1
|
Ren W, Wang J, Zeng Y, Wang T, Meng J, Yao X. Differential age-related transcriptomic analysis of ovarian granulosa cells in Kazakh horses. Front Endocrinol (Lausanne) 2024; 15:1346260. [PMID: 38352714 PMCID: PMC10863452 DOI: 10.3389/fendo.2024.1346260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The Kazakh horse, renowned for its excellence as a breed, exhibits distinctive reproductive traits characterized by early maturity and seasonal estrus. While normal reproductive function is crucial for ensuring the breeding and expansion of the Kazakh horse population, a noteworthy decline in reproductive capabilities is observed after reaching 14 years of age. Methods In this study, ovarian granulosa cells (GCs) were meticulously collected from Kazakh horses aged 1, 2, 7, and above 15 years old (excluding 15 years old) for whole transcriptome sequencing. Results The analysis identified and selected differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs for each age group, followed by a thorough examination through GO enrichment analysis. The study uncovered significant variations in the expression profiles of mRNAs, lncRNAs, miRNAs, and circRNAs within GCs at different stages of maturity. Notably, eca-miR-486-3p and miR-486-y exhibited the highest degree of connectivity. Subsequent GO, KEGG, PPI, and ceRNA network analyses elucidated that the differentially expressed target genes actively participate in signaling pathways associated with cell proliferation, apoptosis, and hormonal regulation. These pathways include but are not limited to the MAPK signaling pathway, Hippo signaling pathway, Wnt signaling pathway, Calcium signaling pathway, Aldosterone synthesis and secretion, Cellular senescence, and NF-kappa B signaling pathway-essentially encompassing signal transduction pathways crucial to reproductive processes. Discussion This research significantly contributes to unraveling the molecular mechanisms governing follicular development in Kazakh horses. It establishes and preliminarily validates a differential regulatory network involving lncRNA-miRNA-mRNA, intricately associated with processes such as cell proliferation, differentiation, and apoptosis and integral to the developmental intricacies of stromal follicles. The findings of this study provide a solid theoretical foundation for delving deeper into the realm of reproductive aging in Kazakh mares, presenting itself as a pivotal regulatory pathway in the context of horse ovarian development.
Collapse
Affiliation(s)
- Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| |
Collapse
|
2
|
Rasmi Y, Jalali L, Khalid S, Shokati A, Tyagi P, Ozturk A, Nasimfar A. The effects of prolactin on the immune system, its relationship with the severity of COVID-19, and its potential immunomodulatory therapeutic effect. Cytokine 2023; 169:156253. [PMID: 37320963 PMCID: PMC10247151 DOI: 10.1016/j.cyto.2023.156253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Prolactin (PRL) is an endocrine hormone secreted by the anterior pituitary gland that has a variety of physiological effects, including milk production, immune system regulation, and anti-inflammatory effects. Elevated levels of PRL have been found in several viral infections, including 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), a viral pathogen that has recently spread worldwide. PRL production is increased in SARS-CoV2 infection. While PRL can trigger the production of proinflammatory cytokines, it also has several anti-inflammatory effects that can reduce hyperinflammation. The exact mechanism of PRL's contribution to the severity of COVID-19 is unknown. The purpose of this review is to discuss the interaction between PRL and SARS-CoV2 infection and its possible association with the severity of COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ladan Jalali
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saliha Khalid
- Department of Bioinformatics and Genetics, School of Engineering and Natural Sciences, Kadir Has University 34083, Cibali Campus Fatih, Istanbul, Turkey
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Poonam Tyagi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Riyadh, Saudi Arabia
| | - Alpaslan Ozturk
- Department of Medical Biochemistry, Health Sciences University, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey.
| | - Amir Nasimfar
- Department of Pediatric, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Liu YX, Ke Y, Qiu P, Gao J, Deng GP. LncRNA NEAT1 inhibits apoptosis and autophagy of ovarian granulosa cells through miR-654/STC2-mediated MAPK signaling pathway. Exp Cell Res 2023; 424:113473. [PMID: 36634743 DOI: 10.1016/j.yexcr.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Long non-coding RNA (lncRNA) anomalies cause early ovarian failure. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was down-regulated in premature ovarian failure (POF) mice and connected to the illness, however, the mechanism remained unclear. The levels of gene and protein were measured by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Follicle stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) levels were determined using enzyme-linked immunosorbent assay (ELISA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry were used to determine cell viability and apoptosis. The interaction of NEAT1, miR-654, and stanniocalcin-2 (STC2) was verified by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assays. The results showed NEAT1 and STC2 down-regulated, while miR-654 up-regulated in POF mice. Overexpression of NEAT1 reduced apoptosis and autophagy in cyclophosphamide (CTX)-treated ovarian granulosa cells (OGCs), and Bax, cleaved-caspase3, LC3B, LC3II/LC3I ratio were decreased and Bcl-2 and p62 were raised. NEAT1 suppressed miR-654 expression by directly targeting miR-654. The inhibition of NEAT1 overexpression on apoptosis and autophagy in OGCs was reversed by miR-654 mimics. STC2 was a target gene of miR-654, and miR-654 inhibitor reduced the apoptosis and autophagy by regulating the STC2/MAPK axis. To sum up, NEAT1 reduced miR-654 expression and modulated the STC2/MAPK pathway to decrease apoptosis and autophagy in POF, indicating a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Xi Liu
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China; Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, PR China; Department of Traditional Chinese Medicine and Gynecology, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan 528000, Guangdong Province, PR China.
| | - Yan Ke
- Department of Gynecology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, Guangdong Province, PR China
| | - Pin Qiu
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China
| | - Jie Gao
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China.
| | - Gao-Pi Deng
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
4
|
Ferraris J. Is prolactin receptor signaling a target in dopamine-resistant prolactinomas? Front Endocrinol (Lausanne) 2023; 13:1057749. [PMID: 36714572 PMCID: PMC9877409 DOI: 10.3389/fendo.2022.1057749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The hypothalamic neuroendocrine catecholamine dopamine regulates the lactotroph function, including prolactin (PRL) secretion, proliferation, and apoptosis. The treatment of PRL-secreting tumors, formerly known as prolactinomas, has relied mainly on this physiological characteristic, making dopamine agonists the first therapeutic alternative. Nevertheless, the group of patients that do not respond to this treatment has few therapeutical options. Prolactin is another physiological regulator of lactotroph function, acting as an autocrine/paracrine factor that controls PRL secretion and cellular turnover, inducing apoptosis and decreasing proliferation. Furthermore, the signaling pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK, have been extensively studied in prolactinomas and other tumors as therapeutic targets. In the present work, the relationship between PRL pathophysiology and prolactinoma development is explored, aiming to comprehend the value of PRL and PRLR-associated pathways as exploratory fields alternative to dopamine-related approaches, which are worth physiological characteristics that might be impaired and can be potentially restored or upregulated to provide more options to the patients.
Collapse
Affiliation(s)
- Jimena Ferraris
- Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Radecki KC, Ford MJ, Phillipps HR, Lorenson MY, Grattan DR, Yamanaka Y, Walker AM. Multiple cell types in the oviduct express the prolactin receptor. FASEB Bioadv 2022; 4:485-504. [PMID: 35812077 PMCID: PMC9254223 DOI: 10.1096/fba.2022-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Little is known about the physiological role of prolactin in the oviduct. Examining mRNA for all four isoforms of the prolactin receptor (PRLR) in mice by functional oviduct segment and stage of the estrous cycle, we found short form 3 (SF3) to be the most highly expressed, far exceeding the long form (LF) in highly ciliated areas such as the infundibulum, whereas in areas of low ciliation, the SF3 to LF ratio was ~1. SF2 expression was low throughout the oviduct, and SF1 was undetectable. Only in the infundibulum did PRLR ratios change with the estrous cycle. Immunofluorescent localization of SF3 and LF showed an epithelial (both mucosal and mesothelial) distribution aligned with the mRNA results. Despite the high SF3/LF ratio in densely ciliated regions, these regions responded to an acute elevation of prolactin (30 min, intraperitoneal), with LF-tyrosine phosphorylated STAT5 seen within cilia. Collectively, these results show ciliated cells are responsive to prolactin and suggest that prolactin regulates estrous cyclic changes in ciliated cell function in the infundibulum. Changes in gene expression in the infundibulum after prolonged prolactin treatment (7-day) showed prolactin-induced downregulation of genes necessary for cilium development/function, a result supporting localization of PRLRs on ciliated cells, and one further suggesting hyperprolactinemia would negatively impact ciliated cell function and therefore fertility. Flow cytometry, single-cell RNAseq, and analysis of LF-td-Tomato transgenic mice supported expression of PRLRs in at least a proportion of epithelial cells while also hinting at additional roles for prolactin in smooth muscle and other stromal cells.
Collapse
Affiliation(s)
- Kelly C. Radecki
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - Matthew J. Ford
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Hollian R. Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Mary Y. Lorenson
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Yojiro Yamanaka
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GES. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem 2022; 477:1381-1392. [PMID: 35147901 PMCID: PMC8831165 DOI: 10.1007/s11010-022-04381-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prolactin (PRL) is a peptide hormone secreted from anterior pituitary involved in milk production in the females and regulation of sex drive in both sexes. PRL has pro-inflammatory and anti-inflammatory functions. High PRL serum level or hyperprolactinemia is associated with different viral infections. In coronavirus disease 2019 (Covid-19), which caused by positive-sense single-strand RNA virus known as severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2), PRL serum level is increased. PRL in Covid-19 may exacerbate the underlying inflammatory status by induction release of pro-inflammatory cytokines. However, PRL through its anti-inflammatory effects may reduce the hyperinflammatory status in Covid-19. The underlying mechanism of increasing PRL in Covid-19 is poorly understood. Therefore, in this review we try to find the potential anti-inflammatory or pro-inflammatory role of PRL in Covid-19. As well, this review was aimed to discuss the underlying causes and mechanisms for Covid-19-induced hyperprolactinemia.
Collapse
Affiliation(s)
| | - Ali I. Al-Gareeb
- College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511 Egypt
| |
Collapse
|
7
|
Wang M, Li Y, Gao Y, Li Q, Cao Y, Shen Y, Chen P, Yan J, Li J. Vitamin E regulates bovine granulosa cell apoptosis via NRF2-mediated defence mechanism by activating PI3K/AKT and ERK1/2 signalling pathways. Reprod Domest Anim 2021; 56:1066-1084. [PMID: 33978262 DOI: 10.1111/rda.13950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/08/2021] [Indexed: 01/20/2023]
Abstract
High-yield dairy cows are usually subject to high-intensive cell metabolism and produce excessive reactive oxygen species (ROS). Once ROS is beyond the threshold of scavenging ability, it can induce oxidative stress, imperilling the reproductive performance of cows. The study was to investigate the effects of vitamin E (VE) on H2 O2 -induced proliferation and apoptosis of bovine granulosa cells and the underlying molecular mechanism. Granulosa cells were pretreated with VE for 24 hr and then treated with H2 O2 for 6 hr. The results showed that VE treatment decreased the intracellular ROS levels, increased the MDA content, and improved the antioxidant enzyme activity in a dose-dependent manner. Furthermore, VE treatment promoted the proliferation and inhibited apoptosis in granulosa cells by up-regulation of CCND1 and BCL2 levels and down-regulation of P21, BAX, and CASP3 levels. The cytoprotective effects of VE were attributed to the activation of the NRF2 signalling pathway. Knockdown of the NRF2 impaired the cytoprotective effects of VE on granulosa cells. Besides, the PI3K/AKT and ERK1/2, but not the p38 signalling pathway is involved in the regulation of VE-mediated cell proliferation and apoptosis. The PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited the VE-induced granulosa cell proliferation and promoted apoptosis, whereas the p38 inhibitor SB203580 had the opposite effects. These results were confirmed by proliferation and apoptosis-related gene expression at mRNA and protein levels. The results also showed that the PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited VE-induced NRF2, GCLC, GCLM, and HO-1 expression, whereas the p38 inhibitor SB203580 not. Overall, the results demonstrated that VE-regulated granulosa cell proliferation and apoptosis via NRF2-mediated defence system by activating the PI3K/AKT and ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinling Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
9
|
Nie H, Huang PQ, Jiang SH, Yang Q, Hu LP, Yang XM, Li J, Wang YH, Li Q, Zhang YF, Zhu L, Zhang YL, Yu Y, Xiao GG, Sun YW, Ji J, Zhang ZG. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer. Theranostics 2021; 11:3898-3915. [PMID: 33664869 PMCID: PMC7914341 DOI: 10.7150/thno.51712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Prolactin binding to the prolactin receptor exerts pleiotropic biological effects in vertebrates. The prolactin receptor (PRLR) has multiple isoforms due to alternative splicing. The biological roles and related signaling of the long isoform (PRLR-LF) have been fully elucidated. However, little is known about the short isoform (PRLR-SF), particularly in cancer development and metabolic reprogramming, a core hallmark of cancer. Here, we reveal the role and underlying mechanism of PRLR-SF in pancreatic ductal adenocarcinoma (PDAC). Methods: A human PDAC tissue array was used to investigate the clinical relevance of PRLR in PDAC. The in vivo implications of PRLR-SF in PDAC were examined in a subcutaneous xenograft model and an orthotopic xenograft model. Immunohistochemistry was performed on tumor tissue obtained from genetically engineered KPC (KrasG12D/+; Trp53R172H/+; Pdx1-Cre) mice with spontaneous tumors. 13C-labeled metabolite measures, LC-MS, EdU incorporation assays and seahorse analyses were used to identify the effects of PRLR-SF on the pentose phosphate pathway and glycolysis. We identified the molecular mechanisms by immunofluorescence, coimmunoprecipitation, proximity ligation assays, chromatin immunoprecipitation and promoter luciferase activity. Public databases (TCGA, GEO and GTEx) were used to analyze the expression and survival correlations of the related genes. Results: We demonstrated that PRLR-SF is predominantly expressed in spontaneously forming pancreatic tumors of genetically engineered KPC mice and human PDAC cell lines. PRLR-SF inhibits the proliferation of PDAC cells (AsPC-1 and BxPC-3) in vitro and tumor growth in vivo. We showed that PRLR-SF reduces the expression of genes in the pentose phosphate pathway (PPP) and nucleotide biosynthesis by activating Hippo signaling. TEAD1, a downstream transcription factor of Hippo signaling, directly regulates the expression of G6PD and TKT, which are PPP rate-limiting enzymes. Moreover, NEK9 directly interacts with PRLR-SF and is the intermediator between PRLR and the Hippo pathway. The PRLR expression level is negatively correlated with overall survival and TNM stage in PDAC patients. Additionally, pregnancy and lactation increase the ratio of PRLR-SF:PRLR-LF in the pancreas of wild-type mice and subcutaneous PDAC xenograft tumors. Conclusion: Our characterization of the relationship between PRLR-SF signaling, the NEK9-Hippo pathway, PPP and nucleotide synthesis explains a mechanism for the correlation between PRLR-SF and metabolic reprogramming in PDAC progression. Strategies to alter this pathway might be developed for the treatment or prevention of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Glucosephosphate Dehydrogenase/genetics
- Heterografts
- Hippo Signaling Pathway
- Humans
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- NIMA-Related Kinases/metabolism
- Nuclear Proteins/metabolism
- Nucleotides/biosynthesis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pentose Phosphate Pathway
- Precision Medicine
- Prognosis
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Prolactin/chemistry
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Signal Transduction
- TEA Domain Transcription Factors
- Transcription Factors/metabolism
- Transketolase/genetics
Collapse
Affiliation(s)
- Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yi-Fan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R. China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, P.R. China
- Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences, Malmö Lund University, Lund, Sweden
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
10
|
Sa-Nguanraksa D, Mitpakdi K, Samarnthai N, Thumrongtaradol T, O-Charoenrat P. Expression of long-form prolactin receptor is associated with lower disease-free and overall survival in node-negative breast cancer patients. Gland Surg 2021; 10:130-142. [PMID: 33633970 DOI: 10.21037/gs-20-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Breast cancer is the most frequent female malignancy in Thailand. Prolactin (PRL) and prolactin receptor (PRLR) play an important role in normal breast development and carcinogenesis of breast cancer. There are two major isoforms of PRLR, consisting of long-form (LF-PRLR) and short-form (SF-PRLR) that stimulate different signaling pathways. This study aims to explore the associations between all PRLR isoforms (all-PRLR) and LF-PRLR with clinicopathological parameters in breast cancer patients. Methods A total of 340 patients were recruited from January 2009 to December 2015. Expressions of PRLR in breast cancer tissue were determined by immunohistochemistry using specific antibodies that recognize different domains of PRLR (B6.2 for all-PRLR and H-300 for LF-PRLR). The associations between all-PRLR and LF-PRLR expressions with clinicopathological parameters were evaluated. Results Expression of all-PRLR was observed in 86.2% of all patients while LF-PRLR expression was observed in 54.4%. All-PRLR was co-expressed with estrogen receptor (ER) and progesterone receptor (PR). LF-PRLR expression was associated with high grade tumor and human epidermal growth factor receptor-2 (HER2) overexpression (P=0.010 and <0.001, respectively). Subgroup analysis revealed that LF-PRLR expression was the independent predictor for lower disease-free survival (DFS) in node-negative breast cancer patients with high expression of all-PRLR [hazard ratio (HR): 5.224, 95% confidence interval (CI): 1.089-25.064, P=0.039]. Conclusions The presence of LF-PRLR in the patients with high expression of all-PRLR was associated with adverse outcome. Evaluation of all-PRLR and LF-PRLR might be used as novel prognosticators in node-negative breast cancers.
Collapse
Affiliation(s)
- Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanlada Mitpakdi
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norasate Samarnthai
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanawat Thumrongtaradol
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021; 32:323-340. [PMID: 33661585 DOI: 10.1515/revneuro-2020-0082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martinez
- Escuela de Ciencias, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca68000, Mexico
| | - Ivan Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010Créteil, France
| | - Gladys Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Wendy A Zepeda-Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| |
Collapse
|
12
|
Sun S, Li C, Yang D, He Q, Niu H, Luo J, Yang Y, Shi H, Luo J. Identification and characterization of putative ovarian lincRNAs in dairy goats treated for repeated estrous synchronization. Anim Reprod Sci 2020; 221:106537. [PMID: 32861106 DOI: 10.1016/j.anireprosci.2020.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify and characterize effects of repeated estrous synchronization (ES) treatments on the regulation of ovarian intergenic long non-coding RNAs (lincRNAs) in dairy goats. Six does were randomly assigned to a group administered three ES treatment regimens separated by 2 weeks or to a group administered only one ES treatment regimen (control) at the same time as the third ES treatment in the does administered the three hormonal regimens for ES. The paired-end RNA Sequencing procedures were used to evaluate lincRNAs of ovarian tissues. A total of 134 lincRNAs were differentially abundant between the two treatment groups. Several target genes were annotated and were related to hormone activity, cellular response to hormone stimulus, response to hormone, female pregnancy, as well as regulation of hormone secretion. These genes were noticeably enriched in MAPK, Hippo, estrogen signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, ovarian steroidogenesis as well as GnRH signaling pathways. According to the enriched GO terms and KEGG pathways of regulated genes, 13 differentially abundant lincRNAs could be promising candidates for regulating reproductive functions of female goats. Current results indicate that repeated treatments with gonadotropins affected hormone sensitivity, estrogen synthesis, and ovarian function. The results also indicated that when there was imposing of the three hormonal treatment regimens for ES, there were several lincRNAs that could contribute to dysregulation of several genes that are important for reproduction in dairy goats. Findings provide novel insights for further investigation of lncRNAs biological functions in goats.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dikun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiuya He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huimin Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianing Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Cooper LM, West RC, Hayes CS, Waddell DS. Dual-specificity phosphatase 29 is induced during neurogenic skeletal muscle atrophy and attenuates glucocorticoid receptor activity in muscle cell culture. Am J Physiol Cell Physiol 2020; 319:C441-C454. [PMID: 32639872 DOI: 10.1152/ajpcell.00200.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle atrophy is caused by a decrease in muscle size and strength and results from a range of physiological conditions, including denervation, immobilization, corticosteroid exposure and aging. Newly named dual-specificity phosphatase 29 (Dusp29) has been identified as a novel neurogenic atrophy-induced gene in skeletal muscle. Quantitative PCR analysis revealed that Dusp29 expression is significantly higher in differentiated myotubes compared with proliferating myoblasts. To determine how Dusp29 is transcriptionally regulated in skeletal muscle, fragments of the promoter region of Dusp29 were cloned, fused to a reporter gene, and found to be highly inducible in response to ectopic expression of the myogenic regulatory factors (MRF), MyoD and myogenin. Furthermore, site-directed mutagenesis of conserved E-box elements within the proximal promoter of Dusp29 rendered a Dusp29 reporter gene unresponsive to MRF overexpression. Dusp29, an atypical Dusp also known as Dupd1/Dusp27, was found to attenuate the ERK1/2 branch of the MAP kinase signaling pathway in muscle cells and inhibit muscle cell differentiation when ectopically expressed in proliferating myoblasts. Interestingly, Dusp29 was also found to destabilize AMPK protein while simultaneously enriching the phosphorylated pool of AMPK in muscle cells. Additionally, Dusp29 overexpression resulted in a significant increase in the glucocorticoid receptor (GR) protein and elevation in GR phosphorylation. Finally, Dusp29 was found to significantly impair the ability of the glucocorticoid receptor to function as a transcriptional activator in muscle cells treated with dexamethasone. Identifying and characterizing the function of Dusp29 in muscle provides novel insights into the molecular and cellular mechanisms for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Lisa M Cooper
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Rita C West
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Caleb S Hayes
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| |
Collapse
|
14
|
Cooper LM, Waddell DS. A tale of two DUSP27s: proposed resolution for the naming of distinct dual-specificity phosphatases. Am J Physiol Cell Physiol 2020; 319:C148-C150. [PMID: 32491926 DOI: 10.1152/ajpcell.00201.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lisa M Cooper
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| |
Collapse
|
15
|
Pargianas M, Salta S, Apostolopoulou K, Lazaros L, Kyrgiou M, Tinelli A, Malvasi A, Kalogiannidis I, Georgiou I, Kosmas IP. Pathways Involved in Premature Ovarian Failure: A Systematic Review of Experimental Studies. Curr Pharm Des 2020; 26:2087-2095. [PMID: 32175834 DOI: 10.2174/1381612826666200316160145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
Abstract
Premature ovarian failure (POF), which may be undetectable for a long time, is associated with impaired fertility. The mechanisms involved in the pathogenesis of POF as well as the concomitant treatments are still unclear. Although many data exist, mainly produced by the study of transgenic animals under various experimental conditions, they remain fragmented. A systematic review of the pathways involved in premature ovarian failure was conducted. Data extraction was performed from experimental studies until 2019. The molecular processes and their correlation with the follicular developmental stage have been described. Furthermore, the effects in other cells, such as oocytes, granulosa and theca cells have been reported. An overall estimation was conducted.
Collapse
Affiliation(s)
- Michail Pargianas
- Department of Obstetrics and Gynecology, Ioannina State General Hospital G. Chatzikosta, Ioannina, Greece
| | - Styliani Salta
- University Hospitals of Leicester, Haemophilia Centre, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Katerina Apostolopoulou
- Department of Biological Applications and Technologies, Ioannina University, Ioannina, Greece
| | - Leandros Lazaros
- Genetics and IVF Unit, Department of Obstetrics and Gynecology, Medical School, Ioannina University, Ioannina, Greece
| | - Maria Kyrgiou
- West London Gynecological Cancer Center, Queen Charlotte's and Chelsea-Hammersmith Hospital, Imperial Healthcare NHS Trust, London, United Kingdom
| | - Andrea Tinelli
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation.,Department of Obstetrics and Gynecology, Division of Experimental Endoscopic Surgery, Imaging, Technology and Minimally Invasive Therapy, Vito Fazzi Hospital, Lecce, Italy
| | - Antonio Malvasi
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation.,Department of Gynecology and Obstetrics, Santa Maria Hospital, Bari, Italy
| | - Ioannis Kalogiannidis
- Third Department of Obstetrics and Gynaecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Georgiou
- Genetics and IVF Unit, Department of Obstetrics and Gynecology, Medical School, Ioannina University, Ioannina, Greece
| | - Ioannis P Kosmas
- Department of Obstetrics and Gynecology, Ioannina State General Hospital G. Chatzikosta, Ioannina, Greece.,Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation
| |
Collapse
|
16
|
Abramicheva PA, Balakina TA, Morozov IA, Schelkunova TA, Smirnova OV. Prolactin Signaling Pathways Determining Its Direct Effects on Kidneys in the Cholestasis of Pregnancy Model. BIOCHEMISTRY (MOSCOW) 2019; 84:1204-1212. [DOI: 10.1134/s0006297919100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
18
|
Sheller-Miller S, Richardson L, Martin L, Jin J, Menon R. Systematic review of p38 mitogen-activated kinase and its functional role in reproductive tissues. Am J Reprod Immunol 2018; 80:e13047. [PMID: 30178469 PMCID: PMC6261682 DOI: 10.1111/aji.13047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) plays a role in uterine tissue remodeling during pregnancy and parturition. While p38 MAPK is an OS-response kinase, a precise functional role is unknown. Therefore, we conducted a systematic review of literature on p38 MAPK expression, activation, and function in reproductive tissues throughout pregnancy and parturition, published between January 1980 and August 2017, using four electronic databases (Web of Science, PubMed, Medline, and CoCHRANE). We identified 418 reports; 108 were selected for full-text evaluation and 74 were included in final review. p38 MAPK was investigated using feto-maternal primary or immortalized cells, tissue explants, and animal models. Western blot was most commonly used to report phosphorylated (active) p38 MAPK. Human placenta (27), chorioamniotic membranes (14), myometrium (13), decidua (8), and cervix (1) were the studied tissues. p38 MAPK's functions were tissue and gestational age dependent. Isoform specificity was hardly reported. p38 MAPK activity was induced by ROS or proinflammatory cytokines to promote cell signaling linked to cell fate, primed uterus, ripened cervix, and proinflammatory cytokine/chemokine production. In 35 years, reports on p38 MAPK's role during pregnancy and parturition are scarce and current literature is insufficient to provide a comprehensive description of p38 MAPK's mechanistic role during pregnancy and parturition.
Collapse
Affiliation(s)
- Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Laura Martin
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jin Jin
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
19
|
Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, Carmichael GG, Taylor HS, Li D, Huang Y. H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes 2018; 67:2183-2198. [PMID: 30201684 PMCID: PMC6198334 DOI: 10.2337/db18-0370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a pivotal role in regulating systemic glucose homeostasis in part through the conserved cellular energy sensor AMPK. AMPK activation increases glucose uptake, lipid oxidation, and mitochondrial biogenesis, leading to enhanced muscle insulin sensitivity and whole-body energy metabolism. Here we show that the muscle-enriched H19 long noncoding RNA (lncRNA) acts to enhance muscle insulin sensitivity, at least in part, by activating AMPK. We identify the atypical dual-specificity phosphatase DUSP27/DUPD1 as a potentially important downstream effector of H19. We show that DUSP27, which is highly expressed in muscle with previously unknown physiological function, interacts with and activates AMPK in muscle cells. Consistent with decreased H19 expression in the muscle of insulin-resistant human subjects and rodents, mice with genetic H19 ablation exhibit muscle insulin resistance. Furthermore, a high-fat diet downregulates muscle H19 via both posttranscriptional and epigenetic mechanisms. Our results uncover an evolutionarily conserved, highly expressed lncRNA as an important regulator of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Ya Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Yetao Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Da Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Silva LG, Ferguson BS, Faciola AP. Rapid Communication: Prolactin and hydrocortisone impact TNFα-mediated mitogen-activated protein kinase signaling and inflammation of bovine mammary epithelial (MAC-T) cells. J Anim Sci 2018; 95:5524-5531. [PMID: 29293766 DOI: 10.2527/jas2017.2028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of the hormones prolactin (PRL) and hydrocortisone (HC) on bovine mammary alveolar (MAC-T) cells mitogen-activated protein kinase (MAPK) inflammatory signaling and inflammatory gene expression. MAC-T cells were cultured in the presence (+PRL +HC; Dulbecco's modified Eagle's medium [DMEM] 10% fetal bovine serum, 10 µg/mL of insulin, 100 IU/mL penicillin, 100 µg/mL streptomycin, 1 µg/mL ovine PRL, 0.5 µg/mL HC, and 10 m sodium acetate) or the absence (-PRL -HC; DMEM 10% fetal bovine serum, 10 µg/mL insulin, 100 IU/mL penicillin , and 100 µg/mL streptomycin) of PRL and HC, and MAPK (extracellular signal-regulated kinase [ERK], c-Jun N-terminal kinase [JNK], and p38) phosphorylation and inflammatory gene expression were examined in response to tumor necrosis factor α (TNFα). Statistical analysis was assessed using 1-way ANOVA, and Tukey's post hoc analysis was used to assess statistical significance when ≤ 0.05. MAC-T cells cultured in +PRL +HC and -PRL -HC were co-stimulated with increasing concentrations of TNFα (0, 10, 30, 100, 300, and 1,000 p). Cell lysates were harvested 15 min after TNFα stimulation and assessed for MAPK phosphorylation using immunoblotting. c-Jun N-terminal kinase and p38 phosphorylation increased in a dose-dependent manner and was greater in cells cultured in -PRL -HC. MAC-T cells cultured in +PRL +HC and -PRL -HC were next stimulated with TNFα (300 p), and lysates were harvested over time (0, 15, 30, 60, 120, and 180 min) after TNFα stimulation. c-Jun N-terminal kinase and p38 phosphorylation was transiently increased in MAC-T cells stimulated with TNFα; however, JNK and p38 signaling was greater in MAC-T cells cultured in -PRL -HC. We next examined inflammatory gene expression in MAC-T cells cultured in +PRL +HC and -PRL -HC. Cells were co-stimulated with (300 p) or without TNFα. Ribonucleic acid was isolated 1 h after TNFα stimulation, and a PCR array was performed to examine the expression of 83 inflammatory genes. Gene expression was increased in MAC-T cells in response to TNFα. Consistent with enhanced MAPK signaling, inflammatory gene expression was increased in MAC-T cells cultured in -PRL -HC. Real-time quantitative PCR of 6 target genes was used to validate the PCR array findings. Collectively, our data demonstrate that -PRL -HC MAC-T cells are more responsive to TNFα stimuli. These findings suggest that cell culture conditions (e.g., treatment with hormones) greatly impact cellular response and should be considered prior to experimental design and hypothesis testing.
Collapse
|
21
|
Bhore N, Wang BJ, Chen YW, Liao YF. Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci 2017; 18:ijms18091963. [PMID: 28902166 PMCID: PMC5618612 DOI: 10.3390/ijms18091963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.
Collapse
Affiliation(s)
- Noopur Bhore
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yung-Feng Liao
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
22
|
Law NC, Donaubauer EM, Zeleznik AJ, Hunzicker-Dunn M. How Protein Kinase A Activates Canonical Tyrosine Kinase Signaling Pathways To Promote Granulosa Cell Differentiation. Endocrinology 2017; 158:2043-2051. [PMID: 28460125 PMCID: PMC5505220 DOI: 10.1210/en.2017-00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
Protein kinase A (PKA) has recently been shown to mimic the actions of follicle-stimulating hormone (FSH) by activating signaling pathways that promote granulosa cell (GC) differentiation, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We sought to elucidate the mechanism by which PKA, a Ser/Thr kinase, intersected the PI3K/AKT and MAPK/ERK pathways that are canonically activated by receptor tyrosine kinases (RTKs). Our results show that for both of these pathways, the RTK is active in the absence of FSH yet signaling down the pathways to commence transcriptional responses requires FSH-stimulated PKA activation. For both pathways, PKA initiates signaling by regulating the activity of a protein phosphatase (PP). For the PI3K/AKT pathway, PKA activates the Ser/Thr PP1 complexed with the insulinlike growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS1) to dephosphorylate Ser residues on IRS1, authorizing phosphorylation of IRS1 by the IGF-1R to activate PI3K. Treatment of GCs with FSH and exogenous IGF-1 initiates synergistic IRS1 Tyr phosphorylation and resulting gene activation. The mechanism by which PKA activates PI3K is conserved in preovulatory GCs, MCF7 breast cancer cells, and FRTL thyroid cells. For the MAPK/ERK pathway, PKA promotes inactivation of the MAPK phosphatase (MKP) dual specificity phosphatase (DUSP) MKP3/DUSP6 to permit MEK-phosphorylated ERK to accumulate downstream of the epidermal growth factor receptor. Thus, for the two central signaling pathways that regulate gene expression in GCs, FSH via PKA intersects canonical RTK-regulated signaling by modulating the activity of PPs.
Collapse
Affiliation(s)
- Nathan C. Law
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Elyse M. Donaubauer
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Anthony J. Zeleznik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mary Hunzicker-Dunn
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
23
|
Abstract
To generate new hypotheses, sometimes a "systems" approach is needed. In this review, I focus on the mitogen-activated kinase p38 because it has been recently shown to play an important role in the developmental programing and senescence of normal and stressed reproductive tissues. What follows is an overview of (i) pathways of p38 activation and their involvement in basic biological processes, (ii) evidence that p38 is involved in the homeostasis of reproductive tissues, (iii) how focus on p38 can be incorporated into investigation of normal and stressed pregnancies. Existence of excellent reviews will be mentioned as well as relevant animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
24
|
Donaubauer EM, Law NC, Hunzicker-Dunn ME. Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3. J Biol Chem 2016; 291:19701-12. [PMID: 27422819 DOI: 10.1074/jbc.m116.733972] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 01/11/2023] Open
Abstract
Within the ovarian follicle, granulosa cells (GCs) surround and support immature oocytes. FSH promotes the differentiation and proliferation of GCs and is essential for fertility. We recently reported that ERK activation is necessary for FSH to induce key genes that define the preovulatory GC. This research focused on the phosphoregulation by FSH of ERK within GCs. FSH-stimulated ERK phosphorylation on Thr(202)/Tyr(204) was PKA-dependent, but MEK(Ser(217)/Ser(221)) phosphorylation was not regulated; rather, MEK was already active. However, treatment of GCs with the EGF receptor inhibitor AG1478, a dominant-negative RAS, an Src homology 2 domain-containing Tyr phosphatase inhibitor (NSC 87877), or the MEK inhibitor PD98059 blocked FSH-dependent ERK(Thr(202)/Tyr(204)) phosphorylation, demonstrating the requirement for upstream pathway components. We hypothesized that FSH via PKA enhances ERK phosphorylation by inhibiting the activity of a protein phosphatase that constitutively dephosphorylates ERK in the absence of FSH, allowing MEK-phosphorylated ERK to accumulate in the presence of FSH because of inactivation of the phosphatase. GCs treated with different phosphatase inhibitors permitted elimination of both Ser/Thr and Tyr phosphatases and implicated dual specificity phosphatases (DUSPs) in the dephosphorylation of ERK. Treatment with MAP kinase phosphatase (MKP3, DUSP6) inhibitors increased ERK(Thr(202)/Tyr(204)) phosphorylation in the absence of FSH to levels comparable with ERK phosphorylated in the presence of FSH. ERK co-immunoprecipitated with Myc-FLAG-tagged MKP3(DUSP6). GCs treated with MKP3(DUSP6) inhibitors blocked and PKA inhibitors enhanced dephosphorylation of recombinant ERK2-GST in an in vitro phosphatase assay. Together, these results suggest that FSH-stimulated ERK activation in GCs requires the PKA-dependent inactivation of MKP3(DUSP6).
Collapse
Affiliation(s)
- Elyse M Donaubauer
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
25
|
Pavic K, Duan G, Köhn M. VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J 2015; 282:1871-90. [PMID: 25757426 DOI: 10.1111/febs.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/13/2023]
Abstract
Vaccinia H1-related (VHR) phosphatase, also known as dual-specificity phosphatase (DUSP) 3, is a small member of the DUSP (also called DSP) family of phosphatases. VHR has a preference for phospho-tyrosine substrates, and has important roles in cellular signaling ranging from cell-cycle regulation and the DNA damage response to MAPK signaling, platelet activation and angiogenesis. VHR/DUSP3 has been implicated in several human cancers, where its tumor-suppressing and -promoting properties have been described. We give a detailed overview of VHR/DUSP3 phosphatase and compare it with its most closely related phosphatases DUSP13B, DUSP26 and DUSP27.
Collapse
Affiliation(s)
- Karolina Pavic
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Guangyou Duan
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
26
|
Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci U S A 2014; 111:11455-60. [PMID: 25049387 DOI: 10.1073/pnas.1404267111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Women are more resistant to hepatocellular carcinoma (HCC) than men despite equal exposure to major risk factors, such as hepatitis B or C virus infection. Female resistance is hormone-dependent, as evidenced by the sharp increase in HCC incidence in postmenopausal women who do not take hormone replacement therapy. In rodent models sex-dimorphic HCC phenotypes are pituitary-dependent, suggesting that sex hormones act via the gonadal-hypophyseal axis. We found that the estrogen-responsive pituitary hormone prolactin (PRL), signaling through hepatocyte-predominant short-form prolactin receptors (PRLR-S), constrained TNF receptor-associated factor (TRAF)-dependent innate immune responses invoked by IL-1β, TNF-α, and LPS/Toll-like receptor 4 (TLR4), but not TRIF-dependent poly(I:C)/TLR3. PRL ubiquitinated and accelerated poststimulatory decay of a "trafasome" comprised of IRAK1, TRAF6, and MAP3K proteins, abrogating downstream activation of c-Myc-interacting pathways, including PI3K/AKT, mTORC1, p38 MAPK, and NF-κB. Consistent with this finding, we documented exaggerated male liver responses to immune stimuli in mice and humans. Tumor promotion through, but regulation above, the level of c-Myc was demonstrated by sex-independent HCC eruption in Alb-Myc transgenic mice. PRL deficiency accelerated liver carcinogenesis in Prl(-/-) mice of both sexes. Conversely, pharmacologic PRL mobilization using the dopamine D2 receptor antagonist domperidone prevented HCC in tumor-prone C3H/HeN males. Viewed together, our results demonstrate that PRL constrains tumor-promoting liver inflammation by inhibiting MAP3K-dependent activation of c-Myc at the level of the trafasome. PRL-targeted therapy may hold promise for reducing the burden of liver cancer in high-risk men and women.
Collapse
|
27
|
Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Gruca P, Papp M, Szafran K, Solich J, Pabian P, Romańska I, Antkiewicz-Michaluk L, Dziedzicka-Wasylewska M. Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res 2014; 1555:48-59. [DOI: 10.1016/j.brainres.2014.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 02/05/2023]
|
28
|
Sangeeta Devi Y, Halperin J. Reproductive actions of prolactin mediated through short and long receptor isoforms. Mol Cell Endocrinol 2014; 382:400-410. [PMID: 24060636 DOI: 10.1016/j.mce.2013.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/20/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Prolactin (PRL) is a polypeptide hormone with a wide range of physiological functions, and is critical for female reproduction. PRL exerts its action by binding to membrane bound receptor isoforms broadly classified as the long form and the short form receptors. Both receptor isoforms are highly expressed in the ovary as well as in the uterus. Although signaling through the long form is believed to be more predominant, it remains unclear whether activation of this isoform alone is sufficient to support reproductive functions or whether both types of receptor are required. The generation of transgenic mice selectively expressing either the short or the long form of PRL receptor has provided insight into the differential signaling mechanisms and physiological functions of these receptors. This review describes the essential finding that both long and short receptor isoforms are crucial for ovarian functions and female fertility, and highlights novel mechanisms of action for these receptors.
Collapse
Affiliation(s)
- Y Sangeeta Devi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI-49503, USA.
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775 6to piso, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
29
|
Fero K, Bergeron SA, Horstick EJ, Codore H, Li GH, Ono F, Dowling JJ, Burgess HA. Impaired embryonic motility in dusp27 mutants reveals a developmental defect in myofibril structure. Dis Model Mech 2013; 7:289-98. [PMID: 24203884 PMCID: PMC3917250 DOI: 10.1242/dmm.013235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An essential step in muscle fiber maturation is the assembly of highly ordered myofibrils that are required for contraction. Much remains unknown about the molecular mechanisms governing the formation of the contractile apparatus. We identified an early embryonic motility mutant in zebrafish caused by integration of a transgene into the pseudophosphatase dual specificity phosphatase 27 (dusp27) gene. dusp27 mutants exhibit near complete paralysis at embryonic and larval stages, producing extremely low levels of spontaneous coiling movements and a greatly diminished touch response. Loss of dusp27 does not prevent somitogenesis but results in severe disorganization of the contractile apparatus in muscle fibers. Sarcomeric structures in mutants are almost entirely absent and only rare triads are observed. These findings are the first to implicate a functional role of dusp27 as a gene required for myofiber maturation and provide an animal model for analyzing the mechanisms governing myofibril assembly.
Collapse
Affiliation(s)
- Kandice Fero
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Furlow JD, Watson ML, Waddell DS, Neff ES, Baehr LM, Ross AP, Bodine SC. Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy. Physiol Genomics 2013; 45:1168-85. [PMID: 24130153 DOI: 10.1152/physiolgenomics.00022.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy can result from inactivity or unloading on one hand or the induction of a catabolic state on the other. Muscle-specific ring finger 1 (MuRF1), a member of the tripartite motif family of E3 ubiquitin ligases, is an essential mediator of multiple conditions inducing muscle atrophy. While most studies have focused on the role of MuRF1 in protein degradation, the protein may have other roles in regulating skeletal muscle mass and metabolism. We therefore systematically evaluated the effect of MuRF1 on gene expression during denervation and dexamethasone-induced atrophy. We find that the lack of MuRF1 leads to few differences in control animals, but there were several significant differences in specific sets of genes upon denervation- and dexamethasone-induced atrophy. For example, during denervation, MuRF1 knockout mice showed delayed repression of metabolic and structural genes and blunted induction of genes associated with the neuromuscular junction. In the latter case, this pattern correlates with blunted HDAC4 and myogenin upregulation. Lack of MuRF1 caused fewer changes in the dexamethasone-induced atrophy program, but certain genes involved in fat metabolism and intracellular signaling were affected. Our results demonstrate a new role for MuRF1 in influencing gene expression in two important models of muscle atrophy.
Collapse
Affiliation(s)
- J David Furlow
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | | | | | | | | | | | | |
Collapse
|
31
|
PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods 2013; 65:156-64. [PMID: 23911837 DOI: 10.1016/j.ymeth.2013.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/28/2022] Open
Abstract
Reversible tyrosine phosphorylation is a fundamental signaling mechanism controlling a diversity of cellular processes. Whereas protein tyrosine kinases have long been implicated in many diseases, aberrant protein tyrosine phosphatase (PTP) activity is also increasingly being associated with a wide spectrum of conditions. PTPs are now regarded as key regulators of biochemical processes instead of simple "off" switches operating in tyrosine kinase signaling pathways. Despite the central importance that PTPs play in the cell's biochemistry, the tyrosine phosphatomes of most species remain uncharted. Here we present a highly sensitive and specific sequence-based method for the automatic classification of PTPs. As proof of principle we re-annotated the human tyrosine phosphatome, and discovered four new PTP genes that had not been reported before. Our method and the predicted tyrosine phosphatomes of 65 eukaryotic genomes are accessible online through the user-friendly PTP-central resource (http://www.PTP-central.org/), where users can also submit their own sequences for prediction. PTP-central is a comprehensive and continually developing resource that currently integrates the predicted tyrosine phosphatomes with structural data and genetic association disease studies, as well as homology relationships. PTP-central thus fills an important void for the systematic study of PTPs, both in model organisms and from an evolutionary perspective.
Collapse
|
32
|
Prolactin and dexamethasone regulate second messenger-stimulated cl(-) secretion in mammary epithelia. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:192142. [PMID: 22888420 PMCID: PMC3410352 DOI: 10.1155/2012/192142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022]
Abstract
Mammary gland ion transport is essential for lactation and is regulated by prolactin and glucocorticoids. This study delineates the roles of prolactin receptors (PRLR) and long-term prolactin and dexamethasone (P-D)-mediation of [Ca2+]i and Cl− transport in HC-11 cells. P-D (24 h) suppressed ATP-induced [Ca2+]i. This may be due to decreased Ca2+ entry since P-D decreased transient receptor potential channel 3 (TRPC3) but not secretory pathway Ca2+-ATPase 2 (SPCA2) mRNA. ATP increased Cl− transport, measured by iodide (I−) efflux, in control and P-D-treated cells. P-D enhanced I− efflux response to cAMP secretagogues without altering Cl− channels or NKCC cotransporter expression. HC-11 cells contain only the long form of PRLR (PRLR-L). Since the short isoform, PRLR-S, is mammopoietic, we determined if transfecting PRLR-S (rs) altered PRLR-L-mediated Ca2+ and Cl− transport. Untreated rs cells showed an attenuated [Ca2+]i response to ATP with no further response to P-D, in contrast to vector-transfected (vtc) controls. P-D inhibited TRPC3 in rs and vtc cells but increased SPCA2 only in rs cells. As in wild-type, cAMP-stimulated Cl− transport, in P-D-treated vtc and rs cells. In summary, 24 h P-D acts via PRLR-L to attenuate ATP-induced [Ca2+]i and increase cAMP-activated Cl− transport. PRLR-S fine-tunes these responses underscoring its mammopoietic action.
Collapse
|
33
|
Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N. Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol 2012; 356:80-7. [PMID: 21664429 DOI: 10.1016/j.mce.2011.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Prolactin is a hormone that is essential for normal reproduction and signals through two types of receptors. Not only is the classical long form of the prolactin receptor identified, but so are many short form receptors in rodents and human tissues. Mouse mutagenesis studies have offered insight into the biology of prolactin family, providing compelling evidence that the different isoforms have independent biological activity. The possibility that short forms mediate cell proliferation is important for a variety of tissues including mammary gland and ovarian follicles. This review summarizes our current knowledge about prolactin signaling and its role in reproduction through either long or short isoform receptors.
Collapse
|
34
|
Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, Aguilar T, Seibold A, Maizels E, Gibori G. Generation of mice expressing only the long form of the prolactin receptor reveals that both isoforms of the receptor are required for normal ovarian function. Biol Reprod 2012; 86:86. [PMID: 22190699 DOI: 10.1095/biolreprod.111.095927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prolactin (PRL), a pleiotropic hormone essential for maintenance of corpus luteum (CL) function and pregnancy, transduces its signal through two types of receptors, a short form (PRLR-S) and a long form (PRLR-L). Both types of receptors are expressed in the CL, yet their individual roles are not well defined. We have shown previously that female transgenic mice expressing only PRLR-S display total infertility characterized by defective follicular development and early degeneration of CL, suggesting that expression of PRLR-L is a prerequisite for normal follicular development and maintenance of CL. To determine whether PRLR-L alone is the sole receptor required to maintain normal CL formation, differentiation, and progesterone secretion, we generated two transgenic mice which express only PRLR-L, either ubiquitously (Tg-RL) or in a CL-specific manner (CL-RL). To generate CL-specific expression, we used the HSD17B7 promoter. We found both transgenic mice models cycled normally, displayed no apparent defect in follicular development, and had normal ovulation rates. The STAT5 signaling pathway, considered essential for luteinization and progesterone production, was activated by PRL in both transgenic mice models. However, soon after mating, Tg-RL and CL-RL mice showed early regression of CL, lack of progesterone production, and implantation failure that rendered them totally infertile. Embryo transfer studies demonstrated no embryo abnormalities, and supplementation with progesterone rescued implantation failure in these mice. Close observation revealed lack of luteinization and reduced expression of proteins involved in progesterone biosynthesis despite normal levels of LHCGR (LH-R), ESR1 (ER-alpha), CEBPB (C/EBP-beta) and CDKN1B (p27), proteins essential for luteinization. However, we found VEGFA, a key regulator of angiogenesis and vascularization, to be dramatically reduced in both Tg-RL and CL-RL mice. We also found collagen IV, a marker for the basal lamina of endothelial cells, aberrantly expressed and a discordant organization of endothelial cells in CL. Although luteinization did not occur in vivo, granulosa cells isolated from these mice luteinized in culture. Taken together, these results suggest that a vascularization defect in the CL may be responsible for lack of luteinization, progesterone production, and infertility in mice expressing only PRLR-L. This investigation therefore demonstrates that in contrast to earlier presumptions that PRLR-L alone is able to support normal CL formation and function, both isoforms of the PRL receptor are required in the CL for normal female fertility.
Collapse
Affiliation(s)
- Jamie A Le
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|