1
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
2
|
Abdulghani M, Razavian NB, Burdick JT, Domingo E, Cheung VG, Humphrey TC. Isoform Switching Regulates the Response to Ionizing Radiation Through SRSF1. Int J Radiat Oncol Biol Phys 2024; 119:1517-1529. [PMID: 38447610 DOI: 10.1016/j.ijrobp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity. METHODS AND MATERIALS Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing. We examined RNA binding protein motifs within the sequences of IR-responsive isoforms and validated the serine/arginine-rich splicing factor 1 (SRSF1) as a predominant mediator through RNA immunoprecipitation. We further investigated the effects of SRSF1 on radiosensitivity by RNA interference and by analyzing publicly available data on patients with cancer. RESULTS We identified ∼1900 radiation-responsive alternatively spliced isoforms. Many isoforms were differentially expressed without changes in their overall gene expression. Over a third of these transcripts underwent exon skipping, while others used proximal last exons. These IR-responsive isoforms tended to be shorter transcripts missing vital domains for preventing apoptosis and promoting cell division but retaining those necessary for DNA repair. Our combined computational, genetic, and molecular analyses identified the proto-oncogene SRSF1 as a mediator of these radiation-induced isoform-switching events that promote apoptosis. After exposure to DNA double-strand break-inducing agents, SRSF1 expression decreased. A reduction in SRSF1 increased radiosensitivity in vitro and among patients with cancer. CONCLUSIONS We establish a pivotal role for isoform switching in the cellular response to IR and propose SRSF1 as a promising biomarker for assessing radiation therapy effectiveness.
Collapse
Affiliation(s)
- Majd Abdulghani
- Rhodes Trust and; Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Niema B Razavian
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Joshua T Burdick
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Vivian G Cheung
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.
| | - Timothy C Humphrey
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, United Kingdom.
| |
Collapse
|
3
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
4
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res 2021; 40:194. [PMID: 34118966 PMCID: PMC8196531 DOI: 10.1186/s13046-021-02001-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Dapeng Zhao
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caipeng Xu
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaodong Jin
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xuetian Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yupei Wang
- Medical Genetics Center of Gansu Maternal and Child Health Care Center, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Li
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
7
|
Sohail M, Shkreta L, Toutant J, Rabea S, Babeu JP, Huard C, Coulombe-Huntington J, Delannoy A, Placet M, Geha S, Gendron FP, Boudreau F, Tyers M, Grierson DS, Chabot B. A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer 2021; 3:zcab019. [PMID: 34316707 PMCID: PMC8210162 DOI: 10.1093/narcan/zcab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Safwat Rabea
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Aurélie Delannoy
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Morgane Placet
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
10
|
BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 2019; 10:177. [PMID: 30792387 PMCID: PMC6384907 DOI: 10.1038/s41419-019-1407-6] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
The BCl-2 family has long been identified for its role in apoptosis. Following the initial discovery of BCL-2 in the context of B-cell lymphoma in the 1980s, a number of homologous proteins have since been identified. The members of the Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation. The BH domains facilitate the family members’ interactions with each other and can indicate pro- or anti-apoptotic function. Traditionally, these proteins are categorised into one of the three subfamilies; anti-apoptotic, BH3-only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins. Each of the BH3-only or anti-apoptotic proteins has a distinct pattern of activation, localisation and response to cell death or survival stimuli. All of these can vary across cell or stress types, or developmental stage, and this can cause the delineation of the roles of BCL-2 family members. Added to this complexity is the presence of relatively uncharacterised isoforms of many of the BCL-2 family members. There is a gap in our knowledge regarding the function of BCL-2 family isoforms. BH domain status is not always predictive or indicative of protein function, and several other important sequences, which can contribute to apoptotic activity have been identified. While therapeutic strategies targeting the BCL-2 family are constantly under development, it is imperative that we understand the molecules, which we are attempting to target. This review, discusses our current knowledge of anti-apoptotic BCL-2 family isoforms. With significant improvements in the potential for splicing therapies, it is important that we begin to understand the distinctions of the BCL-2 family, not limited to just the mechanisms of apoptosis control, but in their roles outside of apoptosis.
Collapse
|
11
|
Buhl IK, Santoni-Rugiu E, Ravn J, Hansen A, Christensen IJ, Jensen T, Pratt B, Askaa J, Jensen PB, Knudsen S, Sørensen JB. Molecular prediction of adjuvant cisplatin efficacy in Non-Small Cell Lung Cancer (NSCLC)-validation in two independent cohorts. PLoS One 2018; 13:e0194609. [PMID: 29566065 PMCID: PMC5864030 DOI: 10.1371/journal.pone.0194609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Effective predictive biomarkers for selection of patients benefiting from adjuvant platinum-based chemotherapy in non-small cell lung cancer (NSCLC) are needed. Based on a previously validated methodology, molecular profiles of predicted sensitivity in two patient cohorts are presented. METHODS The profiles are correlations between in vitro sensitivity to cisplatin and vinorelbine and baseline mRNA expression of the 60 cell lines in the National Cancer Institute panel. An applied clinical samples filter focused the profiles to clinically relevant genes. The profiles were tested on 1) snap-frozen tumors from 133 patients with completely resected stage 1B-2 NSCLC randomized to adjuvant cisplatin and vinorelbine (ACV, n = 71) or no adjuvant treatment (OBS, n = 62) and 2) formalin-fixed paraffin-embedded (FFPE) tumors from 95 patients with completely resected stage 1A-3B NSCLC receiving adjuvant cisplatin and vinorelbine. RESULTS The combined cisplatin and vinorelbine profiles showed: 1) univariate Hazard Ratio (HR) for sensitive versus resistant of 0.265 (95% CI:0.079-0.889, p = 0.032) in the ACV cohort and a HR of 0.28 in a multivariate model (95% CI:0.08-1.04, p = 0.0573); 2) significant prediction at 3 year survival from surgery in univariate (HR = 0.138 (95% CI:0.035-0.537), p = 0.004) and multivariate analysis (HR = 0.14 (95% CI:0.030-0.6), p = 0.0081). No discrimination was found in the OBS cohort (HR = 1.328, p = 0.60). The cisplatin predictor alone had similar figures with 1) univariate HR of 0.37 (95% CI:0.12-1.15, p = 0.09) in the ACV cohort and 2) univariate HR of 0.14 (95% CI:0.03-0.59, p = 0.0076) to three years. Functional analysis on the cisplatin profile revealed a group of upregulated genes related to RNA splicing as a part of DNA damage repair and apoptosis. CONCLUSIONS Profiles derived from snap-frozen and FFPE NSCLC tissue were prognostic and predictive in the patients that received cisplatin and vinorelbine but not in the cohort that did not receive adjuvant treatment.
Collapse
Affiliation(s)
- Ida Kappel Buhl
- Medical Prognosis Institute A/S, Hoersholm, Denmark
- Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Eric Santoni-Rugiu
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jesper Ravn
- Department of Thoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anker Hansen
- Medical Prognosis Institute A/S, Hoersholm, Denmark
- Oncology Venture Aps, Hoersholm, Denmark
| | | | - Thomas Jensen
- Medical Prognosis Institute A/S, Hoersholm, Denmark
- Oncology Venture Aps, Hoersholm, Denmark
| | | | - Jon Askaa
- Medical Prognosis Institute A/S, Hoersholm, Denmark
| | - Peter Buhl Jensen
- Medical Prognosis Institute A/S, Hoersholm, Denmark
- Oncology Venture Aps, Hoersholm, Denmark
| | - Steen Knudsen
- Medical Prognosis Institute A/S, Hoersholm, Denmark
- Oncology Venture Aps, Hoersholm, Denmark
| | - Jens Benn Sørensen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Zhdanov DD, Gladilina YA, Grishin DV, Pokrovsky VS, Pokrovskaya MV, Aleksandrova SS, Sokolov NN. Apoptotic Endonuclease EndoG Induces Alternative Splicing of Telomerase TERT Catalytic Subunit, Caspase-2, DNase I, and BCL-x in Human, Murine, and Rat CD4+ T Lymphocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L. Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 2018; 64:971-983. [PMID: 29497809 DOI: 10.1007/s00294-018-0819-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/14/2023]
Abstract
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The protection of genome integrity is ensured by the so-called "DNA damage response" (DDR), a set of evolutionary-conserved events that, triggered upon DNA damage detection, arrests the cell cycle, and attempts DNA repair. Here, we review the role of the DDR proteins as post-transcriptional regulators of gene expression, in addition to their roles in DNA damage recognition, signaling, and repair. At the same time, we discuss recent insights into how pre-mRNA splicing factors go beyond their splicing activities and play direct functions in detecting, signaling, and repairing DNA damage. The importance of extensive two-way crosstalk and interaction between the RNA processing and the DDR stems from growing evidence that the defects of their communication lead to genomic instability.
Collapse
Affiliation(s)
- B Mikolaskova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Jurcik
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - I Cipakova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Kretova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Chovanec
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - L Cipak
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
14
|
hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep 2018; 8:2206. [PMID: 29396485 PMCID: PMC5797138 DOI: 10.1038/s41598-018-20360-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Little is known about how RNA binding proteins cooperate to control splicing, and how stress pathways reconfigure these assemblies to alter splice site selection. We have shown previously that SRSF10 plays an important role in the Bcl-x splicing response to DNA damage elicited by oxaliplatin in 293 cells. Here, RNA affinity assays using a portion of the Bcl-x transcript required for this response led to the recovery of the SRSF10-interacting protein 14-3-3ε and the Sam68-interacting protein hnRNP A1. Although SRSF10, 14-3-3ε, hnRNP A1/A2 and Sam68 do not make major contributions to the regulation of Bcl-x splicing under normal growth conditions, upon DNA damage they become important to activate the 5′ splice site of pro-apoptotic Bcl-xS. Our results indicate that DNA damage reconfigures the binding and activity of several regulatory RNA binding proteins on the Bcl-x pre-mRNA. Moreover, SRSF10, hnRNP A1/A2 and Sam68 collaborate to drive the DNA damage-induced splicing response of several transcripts that produce components implicated in apoptosis, cell-cycle control and DNA repair. Our study reveals how the circuitry of splicing factors is rewired to produce partnerships that coordinate alternative splicing across processes crucial for cell fate.
Collapse
|
15
|
Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors. Cell Rep 2017; 17:1990-2003. [PMID: 27851963 PMCID: PMC5483951 DOI: 10.1016/j.celrep.2016.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5′ splice site of Bcl-xS is largely repressed, SRSF10 partially relieves repression and interacts with repressor hnRNP K and stimulatory hnRNP F/H proteins. Oxaliplatin abrogates the interaction of SRSF10 with hnRNP F/H and decreases the association of SRSF10 and hnRNP K with the Bcl-x pre-mRNA. Dephosphorylation of SRSF10 is linked with these changes. A broader analysis reveals that DNA damage co-opts SRSF10 to control splicing decisions in transcripts encoding components involved in DNA repair, cell-cycle control, and apoptosis. DNA damage therefore alters the interactions between splicing regulators to elicit a splicing response that determines cell fate.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Johanne Toutant
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
16
|
Lambert CA, Garbacki N, Colige AC. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment. Int J Biochem Cell Biol 2017; 91:84-97. [PMID: 28433505 DOI: 10.1016/j.biocel.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 01/14/2023]
|
17
|
Shkreta L, Blanchette M, Toutant J, Wilhelm E, Bell B, Story BA, Balachandran A, Cochrane A, Cheung PK, Harrigan PR, Grierson DS, Chabot B. Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication. Nucleic Acids Res 2017; 45:4051-4067. [PMID: 27928057 PMCID: PMC5397194 DOI: 10.1093/nar/gkw1223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
We recently identified the 4-pyridinone-benzisothiazole carboxamide compound 1C8 as displaying strong anti-HIV-1 potency against a variety of clinical strains in vitro. Here we show that 1C8 decreases the expression of HIV-1 and alters splicing events involved in the production of HIV-1 mRNAs. Although 1C8 was designed to be a structural mimic of the fused tetracyclic indole compound IDC16 that targets SRSF1, it did not affect the splice site shifting activity of SRSF1. Instead, 1C8 altered splicing regulation mediated by SRSF10. Depleting SRSF10 by RNA interference affected viral splicing and, like 1C8, decreased expression of Tat, Gag and Env. Incubating cells with 1C8 promoted the dephosphorylation of SRSF10 and increased its interaction with hTra2β, a protein previously implicated in the control of HIV-1 RNA splicing. While 1C8 affects the alternative splicing of cellular transcripts controlled by SRSF10 and hTra2β, concentrations greater than those needed to inhibit HIV-1 replication were required to elicit significant alterations. Thus, the ability of 1C8 to alter the SRSF10-dependent splicing of HIV-1 transcripts, with minor effects on cellular splicing, supports the view that SRSF10 may be used as a target for the development of new anti-viral agents.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Benjamin A Story
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter K Cheung
- BC Centre for Excellence in HIV/AIDS, 608-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, 608-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
18
|
Trombetta-Lima M, Winnischofer SMB, Demasi MAA, Astorino Filho R, Carreira ACO, Wei B, de Assis-Ribas T, Konig MS, Bowman-Colin C, Oba-Shinjo SM, Marie SKN, Stetler-Stevenson W, Sogayar MC. Isolation and characterization of novel RECK tumor suppressor gene splice variants. Oncotarget 2016; 6:33120-33. [PMID: 26431549 PMCID: PMC4741753 DOI: 10.18632/oncotarget.5305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | | | - Marcos Angelo Almeida Demasi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Renato Astorino Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Ana Claudia Oliveira Carreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Beiyang Wei
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4605, USA
| | - Thais de Assis-Ribas
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | | | - Christian Bowman-Colin
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Dana Farber Cancer Institute, Harvard Medical School, Cambridge, MA, 02138, USA
| | - Sueli Mieko Oba-Shinjo
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Departmento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Suely Kazue Nagahashi Marie
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Departmento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01246-000, Brazil
| | - William Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4605, USA
| | - Mari Cleide Sogayar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000 SP, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| |
Collapse
|
19
|
Skrdlant L, Stark JM, Lin RJ. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol 2016; 17:18. [PMID: 27552991 PMCID: PMC4994158 DOI: 10.1186/s12867-016-0071-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Serine-arginine rich splicing factor 2 (SRSF2) is a protein known for its role in RNA splicing and genome stability. It has been recently discovered that SRSF2, along with other splicing regulators, is frequently mutated in patients with myelodysplastic syndrome (MDS). The most common MDS mutations in SRSF2 occur at proline 95; the mutant proteins are shown to have different RNA binding preferences, which may contribute to splicing changes detected in mutant cells. However, the influence of these SRSF2 MDS-associated mutations on specific splicing events remains poorly understood. RESULTS A tetracycline-inducible TF-1 erythroleukemia cell line was transduced with retroviruses to create cell lines expressing HA-tagged wildtype SRSF2, SRSF2 with proline 95 point mutations found in MDS, or SRSF2 with a deletion of one of the four major domains of the protein. Effects of these mutants on apoptosis and specific alternative splicing events were evaluated. Cells were also treated with DNA damaging drugs for comparison. MDS-related P95 point mutants of SRSF2 were expressed and phosphorylated at similar levels as wildtype SRSF2. However, cells expressing mutant SRSF2 exhibited higher levels of apoptosis than cells expressing wildtype SRSF2. Regarding alternative splicing events, in nearly all examined cases, SRSF2 P95 mutants acted in a similar fashion as the wildtype SRSF2. However, cells expressing SRSF2 P95 mutants had a percent increase in the C5 spliced isoform of cell division cycle 25C (CDC25C). The same alternative splicing of CDC25C was detected by treating cells with DNA damaging drugs, such as cisplatin, camptothecin, and trichostatin A at appropriate dosage. However, unlike DNA damaging drugs, SRSF2 P95 mutants did not activate the Ataxia telangiectasia mutated (ATM) pathway. CONCLUSION SRSF2 P95 mutants lead to alternative splicing of CDC25C in a manner that is not dependent on the DNA damage response.
Collapse
Affiliation(s)
- Lindsey Skrdlant
- Department of Molecular and Cellular Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| | - Ren-Jang Lin
- Department of Molecular and Cellular Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
20
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
21
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
22
|
Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS One 2015; 10:e0139812. [PMID: 26462236 PMCID: PMC4604205 DOI: 10.1371/journal.pone.0139812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis.
Collapse
|
23
|
Chabot B. My road to alternative splicing control: from simple paths to loops and interconnections. Biochem Cell Biol 2015; 93:171-9. [PMID: 25759250 DOI: 10.1139/bcb-2014-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the functional importance of alternative splicing being validated in nearly every mammalian biological system and implicated in many human diseases, it is now crucial to identify the molecular programs that control the production of splice variants. In this article, I will survey how our knowledge of the basic principles of alternative splicing control evolved over the last 25 years. I will also describe how investigation of the splicing control of an apoptotic regulator led us to identify novel effectors and revealed the existence of converging pathways linking splicing decisions to DNA damage. Finally, I will review how our efforts at developing tools designed to monitor and redirect splicing helped assess the impact of misregulated splicing in cancer.
Collapse
Affiliation(s)
- Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
24
|
Naro C, Bielli P, Pagliarini V, Sette C. The interplay between DNA damage response and RNA processing: the unexpected role of splicing factors as gatekeepers of genome stability. Front Genet 2015; 6:142. [PMID: 25926848 PMCID: PMC4397863 DOI: 10.3389/fgene.2015.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Genome integrity is constantly threatened by endogenous and exogenous factors. However, its preservation is ensured by a network of pathways that prevent and/or repair the lesion, which constitute the DNA damage response (DDR). Expression of the key proteins involved in the DDR is controlled by numerous post-transcriptional mechanisms, among which pre-mRNA splicing stands out. Intriguingly, several splicing factors (SFs) have been recently shown to play direct functions in DNA damage prevention and repair, which go beyond their expected splicing activity. At the same time, evidence is emerging that DNA repair proteins (DRPs) can actively sustain the DDR by acting as post-transcriptional regulator of gene expression, in addition to their well-known role in the mechanisms of signaling and repair of the lesion. Herein, we will review these non-canonical functions of both SFs and DRPs, which suggest the existence of a tight interplay between splicing regulation and canonical DNA safeguard mechanisms ensuring genome stability.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| |
Collapse
|
25
|
Gabriel M, Delforge Y, Deward A, Habraken Y, Hennuy B, Piette J, Klinck R, Chabot B, Colige A, Lambert C. Role of the splicing factor SRSF4 in cisplatin-induced modifications of pre-mRNA splicing and apoptosis. BMC Cancer 2015; 15:227. [PMID: 25884497 PMCID: PMC4399393 DOI: 10.1186/s12885-015-1259-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
Background Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. Methods Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. Results We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin–induced splicing alterations required class I PI3Ks P110β but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. Conclusion Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maude Gabriel
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Yves Delforge
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Adeline Deward
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Yvette Habraken
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Benoit Hennuy
- GIGA Genomics Platform, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Roscoe Klinck
- Laboratory of Functional Genomics and Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Benoit Chabot
- Laboratory of Functional Genomics and Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| |
Collapse
|
26
|
Durie D, Hatzoglou M, Chakraborty P, Holcik M. HuR controls mitochondrial morphology through the regulation of Bcl xL translation. ACTA ACUST UNITED AC 2014; 1. [PMID: 25328858 PMCID: PMC4199323 DOI: 10.4161/trla.23980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BclxL is a key prosurvival factor that in addition to controlling mitochondrial membrane permeability regulates mitochondrial network dynamics. The expression of BclxL is regulated at the level of transcription, splicing and selective translation. In this study, we show that the RNA-binding protein HuR, which is known to orchestrate an anti-apoptotic cellular program, functions as a translational repressor of BclxL. We show that HuR binds directly to the 5`UTR of BclxL, and represses BclxL translation through the inhibition of its internal ribosome entry site (IRES). Reduction of HuR levels leads to the derepression of BclxL translation and subsequent rearrangement of the mitochondrial network. Our results place BclxL into the HuR-regulated operon and provide further insight into the regulation of cellular stress response by HuR.
Collapse
Affiliation(s)
- Danielle Durie
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute
| | - Maria Hatzoglou
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio, U.S.A
| | - Pranesh Chakraborty
- Department of Pediatrics, University of Ottawa ; Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, K1H 8L1, Canada
| | - Martin Holcik
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute ; Department of Pediatrics, University of Ottawa
| |
Collapse
|
27
|
Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014; 42:9047-62. [PMID: 25030905 PMCID: PMC4132723 DOI: 10.1093/nar/gku601] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15.
Collapse
Affiliation(s)
- Sébastien Britton
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Emma Dernoncourt
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Christine Delteil
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Carine Froment
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Odile Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Bernard Salles
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
28
|
Thomas MP, Lieberman J. Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 2013; 253:237-52. [PMID: 23550650 DOI: 10.1111/imr.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of the regulation of gene expression historically focused on transcription. However, during stress and apoptosis, profound gene expression changes occur more rapidly and globally than is possible by regulating transcription. Posttranscriptional changes in mRNA processing and translation in response to diverse stresses shut down most protein translation to conserve energy and lead to rapid remodeling of the proteome to promote repair. Pre-mRNA splicing and mRNA stability are fundamentally altered under some stress conditions. Stress pathways coordinate a cytoprotective repair response, while simultaneously initiating signaling that can ultimately trigger cell death. How the cell mediates the decision between repair and apoptosis is largely not understood. In some stresses, microRNAs may tip the balance. Here, we review what is known about posttranscriptional gene regulation during stress, focusing on what is still unknown and how new technologies might be used to understand what changes are most physiologically important in different forms of stress and death.
Collapse
Affiliation(s)
- Marshall P Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
29
|
Risso G, Pelisch F, Pozzi B, Mammi P, Blaustein M, Colman-Lerner A, Srebrow A. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle. Cell Cycle 2013; 12:3165-74. [PMID: 24013425 DOI: 10.4161/cc.26183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G₁/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase.
Collapse
Affiliation(s)
- Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires; Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
30
|
Montecucco A, Biamonti G. Pre-mRNA processing factors meet the DNA damage response. Front Genet 2013; 4:102. [PMID: 23761808 PMCID: PMC3674313 DOI: 10.3389/fgene.2013.00102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/20/2013] [Indexed: 12/04/2022] Open
Abstract
It is well-known that DNA-damaging agents induce genome instability, but only recently have we begun to appreciate that chromosomes are fragile per se and frequently subject to DNA breakage. DNA replication further magnifies such fragility, because it leads to accumulation of single-stranded DNA. Recent findings suggest that chromosome fragility is similarly increased during transcription. Transcripts produced by RNA polymerase II (RNAPII) are subject to multiple processing steps, including maturation of 5′ and 3′ ends and splicing, followed by transport to the cytoplasm. RNA maturation starts on nascent transcripts and is mediated by a number of diverse proteins and ribonucleoprotein particles some of which are recruited cotranscriptionally through interactions with the carboxy-terminal domain of RNAPII. This coupling is thought to maximize efficiency of pre-mRNA maturation and directly impacts the choice of alternative splice sites. Mounting evidence suggests that lack of coordination among different RNA maturation steps, by perturbing the interaction of nascent transcripts with the DNA template, has deleterious effects on genome stability. Thus, in the absence of proper surveillance mechanisms, transcription could be a major source of DNA damage in cancer. Recent high-throughput screenings in human cells and budding yeast have identified several factors implicated in RNA metabolism that are targets of DNA damage checkpoint kinases: ATM (ataxia telangiectasia mutated) and ATR (ATM-Rad3 related) (Tel1 and Mec1 in budding yeast, respectively). Moreover, inactivation of various RNA processing factors induces accumulation of γH2AX foci, an early sign of DNA damage. Thus, a complex network is emerging that links DNA repair and RNA metabolism. In this review we provide a comprehensive overview of the role played by pre-mRNA processing factors in the cell response to DNA damage and in the maintenance of genome stability.
Collapse
|
31
|
Albert H, Battaglia E, Monteiro C, Bagrel D. Genotoxic stress modulates CDC25C phosphatase alternative splicing in human breast cancer cell lines. Mol Oncol 2012; 6:542-52. [PMID: 22871320 DOI: 10.1016/j.molonc.2012.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022] Open
Abstract
CDC25 (cell division cycle 25) phosphatases are essential for cell cycle control under normal conditions and in response to DNA damage. They are represented by three isoforms, CDC25A, B and C, each of them being submitted to an alternative splicing mechanism. Alternative splicing of many genes is affected in response to genotoxic stress, but the impact of such a stress on CDC25 splicing has never been investigated. In this study, we demonstrate that genotoxic agents (doxorubicin, camptothecin, etoposide and cisplatin), alter the balance between CDC25C splice variants in human breast cancer cell lines both at the mRNA and protein levels. This modulation occurs during the response to moderate, sub-lethal DNA damage. Our results also suggest that the CDC25C splice variants expression shift induced by a genotoxic stress is dependent on the ATM/ATR signaling but not on p53. This study highlights the modulation of CDC25C alternative splicing as an additional regulatory event involved in cellular response to DNA damage in breast cancer cells.
Collapse
Affiliation(s)
- Hélène Albert
- Université de Lorraine, LIMBP-SRSMC, Rue du Général Delestraint, EA 3940, Metz F-57070, France
| | | | | | | |
Collapse
|
32
|
Huang Y, Jeong JS, Okamura J, Sook-Kim M, Zhu H, Guerrero-Preston R, Ratovitski EA. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance. Cell Cycle 2012; 11:2367-79. [PMID: 22672905 DOI: 10.4161/cc.20863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin chemoresistance is a clinical problem that leads to treatment failure in various human epithelial cancers. Members of tumor protein (TP) p53 family play various critical roles in the multiple molecular mechanisms underlying the chemoresistance of tumor cells. However, the in-depth mechanisms of the cellular response to cisplatin-induced cell death are still under thorough investigation. We previously showed that squamous cell carcinoma (SCC) cells exposed to cisplatin display an ATM-dependent phosphorylation of ΔNp63α, leading to a specific function of the phosphorylated (p)-ΔNp63α transcription factor in cisplatin-sensitive tumor cells. We further found that SCC cells expressing non-p-ΔNp63α-S385G became cisplatin-resistant. Using quantitative mass-spectrometry of protein complexes labeled with isobaric tags, we showed that TP53 and ΔNp63α are involved in numerous protein-protein interactions, which are likely to be implicated in the response of tumor cells to cisplatin exposure. We found that p-ΔNp63α binds to the splicing complex, leading to repression of mRNA splicing and activation of ACIN1-mediated cell death pathway. In contrast to p-ΔNp63α, non-p-ΔNp63α fails to bind the critical members of the splicing complex, thereby leading to activation of RNA splicing and reduction of cell death pathway. Overall, our studies provide an integrated proteomic platform in making a case for the role of the p53/p63 interactome in cisplatin chemoresistance.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Institute of Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1092-101. [DOI: 10.1016/j.bbamcr.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
|
34
|
Alternative splicing interference by xenobiotics. Toxicology 2012; 296:1-12. [DOI: 10.1016/j.tox.2012.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022]
|
35
|
Shultz JC, Vu N, Shultz MD, Mba MUU, Shapiro BA, Chalfant CE. The Proto-oncogene PKCι regulates the alternative splicing of Bcl-x pre-mRNA. Mol Cancer Res 2012; 10:660-9. [PMID: 22522453 DOI: 10.1158/1541-7786.mcr-11-0363] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two splice variants derived from the Bcl-x gene via alternative 5' splice site selection (5'SS) are proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L). Previously, our laboratory showed that apoptotic signaling pathways regulated the alternative 5'SS selection via protein phosphatase-1 and de novo ceramide. In this study, we examined the elusive prosurvival signaling pathways that regulate the 5'SS selection of Bcl-x pre-mRNA in cancer cells. Taking a broad-based approach by using a number of small-molecule inhibitors of various mitogenic/survival pathways, we found that only treatment of non-small cell lung cancer (NSCLC) cell lines with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (50 μmol/L) or the pan-protein kinase C (PKC) inhibitor Gö6983 (25 μmol/L) decreased the Bcl-x(L)/(s) mRNA ratio. Pan-PKC inhibitors that did not target the atypical PKCs, PKCι and PKCζ, had no effect on the Bcl-x(L)/(s) mRNA ratio. Additional studies showed that downregulation of the proto-oncogene, PKCι, in contrast to PKCζ, also resulted in a decrease in the Bcl-x(L)/(s) mRNA ratio. Furthermore, downregulation of PKCι correlated with a dramatic decrease in the expression of SAP155, an RNA trans-acting factor that regulates the 5'SS selection of Bcl-x pre-mRNA. Inhibition of the PI3K or atypical PKC pathway induced a dramatic loss of SAP155 complex formation at ceramide-responsive RNA cis-element 1. Finally, forced expression of Bcl-x(L) "rescued" the loss of cell survival induced by PKCι siRNA. In summary, the PI3K/PKCι regulates the alternative splicing of Bcl-x pre-mRNA with implications in the cell survival of NSCLC cells.
Collapse
Affiliation(s)
- Jacqueline C Shultz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Room 2-016, Sanger Hall, 1101 East Marshall Street, P.O. Box 980614, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
36
|
Plötz M, Hossini AM, Gillissen B, Daniel PT, Stockfleth E, Eberle J. Mutual regulation of Bcl-2 proteins independent of the BH3 domain as shown by the BH3-lacking protein Bcl-x(AK). PLoS One 2012; 7:e34549. [PMID: 22506026 PMCID: PMC3323539 DOI: 10.1371/journal.pone.0034549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/02/2012] [Indexed: 01/01/2023] Open
Abstract
The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-x(AK), a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-x(AK) may trigger apoptosis.For efficient overexpression, Bcl-x(AK) was subcloned in an adenoviral vector under Tet-OFF control. The construct resulted in significant apoptosis induction in melanoma and nonmelanoma cell lines with up to 50% apoptotic cells as well as decreased cell proliferation and survival. Disruption of mitochondrial membrane potential, and cytochrome c release clearly indicated activation of the mitochondrial apoptosis pathways. Both Bax and Bak were activated as shown by clustering and conformation analysis. Mitochondrial translocation of Bcl-x(AK) appeared as an essential and initial step. Bcl-x(AK) was critically dependent on either Bax or Bak, and apoptosis was abrogated in Bax/Bak double knockout conditions as well by overexpression of Bcl-2 or Bcl-x(L). A direct interaction with Bcl-2, Bax, Bad, Noxa or Puma was however not seen by immunoprecipitation. Thus besides BH3-mediated interactions, there exists an additional way for mutual regulation of Bcl-2 proteins, which is independent of the BH3. This pathway appears to play a supplementary role also for other proapoptotic family members, and its unraveling may help to overcome therapy resistance in cancer.
Collapse
Affiliation(s)
- Michael Plötz
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany
| | - Amir M. Hossini
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany
| | - Bernhard Gillissen
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Berlin, Germany
| | - Peter T. Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Berlin, Germany
| | - Eggert Stockfleth
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany
- * E-mail:
| |
Collapse
|
37
|
Lee J, Zhou J, Zheng X, Cho S, Moon H, Loh TJ, Jo K, Shen H. Identification of a novel cis-element that regulates alternative splicing of Bcl-x pre-mRNA. Biochem Biophys Res Commun 2012; 420:467-72. [PMID: 22440396 DOI: 10.1016/j.bbrc.2012.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.
Collapse
Affiliation(s)
- Jaehoon Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription. Mol Cell Biol 2011; 32:751-62. [PMID: 22158966 DOI: 10.1128/mcb.06255-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complex functional coupling exists between transcriptional elongation and pre-mRNA alternative splicing. Pausing sites and changes in the rate of transcription by RNA polymerase II (RNAPII) may therefore have fundamental impacts in the regulation of alternative splicing. Here, we show that the elongation and splicing-related factor TCERG1 regulates alternative splicing of the apoptosis gene Bcl-x in a promoter-dependent manner. TCERG1 promotes the splicing of the short isoform of Bcl-x (Bcl-x(s)) through the SB1 regulatory element located in the first half of exon 2. Consistent with these results, we show that TCERG1 associates with the Bcl-x pre-mRNA. A transcription profile analysis revealed that the RNA sequences required for the effect of TCERG1 on Bcl-x alternative splicing coincide with a putative polymerase pause site. Furthermore, TCERG1 modifies the impact of a slow polymerase on Bcl-x alternative splicing. In support of a role for an elongation mechanism in the transcriptional control of Bcl-x alternative splicing, we found that TCERG1 modifies the amount of pre-mRNAs generated at distal regions of the endogenous Bcl-x. Most importantly, TCERG1 affects the rate of RNAPII transcription of endogenous human Bcl-x. We propose that TCERG1 modulates the elongation rate of RNAPII to relieve pausing, thereby activating the proapoptotic Bcl-x(S) 5' splice site.
Collapse
|
39
|
Paronetto M, Miñana B, Valcárcel J. The Ewing Sarcoma Protein Regulates DNA Damage-Induced Alternative Splicing. Mol Cell 2011; 43:353-68. [DOI: 10.1016/j.molcel.2011.05.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/14/2011] [Accepted: 05/25/2011] [Indexed: 01/20/2023]
|
40
|
Heyd F, Lynch KW. Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci 2011; 36:397-404. [PMID: 21596569 PMCID: PMC3155649 DOI: 10.1016/j.tibs.2011.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/23/2022]
Abstract
With recent advances in microarrays and sequencing it is now relatively straightforward to compare pre-mRNA splicing patterns in different cellular conditions on a genome-wide scale. Such studies have revealed extensive changes in cellular splicing programs in response to stimuli such as neuronal depolarization, DNA damage, immune signaling and cellular metabolic changes. However, for many years our understanding of the signaling pathways responsible for such splicing changes was greatly lacking. Excitingly, over the past few years this gap has begun to close. Recent studies now suggest notable trends in the mechanisms that link cellular stimuli to downstream alternative splicing events. These include regulated synthesis or degradation of splicing factors, differential protein-protein interactions, altered nuclear translocation and changes in transcription elongation.
Collapse
Affiliation(s)
- Florian Heyd
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
41
|
Wethkamp N, Hanenberg H, Funke S, Suschek CV, Wetzel W, Heikaus S, Grinstein E, Ramp U, Engers R, Gabbert HE, Mahotka C. Daxx-beta and Daxx-gamma, two novel splice variants of the transcriptional co-repressor Daxx. J Biol Chem 2011; 286:19576-19588. [PMID: 21482821 PMCID: PMC3103337 DOI: 10.1074/jbc.m110.196311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/26/2011] [Indexed: 12/15/2022] Open
Abstract
Daxx is involved in transcriptional control and apoptosis. It comprises several domains, including a regulatory C terminus that is responsible for the interaction with numerous proteins such as p53, promyelocytic leukemia protein (PML), and Hsp27. Here, we describe the identification and characterization of two novel variants of Daxx termed Daxx-β and Daxx-γ, which are generated by alternative splicing. Alternative splicing results in a truncated regulatory C terminus in both proteins. As a consequence, Daxx-β and Daxx-γ show a markedly decreased affinity to PML, which in turn is associated with a different subnuclear localization of these proteins compared with Daxx. Although Daxx is localized mainly in PML-oncogenic domains (PODs) Daxx-β and Daxx-γ display a distinct distribution pattern. Furthermore, Daxx-β and Daxx-γ show a decreased affinity to p53 also due to the truncated C terminus. We provide evidence that the p53 recruitment into PODs is Daxx isoform-dependent. The decreased affinity of Daxx-β/-γ to p53 and PML results in a diffuse localization of p53 throughout the nucleus. In contrast to Daxx, Daxx-β and Daxx-γ are unable to repress p53-mediated transcription. Therefore, alternative splicing of Daxx might indicate an additional level in the cellular apoptosis network.
Collapse
Affiliation(s)
- Nils Wethkamp
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- the Department of Pediatrics, the Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
- the Department of Otorhinolaryngology, Heinrich Heine University School of Medicine, D-40225 Düsseldorf, Germany, and
| | - Sarah Funke
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | | | - Wiebke Wetzel
- the Institute of Molecular Biology and Biochemistry II and
| | - Sebastian Heikaus
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Edgar Grinstein
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University Medical Faculty, D-40225 Düsseldorf, Germany
| | - Uwe Ramp
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Rainer Engers
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Helmut E. Gabbert
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Csaba Mahotka
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| |
Collapse
|