1
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
2
|
Gu M, Jiang H, Tan M, Yu L, Xu N, Li Y, Wu H, Hou Q, Dai C. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat Commun 2023; 14:6682. [PMID: 37865665 PMCID: PMC10590414 DOI: 10.1038/s41467-023-42476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
palmitoylation, a reversible post-translational modification, is initiated by the DHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases. However, the role and mechanisms for protein palmitoylation in renal fibrosis have not been elucidated. Here we show protein palmitoylation and DHHC9 were downregulated in the fibrotic kidneys of mouse models and chronic kidney disease (CKD) patients. Ablating DHHC9 in tubular cells aggravated, while inducing DHHC9 overexpression with adeno-DHHC9 transfection or iproniazid treatment protected against kidney fibrosis in male mouse models. Mechanistically, DHHC9 palmitoylated β-catenin, thereby promoted its ubiquitination and degradation. Additionally, acyl protein thioesterase 1 (APT1) was induced in the fibrotic kidneys, which depalmitoylated β-catenin, increased its abundance and nuclear translocation. Ablating tubular APT1 or inhibiting APT1 with ML348 markedly protected against unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI)-induced kidney fibrosis in male mice. This study reveals the regulatory mechanism of protein palmitoylation in kidney fibrosis.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Long Yu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ning Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ying Li
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Han Wu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Matthiesen S, Christiansen B, Jahnke R, Zaeck LM, Karger A, Finke S, Franzke K, Knittler MR. TGF-β/IFN-γ Antagonism in Subversion and Self-Defense of Phase II Coxiella burnetii -Infected Dendritic Cells. Infect Immun 2023; 91:e0032322. [PMID: 36688662 PMCID: PMC9933720 DOI: 10.1128/iai.00323-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) belong to the first line of innate defense and come into early contact with invading pathogens, including the zoonotic bacterium Coxiella burnetii, the causative agent of Q fever. However, the pathogen-host cell interactions in C. burnetii-infected DCs, particularly the role of mechanisms of immune subversion beyond virulent phase I lipopolysaccharide (LPS), as well as the contribution of cellular self-defense strategies, are not understood. Using phase II Coxiella-infected DCs, we show that impairment of DC maturation and MHC I downregulation is caused by autocrine release and action of immunosuppressive transforming growth factor-β (TGF-β). Our study demonstrates that IFN-γ reverses TGF-β impairment of maturation/MHC I presentation in infected DCs and activates bacterial elimination, predominantly by inducing iNOS/NO. Induced NO synthesis strongly affects bacterial growth and infectivity. Moreover, our studies hint that Coxiella-infected DCs might be able to protect themselves from mitotoxic NO by switching from oxidative phosphorylation to glycolysis, thus ensuring survival in self-defense against C. burnetii. Our results provide new insights into DC subversion by Coxiella and the IFN-γ-mediated targeting of C. burnetii during early steps in the innate immune response.
Collapse
Affiliation(s)
- Svea Matthiesen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Bahne Christiansen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Rico Jahnke
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| |
Collapse
|
4
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Mielcarska S, Kula A, Dawidowicz M, Kiczmer P, Chrabańska M, Rynkiewicz M, Wziątek-Kuczmik D, Świętochowska E, Waniczek D. Assessment of the RANTES Level Correlation and Selected Inflammatory and Pro-Angiogenic Molecules Evaluation of Their Influence on CRC Clinical Features: A Preliminary Observational Study. Medicina (B Aires) 2022; 58:medicina58020203. [PMID: 35208526 PMCID: PMC8880690 DOI: 10.3390/medicina58020203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives: Assessment of RANTES level and concentrations of inflammatory cytokines: programmed death ligand 1 (PD-L1), interferon gamma IFN-γ, tumor necrosis factor alpha (TNF-α), transforming growht factor β (TGF-β) (and angiogenesis factors: vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor C (VEGF C) in tumor and margin tissues of colorectal cancer (CRC,) and evaluation of RANTES influence on histopathological parameters (microvessel density (MVD), budding, tumor-infiltrating lymphocytes (TILs)), in relation to patients’ clinical features. Materials and Methods: The study used 49 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C, we used the commercially available enzyme-linked immunosorbent assay kit. Additionally, RANTES and PD-L1 expression was assessed with the use of IHC staining in both tumor cells and TILS in randomly selected cases. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope. Results: We found significantly higher levels of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C in the tumor in comparison with the margin. The RANTES tumor levels correlated significantly with those of PD-L1, TNF-α, TGF-β, VEGF-A, and VEGF-C. The RANTES margin levels were significantly associated with the margin levels of all proteins investigated—PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C. Additionally, we observed RANTES- and PD-L1-positive immunostaining in TILs. In a group of 24 specimens, 6 different CRC tumors were positive for RANTES and PD-L1 immunostaining. The IFN-gamma concentration in both tumor and margin and TGF-β in tumor correlated with TILs. TILs were negatively associated with the patients’ disease stage and N parameter. Conclusions: RANTES activity might be associated with angiogenesis, lymphogenesis, and immune escape in CRC. RANTES is an important chemokine that is a part of the chemokine–cytokine network involved in the modulation of TME composition in CRC. Further research may verify which processes are responsible for the associations observed in the study.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland;
- Correspondence:
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Rynkiewicz
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Daria Wziątek-Kuczmik
- Department of Cranio-Maxillo-Facial Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 20-24 Francuska, 40-027 Katowice, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| |
Collapse
|
6
|
Mao SH, Feng DD, Wang X, Zhi YH, Lei S, Xing X, Jiang RL, Wu JN. Magnolol protects against acute gastrointestinal injury in sepsis by down-regulating regulated on activation, normal T-cell expressed and secreted. World J Clin Cases 2021; 9:10451-10463. [PMID: 35004977 PMCID: PMC8686136 DOI: 10.12998/wjcc.v9.i34.10451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis is a major medical challenge. Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects, but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.
AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.
METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and regulated on activation, normal T-cell expressed and secreted (RANTES) levels in serum and ileal tissue in animal studies. The histopathological changes of the ileal mucosa in different groups were observed under a microscope. Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide (LPS)-induced decrease in permeability. Immunofluorescence and Western blot assays were used to detect the levels of RANTES, inhibitor of nuclear factor kappa-B kinase β (IKKβ), phosphorylated IKKβ (p-IKKβ), inhibitor of nuclear factor kappa-B kinase α (IκBα), p65, and p-p65 proteins in different groups in vitro.
RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol, magnolol inhibited the expression of proinflammatory cytokines, IL-1β, IL-6, and TNF-α in a dose-dependent manner. In addition, magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats. Moreover, in vitro studies suggested that magnolol inhibited the increase of p65 nucleation, thereby markedly downregulating the production of the phosphorylated form of IKKβ in LPS-treated Caco2 cells. Specifically, magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B (NF-κB) from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.
CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways, thereby suppressing IL-1β, IL-6, and TNF-α expression to alleviate the mucosal barrier dysfunction in sepsis.
Collapse
Affiliation(s)
- Shi-Hao Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Dan-Dan Feng
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yi-Hui Zhi
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Shu Lei
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Xi Xing
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Rong-Lin Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Jian-Nong Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
7
|
Lin Y, Zhang M, Lin T, Wang L, Wang G, Chen T, Su S. Royal jelly from different floral sources possesses distinct wound-healing mechanisms and ingredient profiles. Food Funct 2021; 12:12059-12076. [PMID: 34783324 DOI: 10.1039/d1fo00586c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, population aging together with the increased prevalence of diabetes and obesity has fuelled a surge in the instances of cutaneous non-healing wounds. Royal jelly (RJ) is a traditional remedy for wound repair; however, the subjacent mechanisms and ingredient profiles are still largely unknown. Our previous study found that Castanea mollissima Bl. RJ (CmRJ-Zj) possessed superior wound healing-promoting effects on both the in vivo and in vitro models than Brassica napus L. RJ (BnRJ-Zj). This study conducted an in-depth investigation on the wound-repairing mechanisms of CmRJ-Zj and BnRJ-Zj to explain the previously observed phenomenon and also comprehensively characterized their constituents. It was found that chestnut RJ could enhance cutaneous wound healing by boosting the growth and mobility of keratinocytes, modulating the expression of aquaporin 3 (AQP3), regulating MAPK and calcium pathways, and mediating inflammatory responses. By employing LC-MS/MS-based proteomic and metabolomic techniques, the comprehensive molecules present in CmRJ-Zj and BnRJ-Zj were elucidated, resulting in a clear discrimination from each other. A total of 15 and 631 differential proteins and compounds were identified, and 217 proteins were newly found in RJ proteome. With bioinformatic functional analysis, we speculated that some differential components were responsible for the wound-healing properties of CmRJ-Zj. Therefore, this study provides an insight into the wound-healing mechanisms of RJ and is the first to explore the compositions of RJ from different nectar plants. It will facilitate the development of therapeutic agents from RJ to treat difficult-to-heal wounds and the distinction of different RJ categories.
Collapse
Affiliation(s)
- Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Luying Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guanggao Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Ting HK, Chen CL, Meng E, Cherng JH, Chang SJ, Kao CC, Yang MH, Leung FS, Wu ST. Inflammatory Regulation by TNF-α-Activated Adipose-Derived Stem Cells in the Human Bladder Cancer Microenvironment. Int J Mol Sci 2021; 22:ijms22083987. [PMID: 33924332 PMCID: PMC8069705 DOI: 10.3390/ijms22083987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs), have the most impressive ability to reduce inflammation through paracrine growth factors and cytokines that participate in inflammation. Tumor necrosis factor (TNF)-α bioactivity is a prerequisite in several inflammatory and autoimmune disease models. This study investigated the effects of TNF-α stimulate on ADSCs in the tumor microenvironment. The RNAseq analysis and cytokines assay demonstrated that TNF-α stimulated ADSCs proliferation and pro-inflammatory genes that correlated to leukocytes differentiation were upregulated. We found that upregulation of TLR2 or PTGS2 toward to IRF7 gene-associated with immunomodulatory and antitumor pathway under TNF-α treatment. In TNF-α-treated ADSCs cultured with the bladder cancer (BC) cell medium, the results showed that apoptosis ratio and OCT-4 and TLR2 genes which maintained the self-renewal ability of stem cells were decreased. Furthermore, the cell survival regulation genes including TRAF1, NF-kB, and IRF7 were upregulated in TNF-α-treated ADSCs. Additionally, these genes have not been upregulated in BC cell medium. A parallel study showed that tumor progressing genes were downregulated in TNF-α-treated ADSCs. Hence, the study suggests that TNF-α enhances the immunomodulatory potential of ADSCs during tumorigenesis and provides insight into highly efficacious MSC-based therapeutic options for BC.
Collapse
Affiliation(s)
- Hui-Kung Ting
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shu-Jen Chang
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Fang-Shiuan Leung
- College of Biological Science, University of California-Davis, Davis, CA 95616, USA;
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Correspondence: ; Tel.: +886-2-87927169; Fax: +886-2-87927172
| |
Collapse
|
10
|
Jerotic D, Suvakov S, Matic M, Alqudah A, Grieve DJ, Pljesa-Ercegovac M, Savic-Radojevic A, Damjanovic T, Dimkovic N, McClements L, Simic T. GSTM1 Modulates Expression of Endothelial Adhesion Molecules in Uremic Milieu. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678924. [PMID: 33574979 PMCID: PMC7860968 DOI: 10.1155/2021/6678924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
Deletion polymorphism of glutathione S-transferase M1 (GSTM1), a phase II detoxification and antioxidant enzyme, increases susceptibility to end-stage renal disease (ESRD) as well as the development of cardiovascular diseases (CVD) among ESRD patients and leads to their shorter cardiovascular survival. The mechanisms by which GSTM1 downregulation contributes to oxidative stress and inflammation in endothelial cells in uremic conditions have not been investigated so far. Therefore, the aim of the present study was to elucidate the effects of GSTM1 knockdown on oxidative stress and expression of a panel of inflammatory markers in human umbilical vein endothelial cells (HUVECs) exposed to uremic serum. Additionally, we aimed to discern whether GSTM1-null genotype is associated with serum levels of adhesion molecules in ESRD patients. HUVECs treated with uremic serum exhibited impaired redox balance characterized by enhanced lipid peroxidation and decreased antioxidant enzyme activities, independently of the GSTM1 knockdown. In response to uremic injury, HUVECs exhibited alteration in the expression of a series of inflammatory cytokines including retinol-binding protein 4 (RBP4), regulated on activation, normal T cell expressed and secreted (RANTES), C-reactive protein (CRP), angiogenin, dickkopf-1 (Dkk-1), and platelet factor 4 (PF4). GSTM1 knockdown in HUVECs showed upregulation of monocyte chemoattractant protein-1 (MCP-1), a cytokine involved in the regulation of monocyte migration and adhesion. These cells also have shown upregulated intracellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). In accordance with these findings, the levels of serum ICAM-1 and VCAM-1 (sICAM-1 and sVCAM-1) were increased in ESRD patients lacking GSTM1, in comparison with patients with the GSTM1-active genotype. Based on these results, it may be concluded that incubation of endothelial cells in uremic serum induces redox imbalance accompanied with altered expression of a series of cytokines involved in arteriosclerosis and atherosclerosis. The association of GSTM1 downregulation with the altered expression of adhesion molecules might be at least partly responsible for the increased susceptibility of ESRD patients to CVD.
Collapse
Affiliation(s)
- Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127 Zarqa 13133, Jordan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J. Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Damjanovic
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Nada Dimkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, NSW, Australia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins (Basel) 2019; 11:toxins11090482. [PMID: 31438657 PMCID: PMC6783826 DOI: 10.3390/toxins11090482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing cyanobacterial blooms have recently been considered a severe environmental problem. Microcystin-leucine arginine (MC-LR) is one of the secondary products of cyanobacteria metabolism and most harmful cyanotoxins found in water bodies. Studies show MC-LR negatively affects various human organs when exposed to it. The phenotype of the jejunal chronic toxicity induced by MC-LR has not been well described. The aim of this paper was to investigate the effects of MC-LR on the jejunal microstructure and expression level of inflammatory-related factors in jejunum. Mice were treated with different doses (1, 30, 60, 90 and 120 μg/L) of MC-LR for six months. The microstructure and mRNA expression levels of inflammation-related factors in jejunum were analyzed. Results showed that the microstructure of the jejunum was destroyed and expression levels of inflammation-related factors interleukin (IL)-1β, interleukin (IL)-8, tumor necrosis factor alpha, transforming growth factor-β1 and interleukin (IL)-10 were altered at different MC-LR concentrations. To the best of our knowledge, this is the first study that mice were exposed to a high dose of MC-LR for six months. Our data demonstrated MC-LR had the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and inducing an inflammatory response in mice, which provided new insight into understanding the prevention and diagnosis of the intestinal diseases caused by MC-LR.
Collapse
|
12
|
Li D, Wang W, Wu Y, Ma X, Zhou W, Lai Y. Lipopeptide 78 from Staphylococcus epidermidis Activates β-Catenin To Inhibit Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:1219-1228. [DOI: 10.4049/jimmunol.1800813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
|
13
|
Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant 2018; 32:791-800. [PMID: 27798196 DOI: 10.1093/ndt/gfw340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Klotho protein interacts with the transforming growth factor β (TGF-β) receptor and Wnt, which contribute to the progression of renal disease, inhibiting their signals. Renal and circulating klotho levels are diminished in chronic kidney disease. Methods Experiments were performed to assess whether supplementation of klotho protein could have protective effects on the kidney. Rats were injected with adriamycin (5 mg/kg) and divided into three groups: those treated with vehicle, those treated with klotho protein and those treated with klotho plus 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD). Rats without adriamycin treatment were used as a control. Results Adriamycin reduced the serum klotho concentration and renal expression of klotho and E-cadherin. Adriamycin also increased the renal expression of Wnt, TGF-β, and angiotensinogen, as well as the renal abundance of β-catenin and angiotensin II. Klotho supplementation suppressed adriamycin-induced elevations of β-catenin and angiotensin II with sustained Wnt expression. Combined treatment with klotho and TDZD reversed the klotho-induced improvements in the renal abundance of β-catenin and angiotensin II as well as the expression of TGF-β and angiotensinogen without affecting E-cadherin. Conclusions Our data indicate that Wnt is involved in the pathogenesis of adriamycin nephropathy. Furthermore, klotho supplementation inhibited Wnt signaling, ameliorating renal angiotensin II. Finally, klotho protein appears to suppress epithelial-mesenchymal transition by inhibiting TGF-β and Wnt signaling.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroyuki Kobori
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kida, Kagawa, Japan
| | - Naohito Ishii
- Department of Clinical Chemistry, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| |
Collapse
|
14
|
Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr 2017; 11 Suppl 2:S1001-S1007. [PMID: 28778429 DOI: 10.1016/j.dsx.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/02/2023]
Abstract
Mast cells are stimulatory factors in prognosis of various immunogenic and allergic diseases in human body. These cells play an important role in various immunological and metabolic diseases. The aim of present article is to explore the molecular targets to suppress the over expression of mast cells in obesity. The last 20 years literature were searched by various bibliographic data bases like Pubmed, google Scholar, Scopus and web of Science. The data were collected by keywords like "Mast Cell" "obesity" and "role of mast cell or role in obesity". Articles and their abstract were reviewed with a counting of 827 publications, in which 87 publications were considered for study and remaining was excluded because of its specificity to the subject. This review explains the characteristics, molecular targets and role of mast cells in obesity and existing research with mast cells to the area of metabolic diseases.
Collapse
Affiliation(s)
- Souravh Bais
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India.
| | - Reena Kumari
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - Yash Prashar
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - N S Gill
- Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| |
Collapse
|
15
|
Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J, Dai C. Wnt/ β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. J Am Soc Nephrol 2017; 29:182-193. [PMID: 29021383 DOI: 10.1681/asn.2017040391] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/27/2017] [Indexed: 01/15/2023] Open
Abstract
The Wnt/β-catenin pathway is crucial in normal development and throughout life, but aberrant activation of this pathway has been linked to kidney fibrosis, although the mechanisms involved remain incompletely determined. Here, we investigated the role of Wnt/β-catenin in regulating macrophage activation and the contribution thereof to kidney fibrosis. Treatment of macrophages with Wnt3a exacerbated IL-4- or TGFβ1-induced macrophage alternative (M2) polarization and the phosphorylation and nuclear translocation of STAT3 in vitro Conversely, inhibition of Wnt/β-catenin signaling prevented these IL-4- or TGFβ1-induced processes. In a mouse model, induced deletion of β-catenin in macrophages attenuated the fibrosis, macrophage accumulation, and M2 polarization observed in the kidneys of wild-type littermates after unilateral ureter obstruction. This study shows that activation of Wnt/β-catenin signaling promotes kidney fibrosis by stimulating macrophage M2 polarization.
Collapse
Affiliation(s)
- Ye Feng
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiafa Ren
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Gui
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingyan Shu
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingmiao Lu
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Xue
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoli Sun
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Nlandu-Khodo S, Neelisetty S, Phillips M, Manolopoulou M, Bhave G, May L, Clark PE, Yang H, Fogo AB, Harris RC, Taketo MM, Lee E, Gewin LS. Blocking TGF- β and β-Catenin Epithelial Crosstalk Exacerbates CKD. J Am Soc Nephrol 2017; 28:3490-3503. [PMID: 28701516 DOI: 10.1681/asn.2016121351] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/08/2017] [Indexed: 11/03/2022] Open
Abstract
The TGF-β and Wnt/β-catenin pathways have important roles in modulating CKD, but how these growth factors affect the epithelial response to CKD is not well studied. TGF-β has strong profibrotic effects, but this pleiotropic factor has many different cellular effects depending on the target cell type. To investigate how TGF-β signaling in the proximal tubule, a key target and mediator of CKD, alters the response to CKD, we injured mice lacking the TGF-β type 2 receptor specifically in this epithelial segment. Compared with littermate controls, mice lacking the proximal tubular TGF-β receptor had significantly increased tubular injury and tubulointerstitial fibrosis in two different models of CKD. RNA sequencing indicated that deleting the TGF-β receptor in proximal tubule cells modulated many growth factor pathways, but Wnt/β-catenin signaling was the pathway most affected. We validated that deleting the proximal tubular TGF-β receptor impaired β-catenin activity in vitro and in vivo Genetically restoring β-catenin activity in proximal tubules lacking the TGF-β receptor dramatically improved the tubular response to CKD in mice. Deleting the TGF-β receptor alters many growth factors, and therefore, this ameliorated response may be a direct effect of β-catenin activity or an indirect effect of β-catenin interacting with other growth factors. In conclusion, blocking TGF-β and β-catenin crosstalk in proximal tubules exacerbates tubular injury in two models of CKD.
Collapse
Affiliation(s)
| | | | | | | | - Gautam Bhave
- Division of Nephrology, Department of Medicine and.,Departments of Cell and Developmental Biology
| | | | | | | | - Agnes B Fogo
- Division of Nephrology, Department of Medicine and.,Pathology, Microbiology and Immunology.,Pediatrics, and
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine and.,Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee.,Departments of Medicine and
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ethan Lee
- Departments of Cell and Developmental Biology
| | - Leslie S Gewin
- Division of Nephrology, Department of Medicine and .,Departments of Cell and Developmental Biology.,Research, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| |
Collapse
|
17
|
TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm 2016; 2016:8319283. [PMID: 27610006 PMCID: PMC5005604 DOI: 10.1155/2016/8319283] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
Renal fibrosis, irrespective of its etiology, is a final common stage of almost all chronic kidney diseases. Increased apoptosis, epithelial-to-mesenchymal transition, and inflammatory cell infiltration characterize the injured kidney. On the molecular level, transforming growth factor-β1 (TGF-β1)-Smad3 signaling pathway plays a central role in fibrotic kidney disease. Recent findings indicate the prominent role of microRNAs, small noncoding RNA molecules that inhibit gene expression through the posttranscriptional repression of their target mRNAs, in different pathologic conditions, including renal pathophysiology. miR-21 was also shown to play a dynamic role in inflammatory responses and in accelerating injury responses to promote organ failure and fibrosis. Understanding the cellular and molecular bases of miR-21 involvement in the pathogenesis of kidney diseases, including inflammatory reaction, could be crucial for their early diagnosis. Moreover, the possibility of influencing miR-21 level by specific antagomirs may be considered as an approach for treatment of renal diseases.
Collapse
|
18
|
Hanisch BR, Bangirana P, Opoka RO, Park GS, John CC. Thrombocytopenia May Mediate Disease Severity in Plasmodium falciparum Malaria Through Reduced Transforming Growth Factor Beta-1 Regulation of Proinflammatory and Anti-inflammatory Cytokines. Pediatr Infect Dis J 2015; 34:783-8. [PMID: 25886788 PMCID: PMC4466060 DOI: 10.1097/inf.0000000000000729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transforming growth factor beta-1 (TGF-β1) is an important regulator of inflammation. Platelets are a major source of TGF-β1 and are reduced in severe malaria. However, the relationships between TGF-β1 concentrations and platelet counts, proinflammatory and anti-inflammatory cytokine and chemokine concentrations and disease severity in malaria have not been characterized. METHODS Platelet counts and serum concentrations of TGF-β1, interleukin-1beta (IL-1β), IL-6, IL-10, interferon (IFN)-γ, tumor necrosis factor (TNF)-α and RANTES were measured at the time of presentation in Ugandan children with cerebral malaria (CM, n = 75), uncomplicated malaria (UM, n = 67) and healthy community children (CC, n = 62). RESULTS TGF-β1 concentrations decreased with increasing severity of disease [median concentrations (25th, 75th percentile) in ng/mL in CC, 41.4 (31.6, 57.4); UM, 22.7 (14.1, 36.4); CM, 11.8 (8, 21); P for trend < 0.0001]. In children with CM or UM, TGF-β1 concentrations correlated positively with platelet count (CM, P < 0.0001; UM, P = 0.0015). In children with CM, TGF-β1 concentration correlated negatively with IFN-γ, IL-6 and IL-10 and positively with RANTES concentrations (all P < 0.01). TGF-β1 concentration was not associated with death or adverse neurologic or cognitive outcomes in children with CM. CONCLUSIONS TGF-β1 concentrations decrease with increasing Plasmodium falciparum disease severity. In CM, thrombocytopenia correlates with decreased TGF-β1, and decreased TGF-β1 correlates with cytokine/chemokine changes associated with increased disease severity and death. Thrombocytopenia may mediate disease severity in malaria through reduced TGF-β1-mediated regulation of cytokines associated with severe disease.
Collapse
Affiliation(s)
- Benjamin R Hanisch
- From the *Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; and †Department of Paediatrics, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | | |
Collapse
|
19
|
Kumaran S, Samantha K, Halagowder D. Does ß-Catenin Cross-Regulate NFκB Signalling in Pancreatic Cancer and Chronic Pancreatitis? Pathobiology 2015; 82:28-35. [DOI: 10.1159/000369887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
|
20
|
Wnt5a signaling increases IL-12 secretion by human dendritic cells and enhances IFN-γ production by CD4+ T cells. Immunol Lett 2014; 162:188-99. [PMID: 25196330 DOI: 10.1016/j.imlet.2014.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022]
Abstract
Wnt5a is a secreted pleiotropic glycoprotein produced in an inflammatory state by a wide spectrum of ubiquitous cell populations. Recently, we demonstrated that Wnt5a skews the differentiation of human monocyte derived dendritic cells (moDCs) to a tolerogenic functional state. In this study we focus our interest on the role of this Wnt ligand after DC differentiation, during their maturation and function. We show that the expression of Wnt receptors is tightly regulated during the life cycle of DCs suggesting a differential responsiveness to Wnt signaling conditioned by their differentiation stage and the maturational stimuli. Furthermore, we confirm that Wnt5a is the main non-canonical Wnt protein expressed by DCs and its production increases upon specific stimuli. Exogenous Wnt5a improved the endocytic capacity of immature DCs but it is not a stimulatory signal on its own, slightly affecting the maturation and function of DCs. However, knocking down Wnt5a gene expression in maturing DCs demonstrates that DC-derived Wnt5a is necessary for normal IL-12 secretion and plays a positive role during the development of Th1 responses. Wnt5a acts both in autocrine and paracrine ways. Thus, human naive CD4(+) T cells express Wnt receptors and, the addition of Wnt5a during CD3/CD28 stimulation enhances IL-2 and IFN-γ production. Taken together these results suggest a time-dependent role for Wnt5a during inflammatory responses conditioned by the differentiation stage of cellular targets.
Collapse
|
21
|
AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal 2014; 12:48. [PMID: 25201625 PMCID: PMC4222560 DOI: 10.1186/s12964-014-0048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/13/2014] [Indexed: 11/29/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). Results Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. Conclusion AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5 responses by other agents, but AhR ligands alone induced CXCL8 responses when given at sufficiently high concentrations, thus underscoring the duality of AhR in regulation of inflammation. We propose that AhR-signaling may be a weak activator of p65-signaling that suppresses p65-activity induced by strong activators of NF-κB, but that its anti-inflammatory properties also are due to interference with additional pathways.
Collapse
|
22
|
Zi FM, He JS, Li Y, Wu C, Wu WJ, Yang Y, Wang LJ, He DH, Yang L, Zhao Y, Zheng GF, Han XY, Huang H, Yi Q, Cai Z. Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through β-catenin signaling pathway. Cancer Biol Ther 2014; 15:1413-22. [PMID: 25046247 DOI: 10.4161/cbt.29924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cells proliferative disease. The intricate cross-talk of myeloma cells with bone marrow microenvironment plays an important role in facilitating growth and survival of myeloma cells. Bone marrow mesenchymal stem cells (BMMSCs) are important cells in MM microenvironment. In solid tumors, BMMSCs can be educated by tumor cells to become cancer-associated fibroblasts (CAFs) with high expression of fibroblast activation protein (FAP). FAP was reported to be involved in drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion, and metastasis of tumor cells. However, the expression and the role of FAP in MM bone marrow microenvironment are still less known. The present study is aimed to investigate the expression of FAP, the role of FAP, and its relevant signaling pathway in regulating apoptosis induced by bortezomib in MM cells. In this study, our data illustrated that the expression levels of FAP were not different between the cultured BMMSCs isolated from MM patients and normal donors. The expression levels of FAP can be increased by tumor cells conditioned medium (TCCM) stimulation or coculture with RPMI8226 cells. FAP has important role in BMMSCs mediated protecting MM cell lines from apoptosis induced by bortezomib. Further study showed that this process may likely through β-catenin signaling pathway in vitro. The activation of β-catenin in MM cell lines was dependent on direct contact with BMMSCs other than separated by transwell or additional condition medium from BMMSCs and cytokines.
Collapse
Affiliation(s)
- Fu-Ming Zi
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Jing-Song He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Li
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Cai Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yang Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li-Juan Wang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Dong-Hua He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Zhao
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Gao-Feng Zheng
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Xiao-Yan Han
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - He Huang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Qing Yi
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| | - Zhen Cai
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| |
Collapse
|
23
|
Nuclear NF-κB p65 in peripheral blood mononuclear cells correlates with urinary MCP-1, RANTES and the severity of type 2 diabetic nephropathy. PLoS One 2014; 9:e99633. [PMID: 24936866 PMCID: PMC4061032 DOI: 10.1371/journal.pone.0099633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate if nuclear NF-κB p65 expression in ex vivo isolated peripheral blood mononuclear cells correlates with urinary MCP-1 or RANTES and the severity of type 2 diabetic nephropathy. Methods According to their urinary albumin-to-creatinine ratio (uACR), 107 patients with type 2 diabetes (eGFR >60 ml/min) were divided into normal albuminuria group (DN0 group, 38 cases), microalbuminuria group (DN1 group, 38 cases), and macroalbuminuria group (DN2 group, 31 cases), compared with matched healthy normal control group (NC group, 30 cases). Nuclear NF-κB p65 protein expression levels in peripheral blood mononuclear cells were detected by western blotting. Real-time quantitative polymerase chain reaction was used to detect NF-κB p65 mRNA expression and ELISA assay was used to detect the levels of urinary MCP-1 and RANTES. Results Nuclear NF-κB p65 protein and NF-κB p65 mRNA expression levels in peripheral blood mononuclear cells, urinary MCP-1/Cr and RANTES/Cr were all significantly higher in all diabetes groups as compared with NC group. In particular, the increase of nuclear NF-κB p65 protein and NF-κB p65 mRNA expressions, urinary MCP-1/Cr and RANTES/Cr all correlated with the severity of type 2 diabetic nephropathy as indicated by the increase in uACR. Pearson correlation analysis indicated that both urinary MCP-1/Cr and RANTES/Cr were positively correlated with nuclear NF-κB p65 protein or NF-κB p65 mRNA levels. Stepwise multiple regression analysis showed that nuclear NF-κB p65 protein or NF-κB p65 mRNA was an independent variable for urinary MCP-1/Cr, and MCP-1/Cr and RANTES/Cr were two independent variables for uACR. Conclusion Our research demonstrates that nuclear NF-κB p65 protein and mRNA expressions in ex vivo isolated peripheral blood mononuclear cells well correlate with urinary MCP-1/Cr, RANTES/Cr and the severity of type 2 diabetic nephropathy.
Collapse
|
24
|
Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK, Oliva-Hemker M, Wood RA, Dietz HC. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med 2014; 5:195ra94. [PMID: 23884466 DOI: 10.1126/scitranslmed.3006448] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β (TGFβ) is a multifunctional cytokine that plays diverse roles in physiologic processes as well as human disease, including cancer, heart disease, and fibrotic disorders. In the immune system, TGFβ regulates regulatory T cell (Treg) maturation and immune homeostasis. Although genetic manipulation of the TGFβ pathway modulates immune tolerance in mouse models, the contribution of this pathway to human allergic phenotypes is not well understood. We demonstrate that patients with Loeys-Dietz syndrome (LDS), an autosomal dominant disorder caused by mutations in the genes encoding receptor subunits for TGFβ, TGFBR1 and TGFBR2, are strongly predisposed to develop allergic disease, including asthma, food allergy, eczema, allergic rhinitis, and eosinophilic gastrointestinal disease. LDS patients exhibited elevated immunoglobulin E levels, eosinophil counts, and T helper 2 (TH2) cytokines in their plasma. They had an increased frequency of CD4(+) T cells that expressed both Foxp3 and interleukin-13, but retained the ability to suppress effector T cell proliferation. TH2 cytokine-producing cells accumulated in cultures of naïve CD4(+) T cells from LDS subjects, but not controls, after stimulation with TGFβ, suggesting that LDS mutations support TH2 skewing in naïve lymphocytes in a cell-autonomous manner. The monogenic nature of LDS demonstrates that altered TGFβ signaling can predispose to allergic phenotypes in humans and underscores a prominent role for TGFβ in directing immune responses to antigens present in the environment and foods. This paradigm may be relevant to nonsyndromic presentations of allergic disease and highlights the potential therapeutic benefit of strategies that inhibit TGFβ signaling.
Collapse
|
25
|
Hwang SK, Baker AR, Young MR, Colburn NH. Tumor suppressor PDCD4 inhibits NF-κB-dependent transcription in human glioblastoma cells by direct interaction with p65. Carcinogenesis 2014; 35:1469-80. [PMID: 24413684 DOI: 10.1093/carcin/bgu008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PDCD4 is a tumor suppressor induced by apoptotic stimuli that regulates both translation and transcription. Previously, we showed that overexpression of PDCD4 leads to decreased anchorage-independent growth in glioblastoma (GBM)-derived cell lines and decreased tumor growth in a GBM xenograft model. In inflammatory cells, PDCD4 stimulates tumor necrosis factor-induced activation of the transcription factor NF-κB, an oncogenic driver in many cancer sites. However, the effect of PDCD4 on NF-κB transcriptional activity in most cancers including GBM is still unknown. We studied the effect of PDCD4 on NF-κB-dependent transcriptional activity in GBM by stably overexpressing PDCD4 in U251 and LN229 cells. Stable PDCD4 expression inhibits NF-κB transcriptional activation measured by a luciferase reporter. The molecular mechanism by which PDCD4 inhibits NF-κB transcriptional activation does not involve inhibited expression of NF-κB p65 or p50 proteins. PDCD4 does not inhibit pathways upstream of NF-κB including the activation of IKKα and IKKβ kinases or degradation of IκBα, events needed for nuclear transport of p65 and p50. PDCD4 overexpression does inhibit localization of p65 but not p50 in the nucleus. PDCD4 protein interacts preferentially with p65 protein as shown by co-immunoprecipitation and confocal imaging. PDCD4 overexpression inhibits the mRNA expression of two NF-κB target genes in a p65-dependent manner. These results suggest that PDCD4 can significantly inhibit NF-κB activity in GBM cells by a mechanism that involves direct or indirect protein-protein interaction independent of the expected mRNA-selective translational inhibition. These findings offer novel opportunities for NF-κB-targeted interventions to prevent or treat cancer.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory, 1050 Boyles Street, Bldg 576, Rm 101, Frederick, MD 21702, USA
| | - Alyson R Baker
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory, 1050 Boyles Street, Bldg 576, Rm 101, Frederick, MD 21702, USA
| | - Matthew R Young
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory, 1050 Boyles Street, Bldg 576, Rm 101, Frederick, MD 21702, USA
| | - Nancy H Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory, 1050 Boyles Street, Bldg 576, Rm 101, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Liu H, Zhang XP, Yi ZW. Efficacy of antisense monocyte chemoattractant protein-1 (MCP-1) in a rat model of mesangial proliferative glomerulonephritis. Ren Fail 2013; 35:1418-28. [PMID: 23991758 DOI: 10.3109/0886022x.2013.828309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The effects of inhibition of monocyte chemoattractant protein-1 (MCP-1) on a rat model of mesangial proliferative glomerulonephritis (MsPGN) were evaluated. METHODS The anti-Thy-1 MsPGN model was developed by intravenously injecting anti-Thy-1 monoclonal antibodies into rats, followed by an injection of mesangial cells transfected with antisense MCP-1 into the renal artery. Exogenous cells were detected by in situ hybridization. Rats (40 total) were randomly divided into five groups: SO (sham operation), TG (Thy-1 glomerulonephritis model), MC (non-transfected normal rat mesangial cell), BC (pLXSN empty vector or blank control), and AM (antisense MCP-1 transfection) groups. Effects of exogenous MCP-1 on urinary protein excretion rate, biochemical parameters, and pathological changes were evaluated. Expression of MCP-1 and transforming growth factor-β1 (TGF-β1) were detected by immunohistochemistry. mRNA expression of MCP-1, TGF-β1, and CC chemokine receptor 2 (CCR2) were detected by RT-PCR. RESULTS Exogenous MCP-1 cDNA was successfully transfected into mesangial cells. Exogenous mesangial cells were detected in glomeruli by in situ hybridization. Glomerular mesangial cell proliferation, 24-h urinary protein excretion rate, mRNA expression of MCP-1, TGF-β1, and CCR2, and protein expression of MCP-1 all decreased in the AM group as compared to the control group (p < 0.05), but there was no significant difference in the expression level of TGF-β1 protein. CONCLUSIONS (1) Mesangial cells can be used as a vector to transfect exogenous genes into kidneys; (2) antisense MCP-1 decreases mesangial cell proliferation and pathological injury in MsPGN model rats by decreasing expression of MCP-1 and CCR2; and (3) antisense MCP-1 suppressed mesangial cell proliferation and matrix accumulation in anti-Thy-1 MsPGN model rats, which did not entirely depend on TGF-β1.
Collapse
Affiliation(s)
- Hua Liu
- Division of Pediatric Nephrology, The Children's Medical Center, The Second Xiangya Hospital, Central South University , Changsha , China and
| | | | | |
Collapse
|
27
|
He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J Am Soc Nephrol 2012; 23:294-304. [PMID: 22095947 PMCID: PMC3269179 DOI: 10.1681/asn.2011050490] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022] Open
Abstract
A variety of chronic kidney diseases exhibit reactivation of Wnt/β-catenin signaling. In some tissues, β-catenin transcriptionally regulates matrix metalloproteinase-7 (MMP-7), but the association between MMP-7 and Wnt/β-catenin signaling in chronic kidney disease is unknown. Here, in mouse models of both obstructive nephropathy and focal segmental glomerulosclerosis (adriamycin nephropathy), we observed upregulation of MMP-7 mRNA and protein in a time-dependent manner. The pattern and extent of MMP-7 induction were positively associated with Wnt/β-catenin signaling in these models. Activation of β-catenin through ectopic expression of Wnt1 promoted MMP-7 expression in vivo, whereas delivery of the gene encoding the endogenous Wnt antagonist Dickkopf-1 abolished its induction. Levels of MMP-7 protein detected in the urine correlated with renal Wnt/β-catenin activity. Pharmacologic blockade of Wnt/β-catenin signaling by paricalcitol inhibited MMP-7 expression in diseased kidneys and reduced the levels detected in the urine. In vitro, β-catenin activation induced the expression and secretion of MMP-7 and promoted the binding of T cell factor to the MMP-7 promoter in kidney epithelial cells. We also observed higher levels of MMP-7 expression, which correlated with β-catenin, in kidney tissue from patients with various nephropathies. In summary, levels of renal MMP-7 correlate with Wnt/β-catenin activity, and urinary MMP-7 may be a noninvasive biomarker of this profibrotic signaling in the kidney.
Collapse
Affiliation(s)
- Weichun He
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Roderick J. Tan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Dan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
28
|
Merk DR, Chin JT, Dake BA, Maegdefessel L, Miller MO, Kimura N, Tsao PS, Iosef C, Berry GJ, Mohr FW, Spin JM, Alvira CM, Robbins RC, Fischbein MP. miR-29b participates in early aneurysm development in Marfan syndrome. Circ Res 2011; 110:312-24. [PMID: 22116819 DOI: 10.1161/circresaha.111.253740] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor-β (TGF-β) signaling. Although TGF-β blockade prevents aneurysms in MFS mouse models, the mechanisms through which excessive TGF-β causes aneurysms remain ill-defined. OBJECTIVE We investigated the role of microRNA-29b (miR-29b) in aneurysm formation in MFS. METHODS AND RESULTS Using quantitative polymerase chain reaction, we discovered that miR-29b, a microRNA regulating apoptosis and extracellular matrix synthesis/deposition genes, is increased in the ascending aorta of Marfan (Fbn1(C1039G/+)) mice. Increased apoptosis, assessed by increased cleaved caspase-3 and caspase-9, enhanced caspase-3 activity, and decreased levels of the antiapoptotic proteins, Mcl-1 and Bcl-2, were found in the Fbn1(C1039G/+) aorta. Histological evidence of decreased and fragmented elastin was observed exclusively in the Fbn1(C1039G/+) ascending aorta in association with repressed elastin mRNA and increased matrix metalloproteinase-2 expression and activity, both targets of miR-29b. Evidence of decreased activation of nuclear factor κB, a repressor of miR-29b, and a factor suppressed by TGF-β, was also observed in Fbn1(C1039G/+) aorta. Furthermore, administration of a nuclear factor κB inhibitor increased miR-29b levels, whereas TGF-β blockade or losartan effectively decreased miR-29b levels in Fbn1(C1039G/+) mice. Finally, miR-29b blockade by locked nucleic acid antisense oligonucleotides prevented early aneurysm development, aortic wall apoptosis, and extracellular matrix deficiencies. CONCLUSIONS We identify increased miR-29b expression as key to the pathogenesis of early aneurysm development in MFS by regulating aortic wall apoptosis and extracellular matrix abnormalities.
Collapse
Affiliation(s)
- Denis R Merk
- Department of Cardiothoracic Surgery, 300 Pasteur Drive, Falk Cardiovascular Research Building, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Beurel E. Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front Mol Neurosci 2011; 4:18. [PMID: 21941466 PMCID: PMC3171068 DOI: 10.3389/fnmol.2011.00018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/09/2011] [Indexed: 11/13/2022] Open
Abstract
Elevated markers of neuroinflammation have been found to be associated with many psychiatric and neurodegenerative diseases, such as mood disorders, Alzheimer's disease, and multiple sclerosis (MS). Since neuroinflammation is thought to contribute to the pathophysiology of these diseases and to impair responses to therapeutic interventions and recovery, it is important to identify mechanisms that regulate neuroinflammation and potential targets for controlling neuroinflammation. Recent findings have demonstrated that glycogen synthase kinase-3 (GSK3) is an important regulator of both the innate and adaptive immune systems' contributions to inflammation. Studies of the innate immune system have shown that inhibitors of GSK3 profoundly alter the repertoire of cytokines that are produced both by peripheral and central cells, reducing pro-inflammatory cytokines, and increasing anti-inflammatory cytokines. Furthermore, inhibitors of GSK3 promote tolerance to inflammatory stimuli, reducing inflammatory cytokine production upon repeated exposure. Studies of the adaptive immune system have shown that GSK3 regulates the production of cytokines by T cells and the differentiation of T cells to subtypes, particularly Th17 cells. Regulation of transcription factors by GSK3 appears to play a prominent role in its regulation of immune responses, including of NF-κB, cyclic AMP response element binding protein, and signal transducer and activator of transcription-3. Invivo studies have shown that GSK3 inhibitors ameliorate clinical symptoms of both peripheral and central inflammatory diseases, particularly experimental autoimmune encephalomyelitis, the animal model of MS. Therefore, the development and application of GSK3 inhibitors may provide a new therapeutic strategy to reduce neuroinflammation associated with many central nervous system diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|