1
|
Gehlot P, Brünnert D, Kaushik V, Yadav A, Bage S, Gaur K, Saini M, Ehrhardt J, Manjunath GK, Kumar A, Kasliwal N, Sharma AK, Zygmunt M, Goyal P. Unconventional localization of PAI-1 in PML bodies: A possible link with cellular growth of endothelial cells. Biochem Biophys Rep 2024; 39:101793. [PMID: 39161580 PMCID: PMC11332193 DOI: 10.1016/j.bbrep.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1/Serpin E1) is classically known for its antifibrinolytic activity via inhibiting uPA and tPA of the fibrinolytic pathway. PAI-1 has a paradoxical role in tumor progression, and its molecular functions are poorly understood. PAI-1 is a widely accepted secretory protease inhibitor, however, a study suggested the localization of PAI-1 in the cytoplasm and the nucleus. Besides the plethora of its biological functions as a secretory protein, intracellular localization, and functions of PAI-1 remain unexplored at the molecular level. In this study, using various in silico approaches, we showed that PAI-1 possesses a nuclear export signal. Using the CRM1-specific inhibitor leptomycin B, we demonstrated that PAI-1 has a functional CRM1-dependent NES, indicating the possibility of its nuclear localization. Further, we confirm that PAI-1 is localized in the nucleus of endothelial cells using fluorescence microscopy and immunoprecipitation. Notably, we identified an unconventional distribution of PAI-1 in the PML bodies of the nucleus of normal endothelial cells, while the protein was restricted in the cytoplasm of slow-growing cells. The data showed that the localization of PAI-1 in PML bodies is highly correlated with the growth potential of endothelial cells. This conditional nucleocytoplasmic shuttling of PAI-1 during the aging of cells could impart a strong link to its age-related functions and tumor progression. Together, this study identifies the novel behavior of PAI-1 that might be linked with cell aging and may be able to unveil the elusive role of PAI-1 in tumor progression.
Collapse
Affiliation(s)
- Pragya Gehlot
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Daniela Brünnert
- University Hospital of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Str. 4, D-97080, Würzburg, Germany
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Vibha Kaushik
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Arpana Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Kritika Gaur
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Mahesh Saini
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Neena Kasliwal
- Department of Pathology, J.L.N. Medical College, Ajmer, 305001, Rajasthan, India
| | - Ajay Kumar Sharma
- Department of Obstetrics and Gynecology, J.L.N. Medical College, Ajmer, 305001, Rajasthan, India
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| |
Collapse
|
2
|
Luo L, Li T, Zeng Z, Li H, He X, Chen Y. CSE reduces OTUD4 triggering lung epithelial cell apoptosis via PAI-1 degradation. Cell Death Dis 2023; 14:614. [PMID: 37726265 PMCID: PMC10509146 DOI: 10.1038/s41419-023-06131-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Ovarian tumor family deubiquitinase 4 (OTUD4), a member of the OTU deubiquitinating enzyme, is implicated to decrease in cancer to regulate cell apoptosis. However, the role of OTUD4 in cigarette smoke induced epithelial cell apoptosis and its mechanism have not been elucidated. In this study, we showed that OTUD4 protein reduced in CSE treated mice and airway epithelial cells. OTUD4 silence aggravated cell apoptosis and emphysematous change in the lung tissue of cigarette smoke extract (CSE) treated mice. Additionally, restoration of OTUD4 in the lung of mice alleviated CSE induced apoptosis and emphysematous morphology change. The effect of OTUD4 on cell apoptosis was also confirmed in vitro. Through protein profile screening, we identified that OTUD4 may interact with plasminogen activator inhibitor 1(PAI-1). We further confirmed that OTUD4 interacted with PAI-1 for de-ubiquitination and inhibiting CSE induced PAI-1 degradation. Furthermore, the protective role of OTUD4 in airway epithelial cells apoptosis was blocked by PAI-1 deactivation. Taken together, our data suggest that OTUD4 regulates cigarette smoke (CS)-triggered airway epithelial cell apoptosis via modulating PAI-1 degradation. Targeting OUTD4/PAI-1 signaling might potentially provide a therapeutic target against the lung cell apoptosis in cigarette smoke (CS)-induced emphysema.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China.
| |
Collapse
|
3
|
Oikawa K, Kuroda M, Ehata S. Suppression of antitumor cytokine IL‑24 by PRG4 and PAI‑1 may promote myxoid liposarcoma cell survival. Biomed Rep 2023; 19:60. [PMID: 37614985 PMCID: PMC10442737 DOI: 10.3892/br.2023.1642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Suppression of the antitumor cytokine interleukin-24 (IL-24) is critical for the survival of myxoid liposarcoma (MLS) cells. It has been previously demonstrated by the authors that an MLS-specific chimeric oncoprotein, translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP), supresses IL24 mRNA expression via induction of proteoglycan 4 (PRG4) to sustain MLS cell proliferation. However, IL-24 has also been revealed to be suppressed by the ubiquitin-proteasome system in human ovarian and lung cancer cells. Therefore, the aim of the present study was to elucidate the mechanism of IL-24 suppression in MLS cells. The results revealed that the proteasome inhibitor, MG-132, induced cell death in MLS cells in vitro; this effect was reduced following IL-24 knockdown. This indicated that proteasomal degradation of IL-24 may be an important process for MLS cell survival. In addition, it was also previously revealed by the authors that knockdown of plasminogen activator inhibitor-1 (PAI-1), a TLS-CHOP downstream molecule, suppressed the growth of MLS cells, thus instigating the investigation of the effect of PAI-1 on IL-24 expression in MLS cells. Double knockdown of PAI-1 and IL-24 negated the growth-suppressive effect of PAI-1 single knockdown in MLS cells. Interestingly, PAI-1 single knockdown did not increase the mRNA expression of IL24, but it did increase the protein abundance of IL-24, indicating that PAI-1 suppressed IL-24 expression by promoting its proteasomal degradation. Moreover, treatment of MLS cells with a PAI-1 inhibitor, TM5275, induced IL-24 protein expression and apoptosis. Collectively, the results of the present as well as previous studies indicated that IL-24 expression may be suppressed at the transcriptional level by PRG4 and at the protein level by PAI-1 in MLS cells. Accordingly, PAI-1 may represent an effective therapeutic target for MLS treatment.
Collapse
Affiliation(s)
- Kosuke Oikawa
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Rana T, Jiang C, Banerjee S, Yi N, Zmijewski JW, Liu G, Liu RM. PAI-1 Regulation of p53 Expression and Senescence in Type II Alveolar Epithelial Cells. Cells 2023; 12:2008. [PMID: 37566086 PMCID: PMC10417428 DOI: 10.3390/cells12152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Cellular senescence contributes importantly to aging and aging-related diseases, including idiopathic pulmonary fibrosis (IPF). Alveolar epithelial type II (ATII) cells are progenitors of alveolar epithelium, and ATII cell senescence is evident in IPF. Previous studies from this lab have shown that increased expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, promotes ATII cell senescence through inducing p53, a master cell cycle repressor, and activating p53-p21-pRb cell cycle repression pathway. In this study, we further show that PAI-1 binds to proteasome components and inhibits proteasome activity and p53 degradation in human lung epithelial A549 cells and primary mouse ATII cells. This is associated with a senescence phenotype of these cells, manifested as increased p53 and p21 expression, decreased phosphorylated retinoblastoma protein (pRb), and increased senescence-associated beta-galactose (SA-β-gal) activity. Moreover, we find that, although overexpression of wild-type PAI-1 (wtPAI-1) or a secretion-deficient, mature form of PAI-1 (sdPAI-1) alone induces ATII cell senescence (increases SA-β-gal activity), only wtPAI-1 induces p53, suggesting that the premature form of PAI-1 is required for the interaction with the proteasome. In summary, our data indicate that PAI-1 can bind to proteasome components and thus inhibit proteasome activity and p53 degradation in ATII cells. As p53 is a master cell cycle repressor and PAI-1 expression is increased in many senescent cells, the results from this study will have a significant impact not only on ATII cell senescence/lung fibrosis but also on the senescence of other types of cells in different diseases.
Collapse
Affiliation(s)
- Tapasi Rana
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jaroslaw W. Zmijewski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Jiang CS, Rana T, Jin LW, Farr SA, Morley JE, Qin H, Liu G, Liu RM. Aging, Plasminogen Activator Inhibitor 1, Brain Cell Senescence, and Alzheimer's Disease. Aging Dis 2023; 14:515-528. [PMID: 37008063 PMCID: PMC10017160 DOI: 10.14336/ad.2022.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 04/04/2023] Open
Abstract
The etiology for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases, is unknown. Emerging evidence suggests that cellular senescence contributes importantly to AD pathophysiology, although the mechanisms underlying brain cell senescence and by which senescent cells promote neuro-pathophysiology remain unclear. In this study we show for the first time that the expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, is increased, in correlation with the increased expression of cell cycle repressors p53 and p21, in the hippocampus/cortex of senescence accelerated mouse prone 8 (SAMP8) mice and LOAD patients. Double immunostaining results show that astrocytes in the brain of LOAD patients and SAMP8 mice express higher levels of senescent markers and PAI-1, compared to astrocytes in the corresponding controls. In vitro studies further show that overexpression of PAI-1 alone, intracellularly or extracellularly, induced senescence, whereas inhibition or silencing PAI-1 attenuated H2O2-induced senescence, in primary mouse and human astrocytes. Treatment with the conditional medium (CM) from senescent astrocytes induced neuron apoptosis. Importantly, the PAI-1 deficient CM from senescent astrocytes that overexpress a secretion deficient PAI-1 (sdPAI-1) has significantly reduced effect on neurons, compared to the PAI-1 containing CM from senescent astrocytes overexpressing wild type PAI-1 (wtPAI-1), although sdPAI-1 and wtPAI-1 induce similar degree of astrocyte senescence. Together, our results suggest that increased PAI-1, intracellularly or extracellularly, may contribute to brain cell senescence in LOAD and that senescent astrocytes can induce neuron apoptosis through secreting pathologically active molecules, including PAI-1.
Collapse
Affiliation(s)
- Chun-Sun Jiang
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Tapasi Rana
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA.
| | - Susan A Farr
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, MO, USA.
- Research and Development, Veterans Affairs Medical Center, St. Louis Missouri, MO, USA.
| | - John E Morley
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, UAB, Birmingham, AL, USA.
| | - Gang Liu
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rui-Ming Liu
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
6
|
Jiang C, Liu G, Cai L, Deshane J, Antony V, Thannickal VJ, Liu RM. Divergent Regulation of Alveolar Type 2 Cell and Fibroblast Apoptosis by Plasminogen Activator Inhibitor 1 in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1227-1239. [PMID: 33887217 PMCID: PMC8351125 DOI: 10.1016/j.ajpath.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023]
Abstract
Increased apoptosis sensitivity of alveolar type 2 (ATII) cells and increased apoptosis resistance of (myo)fibroblasts, the apoptosis paradox, contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF). The mechanism underlying the apoptosis paradox in IPF lungs, however, is unclear. Aging is the greatest risk factor for IPF. In this study, we show, for the first time, that ATII cells from old mice are more sensitive, whereas fibroblasts from old mice are more resistant, to apoptotic challenges, compared with the corresponding cells from young mice. The expression of plasminogen activator inhibitor 1 (PAI-1), an important profibrogenic mediator, was significantly increased in both ATII cells and lung fibroblasts from aged mice. In vitro studies using PAI-1 siRNA and active PAI-1 protein indicated that PAI-1 promoted ATII cell apoptosis but protected fibroblasts from apoptosis, likely through dichotomous regulation of p53 expression. Deletion of PAI-1 in adult mice led to a reduction in p53, p21, and Bax protein expression, as well as apoptosis sensitivity in ATII cells, and their increase in the lung fibroblasts, as indicated by in vivo studies. This increase was associated with an attenuation of lung fibrosis after bleomycin challenge. Since PAI-1 is up-regulated in both ATII cells and fibroblasts in IPF, the results suggest that increased PAI-1 may underlie the apoptosis paradox of ATII cells and fibroblasts in IPF lungs.
Collapse
Affiliation(s)
- Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville School of Medicine, Louisville, Kentucky
| | - Jessy Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena Antony
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
7
|
Garcia V, Park EJ, Siragusa M, Frohlich F, Mahfuzul Haque M, Pascale JV, Heberlein KR, Isakson BE, Stuehr DJ, Sessa WC. Unbiased proteomics identifies plasminogen activator inhibitor-1 as a negative regulator of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:9497-9507. [PMID: 32300005 PMCID: PMC7196906 DOI: 10.1073/pnas.1918761117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Mauro Siragusa
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Florian Frohlich
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Katherine R Heberlein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
8
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Canovas Nunes S, Manzoni M, Pizzi M, Mandato E, Carrino M, Quotti Tubi L, Zambello R, Adami F, Visentin A, Barilà G, Trentin L, Manni S, Neri A, Semenzato G, Piazza F. The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer J 2018; 8:20. [PMID: 29440639 PMCID: PMC5811530 DOI: 10.1038/s41408-018-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.
Collapse
Affiliation(s)
- Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marilena Carrino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy. .,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
10
|
Milenkovic J, Milojkovic M, Jevtovic Stoimenov T, Djindjic B, Miljkovic E. Mechanisms of plasminogen activator inhibitor 1 action in stromal remodeling and related diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:339-347. [PMID: 29097819 DOI: 10.5507/bp.2017.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is the main physiologic inhibitor of fibrinolysis. However, it is also involved in many physiological processes such as extracellular matrix (ECM) proteolysis and remodeling, cell adhesion, motility, and apoptosis, angiogenesis, etc. The aim of the study was to summarize current knowledge and gain insights into the mechanisms of PAI-1 action in the processes of stromal remodeling and diseases with considerable matrix pathologies (atherosclerosis, tissue fibrosis, cancer metastasis, pregnancy related complications, etc). As a component of an early cellular response to injury, PAI-1 reacts with membrane surface proteins and participates in the initiation of intracellular signaling, specifically cytoskeletal reorganization and motility. Complexity of ECM homeostasis resides in varying relation of the plasminogen system components and other matrix constituents. Inflammatory mediators (transforming growth factor-β and interferon-γ) and hormones (angiotensin II) are in the close interdependent relation with PAI-1. Also, special attention is devoted to the role of increased PAI-1 concentrations due to the common 4G/5G polymorphism. Some of the novel mechanisms of ECM modification consider PAI-1 dependent stabilization of urokinase mediated cell adhesion, control of the vascular endothelial cadherin trafficking and interaction with endothelial cells proteasome, its relation to matrix metalloproteinase 2 and osteopontin, and oxidative inhibition by myeloperoxidase. Targeting and/or alteration of PAI-1 functions might bring benefit to the future therapeutic approaches in diseases where ECM undergoes substantial remodeling.
Collapse
Affiliation(s)
- Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine University of Nis, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine University of Nis, Serbia
| | | | - Boris Djindjic
- Institute of Pathophysiology, Faculty of Medicine University of Nis, Serbia
| | - Edita Miljkovic
- Hematology and Clinical Immunology Clinic, Clinical Center in Nis, Serbia
| |
Collapse
|
11
|
Daniel AE, Timmerman I, Kovacevic I, Hordijk PL, Adriaanse L, Paatero I, Belting HG, van Buul JD. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking. PLoS One 2015; 10:e0145684. [PMID: 26714278 PMCID: PMC4694698 DOI: 10.1371/journal.pone.0145684] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact. METHODOLOGY/PRINCIPAL FINDINGS We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC) monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus. CONCLUSIONS/SIGNIFICANCE Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.
Collapse
Affiliation(s)
- Anna E. Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Luc Adriaanse
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilkka Paatero
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Jaap D. van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 2015; 42:573-87. [PMID: 25914944 DOI: 10.3109/1040841x.2014.972336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogenic spirochetes Borrelia burgdorferi, B. hermsii, B. recurrentis, Treponema denticola and Leptospira spp. are the etiologic agents of Lyme disease, relapsing fever, periodontitis and leptospirosis, respectively. Lyme borreliosis is a multi-systemic disorder and the most prevalent tick-borne disease in the northern hemisphere. Tick-borne relapsing fever is persistent in endemic areas worldwide, representing a significant burden in some African regions. Periodontal disease, a chronic inflammatory disorder that often leads to tooth loss, is caused by several potential pathogens found in the oral cavity including T. denticola. Leptospirosis is considered the most widespread zoonosis, and the predominant human disease in tropical, undeveloped regions. What these diseases have in common is that they are a significant burden to healthcare costs in the absence of prophylactic measures. This review addresses the interaction of these spirochetes with the fibrinolytic system, plasminogen (Plg) binding to the surface of bacteria and the generation of plasmin (Pla) on their surface. The consequences on host-pathogen interactions when the spirochetes are endowed with this proteolytic activity are discussed on the basis of the results reported in the literature. Spirochetes equipped with Pla activity have been shown to degrade extracellular matrix (ECM) components, in addition to digesting fibrin, facilitating bacterial invasion and dissemination. Pla generation triggers the induction of matrix metalloproteases (MMPs) in a cascade of events that enhances the proteolytic capacity of the spirochetes. These activities in concert with the interference exerted by the Plg/Pla on the complement system - helping the bacteria to evade the immune system - should illuminate our understanding of the mechanisms involved in host infection.
Collapse
|
13
|
Proteomic remodeling of proteasome in right heart failure. J Mol Cell Cardiol 2014; 66:41-52. [DOI: 10.1016/j.yjmcc.2013.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/13/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
14
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
15
|
Boncela J, Przygodzka P, Papiewska-Pajak I, Wyroba E, Cierniewski CS. Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli. J Biol Chem 2011; 286:43164-71. [PMID: 21976669 DOI: 10.1074/jbc.m111.245647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling.
Collapse
Affiliation(s)
- Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | | | | |
Collapse
|
16
|
A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration. Arch Dermatol Res 2011; 303:125-33. [PMID: 21286735 DOI: 10.1007/s00403-011-1123-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/09/2011] [Accepted: 01/13/2011] [Indexed: 01/31/2023]
Abstract
In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.
Collapse
|