting was shown to increase 2.8- to 15-fold and 1.8- to 16-fold, respectively, compared with that samples without treated. Using the optimised method, cystic fibrosis transmembrane regulator and hypoxia-inducible factor 1, two difficult-to-analyse proteins with important physiological and pathological roles, were effectively detected. Additionally, it may help the identification of novel diagnostic markers for prostate cancer.
Collapse
|
14
|
Whole-exome sequencing identifies two novel mutations in KCNQ4 in individuals with nonsyndromic hearing loss. Sci Rep 2018; 8:16659. [PMID: 30413759 PMCID: PMC6226507 DOI: 10.1038/s41598-018-34876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of nonsyndromic hearing loss, deafness nonsyndromic autosomal dominant 2 (DFNA2). We performed whole-exome sequencing for 98 families with hearing loss and found mutations in KCNQ4 in five families. In this study, we characterized two novel mutations in KCNQ4: a missense mutation (c.796G>T; p.Asp266Tyr) and an in-frame deletion mutation (c.259_267del; p.Val87_Asn89del). p.Asp266Tyr located in the channel pore region resulted in early onset and moderate hearing loss, whereas p.Val87_Asn89del located in the N-terminal cytoplasmic region resulted in late onset and high frequency-specific hearing loss. When heterologously expressed in HEK 293 T cells, both mutant proteins did not show defects in protein trafficking to the plasma membrane or in interactions with wild-type (WT) KCNQ4 channels. Patch-clamp analysis demonstrated that both p.Asp266Tyr and p.Val87_Asn89del mutant channels lost conductance and were completely unresponsive to KCNQ activators, such as retigabine, zinc pyrithione, and ML213. Channels assembled from WT-p.Asp266Tyr concatemers, like those from WT-WT concatemers, exhibited conductance and responsiveness to KCNQ activators. However, channels assembled from WT-p.Val87_Asn89del concatemers showed impaired conductance, suggesting that p.Val87_Asn89del caused complete loss-of-function with a strong dominant-negative effect on functional WT channels. Therefore, the main pathological mechanism may be related to loss of K+ channel activity, not defects in trafficking.
Collapse
|
15
|
Noh SH, Gee HY, Kim Y, Piao H, Kim J, Kang CM, Lee G, Mook-Jung I, Lee Y, Cho JW, Lee MG. Specific autophagy and ESCRT components participate in the unconventional secretion of CFTR. Autophagy 2018; 14:1761-1778. [PMID: 29969945 DOI: 10.1080/15548627.2018.1489479] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The most common mutation in cystic fibrosis patients is a phenylalanine deletion at position 508 (ΔF508) in the CFTR (cystic fibrosis transmembrane conductance regulator) gene. This mutation impairs cell-surface trafficking of CFTR. During cellular stress, core-glycosylated CFTRΔF508 is transported to the cell surface from the endoplasmic reticulum (ER) via an unconventional route that bypasses the Golgi. However, the mechanisms for this unconventional secretory pathway of CFTR are not well delineated. Here, we report that components of the macroautophagy/autophagy and ESCRT (endosomal sorting complex required for transport) pathways are involved in unconventional secretion of CFTR. In mammalian cells, we found that autophagic pathways were modulated by conditions that also stimulate unconventional secretion, namely ER stress and an ER-to-Golgi transport blockade. Additionally, we found that knockdown of early autophagy components, ATG5 and ATG7, and treatment with pharmacological autophagy inhibitors, wortmannin and 3-methyladenine, abolished the unconventional secretion of CFTR that had been stimulated by ER stress and an ER-to-Golgi blockade. Interestingly, immunoelectron microscopy revealed that GORASP2/GRASP55, which mediates unconventional CFTR trafficking, is present in multivesicular bodies (MVB) and autophagosomal structures under ER stress conditions. A custom small-interfering RNA screen of mammalian ESCRT proteins that mediate MVB biogenesis showed that silencing of some ESCRTs, including MVB12B, inhibited unconventional CFTRΔF508 secretion. Furthermore, MVB12B overexpression partially rescued cell-surface expression and Cl- channel function of CFTRΔF508. Taken together, these results suggest that components involved in early autophagosome formation and the ESCRT/MVB pathway play a key role in the stress-induced unconventional secretion of CFTR.
Collapse
Affiliation(s)
- Shin Hye Noh
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Heon Yung Gee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Yonjung Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - He Piao
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Jiyoon Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Chung Min Kang
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Gahyung Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Inhee Mook-Jung
- b Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Yangsin Lee
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea
| | - Jin Won Cho
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea.,d Department of Systems Biology, Interdisciplinary Program of Integrated OMICS for Biomedical Science , Yonsei University , Seoul , Korea
| | - Min Goo Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
16
|
ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 2018; 14:e1007316. [PMID: 29601588 PMCID: PMC5895051 DOI: 10.1371/journal.pgen.1007316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/11/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Zinc finger MYND-type-containing 10 (ZMYND10), a cytoplasmic protein expressed in ciliated cells, causes primary ciliary dyskinesia (PCD) when mutated; however, its function is poorly understood. Therefore, in this study, we examined the roles of ZMYND10 using Zmynd10–/–mice exhibiting typical PCD phenotypes, including hydrocephalus and laterality defects. In these mutants, morphology, the number of motile cilia, and the 9+2 axoneme structure were normal; however, inner and outer dynein arms (IDA and ODA, respectively) were absent. ZMYND10 interacted with ODA components and proteins, including LRRC6, DYX1C1, and C21ORF59, implicated in the cytoplasmic pre-assembly of DAs, whose levels were significantly reduced in Zmynd10–/–mice. LRRC6 and DNAI1 were more stable when co-expressed with ZYMND10 than when expressed alone. DNAI2, which did not interact with ZMYND10, was not stabilized by co-expression with ZMYND10 alone, but was stabilized by co-expression with DNAI1 and ZMYND10, suggesting that ZMYND10 stabilized DNAI1, which subsequently stabilized DNAI2. Together, these results demonstrated that ZMYND10 regulated the early stage of DA cytoplasmic pre-assembly by stabilizing DNAI1. Dynein arm defects are linked to primary ciliary dyskinesia (PCD). ZMYND10 increased the stability of its interacting proteins and specifically regulated intermediate chain protein assembly, revealing tightly regulated mechanisms underlying dynein arm assembly and PCD-related pathogenesis. Increasing protein stability could be useful for developing PCD therapeutics.
Collapse
|
17
|
Wang H, Liu L, Liu X, Zhang M, Li X. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken. Poult Sci 2018; 97:485-493. [DOI: 10.3382/ps/pex343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022] Open
|
18
|
|
19
|
Lovric S, Goncalves S, Gee HY, Oskouian B, Srinivas H, Choi WI, Shril S, Ashraf S, Tan W, Rao J, Airik M, Schapiro D, Braun DA, Sadowski CE, Widmeier E, Jobst-Schwan T, Schmidt JM, Girik V, Capitani G, Suh JH, Lachaussée N, Arrondel C, Patat J, Gribouval O, Furlano M, Boyer O, Schmitt A, Vuiblet V, Hashmi S, Wilcken R, Bernier FP, Innes AM, Parboosingh JS, Lamont RE, Midgley JP, Wright N, Majewski J, Zenker M, Schaefer F, Kuss N, Greil J, Giese T, Schwarz K, Catheline V, Schanze D, Franke I, Sznajer Y, Truant AS, Adams B, Désir J, Biemann R, Pei Y, Ars E, Lloberas N, Madrid A, Dharnidharka VR, Connolly AM, Willing MC, Cooper MA, Lifton RP, Simons M, Riezman H, Antignac C, Saba JD, Hildebrandt F. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest 2017; 127:912-928. [PMID: 28165339 DOI: 10.1172/jci89626] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.
Collapse
|
20
|
Piao H, Kim J, Noh SH, Kweon HS, Kim JY, Lee MG. Sec16A is critical for both conventional and unconventional secretion of CFTR. Sci Rep 2017; 7:39887. [PMID: 28067262 PMCID: PMC5220342 DOI: 10.1038/srep39887] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022] Open
Abstract
CFTR is a transmembrane protein that reaches the cell surface via the conventional Golgi mediated secretion pathway. Interestingly, ER-to-Golgi blockade or ER stress induces alternative GRASP-mediated, Golgi-bypassing unconventional trafficking of wild-type CFTR and the disease-causing ΔF508-CFTR, which has folding and trafficking defects. Here, we show that Sec16A, the key regulator of conventional ER-to-Golgi transport, plays a critical role in the ER exit of protein cargos during unconventional secretion. In an initial gene silencing screen, Sec16A knockdown abolished the unconventional secretion of wild-type and ΔF508-CFTR induced by ER-to-Golgi blockade, whereas the knockdown of other COPII-related components did not. Notably, during unconventional secretion, Sec16A was redistributed to cell periphery and associated with GRASP55 in mammalian cells. Molecular and morphological analyses revealed that IRE1α-mediated signaling is an upstream regulator of Sec16A during ER-to-Golgi blockade or ER stress associated unconventional secretion. These findings highlight a novel function of Sec16A as an essential mediator of ER stress-associated unconventional secretion.
Collapse
|
21
|
Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, Lovric S, Ashraf S, Braun DA, Halbritter J, Fang H, Airik R, Vega-Warner V, Cho KJ, Chan TA, Morris LGT, ffrench-Constant C, Allen N, McNeill H, Büscher R, Kyrieleis H, Wallot M, Gaspert A, Kistler T, Milford DV, Saleem MA, Keng WT, Alexander SI, Valentini RP, Licht C, Teh JC, Bogdanovic R, Koziell A, Bierzynska A, Soliman NA, Otto EA, Lifton RP, Holzman LB, Sibinga NES, Walz G, Tufro A, Hildebrandt F. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016; 7:10822. [PMID: 26905694 PMCID: PMC4770090 DOI: 10.1038/ncomms10822] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
Collapse
Affiliation(s)
- Heon Yung Gee
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Carolin E Sadowski
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jonathan D Porath
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Toma A Yakulov
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Markus Schueler
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Svjetlana Lovric
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shazia Ashraf
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jan Halbritter
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Humphrey Fang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Virginia Vega-Warner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kyeong Jee Cho
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Helen McNeill
- Department of Molecular Genetics, Samuel Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Rainer Büscher
- Department of Pediatrics II, University Hospital of Essen, Essen 45147, Germany
| | | | - Michael Wallot
- Department of Pediatrics, Bethanien Hospital, Moers 47441, Germany
| | - Ariana Gaspert
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Thomas Kistler
- Division of Nephrology, Kantonsspital Winterthur, Winterthur 8401, Switzerland
| | - David V Milford
- Department of Paediatric Nephrology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Moin A Saleem
- Children's and Academic Renal Unit, University of Bristol, Bristol BS1 5NB, UK
| | - Wee Teik Keng
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead 2145, Australia
| | - Rudolph P Valentini
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Michigan/Wayne State University, Detroit, Michigan 48201, USA
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Jun C Teh
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Radovan Bogdanovic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade 11000, Serbia
| | - Ania Koziell
- Department of Experimental Immunobiology, Division of Transplantation Immunology &Mucosal Biology, King's College London, Faculty of Life Sciences &Medicine, 5th floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology &Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo 11562, Egypt.,Egyptian Group for Orphan Renal Diseases, Cairo 11562, Egypt
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas E S Sibinga
- Wilf Family Cardiovascular Research Institute and Department of Medicine/Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gerd Walz
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
22
|
Abstract
All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.
Collapse
Affiliation(s)
- Fanny Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
23
|
Wan X, Chen Z, Choi WI, Gee HY, Hildebrandt F, Zhou W. Loss of Epithelial Membrane Protein 2 Aggravates Podocyte Injury via Upregulation of Caveolin-1. J Am Soc Nephrol 2015; 27:1066-75. [PMID: 26264854 DOI: 10.1681/asn.2014121197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/23/2015] [Indexed: 11/03/2022] Open
Abstract
Nephrotic syndrome is a CKD defined by proteinuria with subsequent hypoalbuminemia, hyperlipidemia, and edema caused by impaired renal glomerular filtration barrier function. We previously identified mutations in epithelial membrane protein 2 (EMP2) as a monogenic cause of this disease. Here, we generated an emp2-knockout zebrafish model using transcription activator-like effector nuclease-based genome editing. We found that loss of emp2 in zebrafish upregulated caveolin-1 (cav1), a major component of caveolae, in embryos and adult mesonephric glomeruli and exacerbated podocyte injury. This phenotype was partially rescued by glucocorticoids. Furthermore, overexpression of cav1 in zebrafish podocytes was sufficient to induce the same phenotype observed in emp2 homozygous mutants, which was also treatable with glucocorticoids. Similarly, knockdown of EMP2 in cultured human podocytes resulted in increased CAV1 expression and decreased podocyte survival in the presence of puromycin aminonucleoside, whereas glucocorticoid treatment ameliorated this phenotype. Taken together, we have established excessive CAV1 as a mediator of the predisposition to podocyte injury because of loss of EMP2, suggesting CAV1 could be a novel therapeutic target in nephrotic syndrome and podocyte injury.
Collapse
Affiliation(s)
- Xiaoyang Wan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Zhaohong Chen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Jinling Hospital, Nanjing, China
| | - Won-Il Choi
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
24
|
Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS. EARP is a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol 2015; 17:639-50. [PMID: 25799061 PMCID: PMC4417048 DOI: 10.1038/ncb3129] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
Abstract
Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling.
Collapse
Affiliation(s)
- Christina Schindler
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yu Chen
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing Pu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Gee HY, Kim JY, Lee MG. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol 2015; 1270:137-54. [PMID: 25702115 DOI: 10.1007/978-1-4939-2309-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic transmembrane protein that functions as a cAMP-activated anion channel at the apical membrane of epithelial cells. Mutations in CFTR cause cystic fibrosis and are also associated with monosymptomatic diseases in the lung, pancreas, intestines, and vas deferens. Many disease-causing CFTR mutations, including the deletion of a single phenylalanine residue at position 508 (ΔF508-CFTR), result in protein misfolding and trafficking defects. Therefore, intracellular trafficking of wild-type and mutant CFTR has been studied extensively, and results from these studies significantly contribute to our general understanding of mechanisms involved in the cell-surface trafficking of membrane proteins. CFTR is a glycoprotein that undergoes complex N-glycosylation as it passes through Golgi-mediated conventional exocytosis. Interestingly, results from recent studies revealed that CFTR and other membrane proteins can reach the plasma membrane via an unconventional alternative route that bypasses Golgi in specific cellular conditions. Here, we describe methods that have been used to investigate the conventional and unconventional surface trafficking of CFTR. With appropriate modifications, the protocols described in this chapter can also be applied to studies investigating the intracellular trafficking of other plasma membrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 120-752, Korea
| | | | | |
Collapse
|
26
|
Chen B, Zhao L, Li X, Ji YS, Li N, Xu XF, Chen ZY. Syntaxin 8 modulates the post-synthetic trafficking of the TrkA receptor and inflammatory pain transmission. J Biol Chem 2014; 289:19556-69. [PMID: 24872407 DOI: 10.1074/jbc.m114.567925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) promotes the survival, maintenance, and neurite outgrowth of sensory and sympathetic neurons, and the effects are mediated by TrkA receptor signaling. Thus, the cell surface location of the TrkA receptor is crucial for NGF-mediated functions. However, the regulatory mechanism underlying TrkA cell surface levels remains incompletely understood. In this study, we identified syntaxin 8 (STX8), a Q-SNARE protein, as a novel TrkA-binding protein. Overexpression and knockdown studies showed that STX8 facilitates TrkA transport from the Golgi to the plasma membrane and regulates the surface levels of TrkA but not TrkB receptors. Furthermore, STX8 modulates downstream NGF-induced TrkA signaling and, consequently, the survival of NGF-dependent dorsal root ganglia neurons. Finally, knockdown of STX8 in rat dorsal root ganglia by recombinant adeno-associated virus serotype 6-mediated RNA interference led to analgesic effects on formalin-induced inflammatory pain. These findings demonstrate that STX8 is a modulator of TrkA cell surface levels and biological functions.
Collapse
Affiliation(s)
- Bing Chen
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Ling Zhao
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xian Li
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yun-Song Ji
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Na Li
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xu-Feng Xu
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhe-Yu Chen
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
27
|
Ikari A, Tonegawa C, Sanada A, Kimura T, Sakai H, Hayashi H, Hasegawa H, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T, Sugatani J. Tight junctional localization of claudin-16 is regulated by syntaxin 8 in renal tubular epithelial cells. J Biol Chem 2014; 289:13112-23. [PMID: 24659781 DOI: 10.1074/jbc.m113.541193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claudin-16 (CLDN16) regulates the paracellular reabsorption of Mg(2+) in the thick ascending limb of Henle's loop. However, the mechanism regulating the tight junctional localization of CLDN16 remains unknown. In yeast two-hybrid systems, we found that CLDN16 bound to syntaxin 8 (STX8), a target soluble N-ethylmaleimide-sensitive factor attachment protein receptor. We have examined the effect of STX8 on the localization and function of CLDN16 using Madin-Darby canine kidney cells expressing FLAG-tagged CLDN16. A pulldown assay showed that the carboxyl cytoplasmic region of human CLDN16 bound to STX8. CLDN16 was localized in the thick ascending limb, whereas STX8 was widely distributed throughout the rat kidney. An association between CLDN16 and STX8 was observed in rat renal homogenates and Madin-Darby canine kidney cells. STX8 siRNA decreased the cell surface localization of CLDN16 and transepithelial electrical resistance and permeability to Mg(2+) but increased the co-localization of CLDN16 with early endosome and lysosome markers. Dephosphorylation of CLDN16 by protein kinase A inhibitors and S217A mutant, a dephosphorylated form, decreased the association with STX8 and the cell surface localization of CLDN16. Recycling assays indicated that STX8 siRNA decreased the trafficking of CLDN16 to the plasma membrane without affecting endocytosis. Dominant negative Rab11 and recycling inhibitor primaquine decreased the cell surface localization of CLDN16, which was similar to that in STX8 siRNA-transfected cells. These results suggest that STX8 mediates the recycling of CLDN16 and constitutes an important component of the CLDN16 trafficking machinery in the kidney.
Collapse
Affiliation(s)
- Akira Ikari
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Park J, Kwak JO, Riederer B, Seidler U, Cole SPC, Lee HJ, Lee MG. Na⁺/H⁺ exchanger regulatory factor 3 is critical for multidrug resistance protein 4-mediated drug efflux in the kidney. J Am Soc Nephrol 2014; 25:726-36. [PMID: 24436471 DOI: 10.1681/asn.2013040438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Na(+)/H(+) exchanger regulatory factor 3 (NHERF3) is a PSD-95/discs large/ZO-1 (PDZ)-based adaptor protein that regulates several membrane-transporting proteins in epithelia. However, the in vivo physiologic role of NHERF3 in transepithelial transport remains poorly understood. Multidrug resistance protein 4 (MRP4) is an ATP binding cassette transporter that mediates the efflux of organic molecules, such as nucleoside analogs, in the gastrointestinal and renal epithelia. Here, we report that Nherf3 knockout (Nherf3(-/-)) mice exhibit profound reductions in Mrp4 expression and Mrp4-mediated drug transport in the kidney. A search for the binding partners of the COOH-terminal PDZ binding motif of MRP4 among several epithelial PDZ proteins indicated that MRP4 associated most strongly with NHERF3. When expressed in HEK293 cells, NHERF3 increased membrane expression of MRP4 by reducing internalization of cell surface MRP4 and consequently, augmented MRP4-mediated efflux of adefovir, a nucleoside-based antiviral agent and well known substrate of MRP4. Examination of wild-type and Nherf3(-/-) mice revealed that Nherf3 is most abundantly expressed in the kidney and has a prominent role in modulating Mrp4 levels. Deletion of Nherf3 in mice caused a profound reduction in Mrp4 expression at the apical membrane of renal proximal tubules and evoked a significant increase in the plasma and kidney concentrations of adefovir, with a corresponding decrease in the systemic clearance of this drug. These results suggest that NHERF3 is a key regulator of organic transport in the kidney, particularly MRP4-mediated clearance of drug molecules.
Collapse
Affiliation(s)
- Joonhee Park
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Stanke F, van Barneveld A, Hedtfeld S, Wölfl S, Becker T, Tümmler B. The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells. Eur J Hum Genet 2013; 22:660-6. [PMID: 24105369 PMCID: PMC3992571 DOI: 10.1038/ejhg.2013.209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 01/07/2023] Open
Abstract
The three-base-pair deletion c.1521_1523delCTT (p.Phe508del, F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most frequent disease-causing lesion in cystic fibrosis (CF). The CFTR gene encodes a chloride and bicarbonate channel at the apical membrane of epithelial cells. Altered ion transport of CFTR-expressing epithelia can be used to differentiate manifestations of the so-called CF basic defect. Recently, an 11p13 region has been described as a CF modifier by the North American CF Genetic Modifier Study Consortium. Selecting the epithelial-specific transcription factor EHF (ets homologous factor) as the likely candidate gene on 11p13, we have genotyped two intragenic microsatellites in EHF to replicate the 11p13 finding in the patient cohort of the European CF Twin and Sibling Study. We could observe an association of rare EHF haplotypes among homozygotes for c.1521_1523delCTT in CFTR, which exhibit a CF-untypical manifestation of the CF basic defect such as CFTR-mediated residual chloride secretion and low response to amiloride. We have reviewed transcriptome data obtained from intestinal epithelial samples of homozygotes for c.1521_1523delCTT in CFTR, which were stratified for their EHF genetic background. Transcripts that were upregulated among homozygotes for c.1521_1523delCTT in CFTR, who carry two rare EHF alleles, were enriched for genes that alter protein glycosylation and trafficking, both mechanisms being pivotal for the effective targeting of fully functional p.Phe508del-CFTR to the apical membrane of epithelial cells. We conclude that EHF modifies the CF phenotype by altering capabilities of the epithelial cell to correctly process the folding and trafficking of mutant p.Phe508del-CFTR.
Collapse
Affiliation(s)
- Frauke Stanke
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Andrea van Barneveld
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Silke Hedtfeld
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Stefan Wölfl
- Institute for Pharmacy and Molecular Biotechnology, Ruperto-Carola University of Heidelberg, Heidelberg, Germany
| | - Tim Becker
- 1] German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany [2] Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Burkhard Tümmler
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
30
|
Jung JJ, Inamdar SM, Tiwari A, Ye D, Lin F, Choudhury A. Syntaxin 16 regulates lumen formation during epithelial morphogenesis. PLoS One 2013; 8:e61857. [PMID: 23626741 PMCID: PMC3633931 DOI: 10.1371/journal.pone.0061857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
The formation and maintenance of cell-cell junctions, both under physiological and pathological conditions, requires the targeting and trafficking of junctional proteins. Proteins of the syntaxin (Stx)-family localize to a variety of subcellular membranes and contribute to intracellular transport of cargo by regulating vesicle fusion events at these sites. Unlike plasma membrane localized Stxs, the roles of endosome- and Golgi-localized stx proteins in epithelial morphogenesis are less understood. Here we show that Stx16- an endosome- and Golgi-localized target-membrane soluble N-ethylmaleimide attachment protein receptor (t-SNARE) that plays a role in membrane trafficking between these compartments - is essential for lumen development. In cultured Madin Darby Canine Kidney (MDCK) cells, Stx16 was selectively upregulated as sparsely plated cells attained confluency. Stx16-depleted confluent monolayers consistently showed lower transepithelial resistance than control monolayers, and failed to maintain endogenous and ectopically expressed E-cadherin at the adherens junctions due to decreased recycling. We further found that whereas cysts formed by MDCK cells cultured in Matrigel have a single hollow lumen, those formed by stx16-depleted counterparts had multiple lumens, due to abnormal orientiation of the mitotic spindle. Finally, a similar role for stx16 function in vivo is indicated by our analysis of pronephric-duct development in zebrafish expressing the claudinB:lynGFP transgene; lack of stx16 function in this structure (in stx16-morphant embryos) led to the development of enlarged, torturous pronephric ducts with more than one lumen. Taken together, our in vitro and in vivo studies establish a role for Stx16 in maintaining the integrity of cell-cell junctions, and thereby in morphogenesis of the kidney epithelial lumen.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shivangi M. Inamdar
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ajit Tiwari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ding Ye
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Fang Lin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amit Choudhury
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
- Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
31
|
Lee JH, Nam JH, Park J, Kang DW, Kim JY, Lee MG, Yoon JS. Regulation of SLC26A3 activity by NHERF4 PDZ-mediated interaction. Cell Signal 2012; 24:1821-30. [DOI: 10.1016/j.cellsig.2012.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 12/12/2022]
|
32
|
Gee HY, Noh SH, Tang BL, Kim KH, Lee MG. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 2011; 146:746-60. [PMID: 21884936 DOI: 10.1016/j.cell.2011.07.021] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/04/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022]
Abstract
The most prevalent disease-causing mutation of CFTR is the deletion of Phe508 (ΔF508), which leads to defects in conventional Golgi-mediated exocytosis and cell surface expression. We report that ΔF508-CFTR surface expression can be rescued in vitro and in vivo by directing it to an unconventional GRASP-dependent secretion pathway. An integrated molecular and physiological analysis indicates that mechanisms associated with ER stress induce cell surface trafficking of the ER core-glycosylated wild-type and ΔF508-CFTR via the GRASP-dependent pathway. Phosphorylation of a specific site of GRASP and the PDZ-based interaction between GRASP and CFTR are critical for this unconventional surface trafficking. Remarkably, transgenic expression of GRASP in ΔF508-CFTR mice restores CFTR function and rescues mouse survival without apparent toxicity. These findings provide insight into how unconventional protein secretion is activated, and offer a potential therapeutic strategy for the treatment of cystic fibrosis and perhaps diseases stemming from other misfolded proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
33
|
Choi JH, Murray JW, Wolkoff AW. PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1. Am J Physiol Gastrointest Liver Physiol 2011; 300:G384-93. [PMID: 21183661 PMCID: PMC3064118 DOI: 10.1152/ajpgi.00500.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although perturbation of organic anion transport protein (oatp) cell surface expression can result in drug toxicity, little is known regarding mechanisms regulating its subcellular distribution. Many members of the oatp family, including oatp1a1, have a COOH-terminal PDZ consensus binding motif that interacts with PDZK1, while serines upstream of this site (S634 and S635) can be phosphorylated. Using oatp1a1 as a prototypical member of the oatp family, we prepared plasmids in which these serines were mutated to glutamic acid [E634E635 (oatp1a1(EE)), phosphomimetic] or alanine [A634A635 (oatp1a1(AA)), nonphosphorylatable]. Distribution of oatp1a1(AA) and oatp1a1(EE) was largely intracellular in transfected human embryonic kidney (HEK) 293T cells. Cotransfection with a plasmid encoding PDZK1 revealed that oatp1a1(AA) was now expressed largely on the cell surface, while oatp1a1(EE) remained intracellular. To quantify these changes, studies were performed in HuH7 cells stably transfected with these oatp1a1 plasmids. These cells endogenously express PDZK1. Surface biotinylation at 4°C followed by shift to 37°C showed that oatp1a1(EE) internalizes quickly compared with oatp1a1(AA). To examine a physiological role for phosphorylation in oatp1a1 subcellular distribution, studies were performed in rat hepatocytes exposed to extracellular ATP, a condition that stimulates serine phosphorylation of oatp1a1 via activity of a purinergic receptor. Internalization of oatp1a1 under these conditions was rapid. Thus, although PDZK1 binding is required for optimal cell surface expression of oatp1a1, phosphorylation provides a mechanism for fast regulation of the distribution of oatp1a1 between the cell surface and intracellular vesicular pools. Identification of the proteins and motor molecules that mediate these trafficking events represents an important area for future study.
Collapse
Affiliation(s)
- Jo H. Choi
- 1Marion Bessin Liver Research Center, ,3Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John W. Murray
- 1Marion Bessin Liver Research Center, ,3Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Allan W. Wolkoff
- 1Marion Bessin Liver Research Center, ,2Division of Gastroenterology and Liver Diseases, and ,3Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Tang BL, Gee HY, Lee MG. The Cystic Fibrosis Transmembrane Conductance Regulator's Expanding SNARE Interactome. Traffic 2011; 12:364-71. [DOI: 10.1111/j.1600-0854.2011.01161.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|