1
|
Hyvönen M. Yet another twist to the regulation of the TGF-β family ligands. Proc Natl Acad Sci U S A 2025; 122:e2426535122. [PMID: 39899728 PMCID: PMC11831175 DOI: 10.1073/pnas.2426535122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Affiliation(s)
- Marko Hyvönen
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| |
Collapse
|
2
|
Pinjusic K, Bulliard M, Rothé B, Ansaryan S, Liu YC, Ginefra P, Schmuziger C, Altug H, Constam DB. Stepwise release of Activin-A from its inhibitory prodomain is modulated by cysteines and requires furin coexpression to promote melanoma growth. Commun Biol 2024; 7:1383. [PMID: 39448726 PMCID: PMC11502825 DOI: 10.1038/s42003-024-07053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin. Mechanistically, Activin-A processing was modulated by allosteric disulfide bonds flanking the furin site. Disruption of these disulfide linkages with the prodomain enabled Activin-A binding to cognate type II receptors independently of proteolytic maturation. Stepwise proteolytic maturation is a novel mechanism to control Activin-A protein interactions and signaling.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manon Bulliard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Saeid Ansaryan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Yeng-Cheng Liu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- University of Lausanne, Department of Oncology, Ludwig Cancer Institute, Epalinges, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Hatice Altug
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|
3
|
Zhao M, Taniguchi Y, Shimono C, Jonouchi T, Cheng Y, Shimizu Y, Nalbandian M, Yamamoto T, Nakagawa M, Sekiguchi K, Sakurai H. Heparan Sulfate Chain-Conjugated Laminin-E8 Fragments Advance Paraxial Mesodermal Differentiation Followed by High Myogenic Induction from hiPSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308306. [PMID: 38685581 PMCID: PMC11234437 DOI: 10.1002/advs.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
- Center for Medical EpigeneticsSchool of Basic Medical SciencesChongqing Medical University1 Yixueyuan Road, Yuzhong DistrictChongqing400016China
| | - Yukimasa Taniguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Chisei Shimono
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Tatsuya Jonouchi
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yushen Cheng
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Shimizu
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Minas Nalbandian
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takuya Yamamoto
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masato Nakagawa
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Hidetoshi Sakurai
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|
4
|
Lounev V, Groppe JC, Brewer N, Wentworth KL, Smith V, Xu M, Schomburg L, Bhargava P, Al Mukaddam M, Hsiao EC, Shore EM, Pignolo RJ, Kaplan FS. Matrix metalloproteinase-9 deficiency confers resilience in fibrodysplasia ossificans progressiva in a man and mice. J Bone Miner Res 2024; 39:382-398. [PMID: 38477818 DOI: 10.1093/jbmr/zjae029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Single case studies of extraordinary disease resilience may provide therapeutic insight into conditions for which no definitive treatments exist. An otherwise healthy 35-year-old man (patient-R) with the canonical pathogenic ACVR1R206H variant and the classic congenital great toe malformation of fibrodysplasia ossificans progressiva (FOP) had extreme paucity of post-natal heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient post-natal inflammatory trigger for HO. A plasma biomarker survey revealed a reduction in total matrix metalloproteinase-9 (MMP-9) compared to healthy controls and individuals with quiescent FOP. Whole exome sequencing identified compound heterozygous variants in MMP-9 (c.59C > T, p.A20V and c.493G > A, p.D165N). Structural analysis of the D165N variant predicted both decreased MMP-9 secretion and activity that were confirmed by enzyme-linked immunosorbent assay and gelatin zymography. Further, human proinflammatory M1-like macrophages expressing either MMP-9 variant produced significantly less Activin A, an obligate ligand for HO in FOP, compared to wildtype controls. Importantly, MMP-9 inhibition by genetic, biologic, or pharmacologic means in multiple FOP mouse models abrogated trauma-induced HO, sequestered Activin A in the extracellular matrix (ECM), and induced regeneration of injured skeletal muscle. Our data suggest that MMP-9 is a druggable node linking inflammation to HO, orchestrates an existential role in the pathogenesis of FOP, and illustrates that a single patient's clinical phenotype can reveal critical molecular mechanisms of disease that unveil novel treatment strategies.
Collapse
Affiliation(s)
- Vitali Lounev
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A & M University College of Dentistry, Dallas, TX 75246-2013, United States
| | - Niambi Brewer
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA 94143-0794, United States
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
| | | | - Meiqi Xu
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charite University Hospital, D-10115 Berlin, Germany
| | | | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Edward C Hsiao
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
- Division of Endocrinology and Metabolism, The Institute for Human Genetics, the Program in Craniofacial Biology, University of California, San Francisco, CA 94143-0794, United States
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
5
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
7
|
Sugiyama-Nakagiri Y, Yamashita S, Taniguchi Y, Shimono C, Sekiguchi K. Laminin fragments conjugated with perlecan's growth factor-binding domain differentiate human induced pluripotent stem cells into skin-derived precursor cells. Sci Rep 2023; 13:14556. [PMID: 37666868 PMCID: PMC10477235 DOI: 10.1038/s41598-023-41701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.
Collapse
Affiliation(s)
| | - Shiho Yamashita
- Kao Corporation, 2602, Akabane Ichikai-Machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chisei Shimono
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Futaki S, Horimoto A, Shimono C, Norioka N, Taniguchi Y, Hamaoka H, Kaneko M, Shigeta M, Abe T, Sekiguchi K, Kondo Y. Visualization of basement membranes by a nidogen-based fluorescent reporter in mice. Matrix Biol Plus 2023; 18:100133. [PMID: 37131404 PMCID: PMC10149278 DOI: 10.1016/j.mbplus.2023.100133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023] Open
Abstract
Basement membranes (BMs) are thin, sheet-like extracellular structures that cover the basal side of epithelial and endothelial tissues and provide structural and functional support to adjacent cell layers. The molecular structure of BMs is a fine meshwork that incorporates specialized extracellular matrix proteins. Recently, live visualization of BMs in invertebrates demonstrated that their structure is flexible and dynamically rearranged during cell differentiation and organogenesis. However, the BM dynamics in mammalian tissues remain to be elucidated. We developed a mammalian BM imaging probe based on nidogen-1, a major BM-specific protein. Recombinant human nidogen-1 fused with an enhanced green fluorescent protein (Nid1-EGFP) retains its ability to bind to other BM proteins, such as laminin, type IV collagen, and perlecan, in a solid-phase binding assay. When added to the culture medium of embryoid bodies derived from mouse ES cells, recombinant Nid1-EGFP accumulated in the BM zone of embryoid bodies, and BMs were visualized in vitro. For in vivo BM imaging, a knock-in reporter mouse line expressing human nidogen-1 fused to the red fluorescent protein mCherry (R26-CAG-Nid1-mCherry) was generated. R26-CAG-Nid1-mCherry showed fluorescently labeled BMs in early embryos and adult tissues, such as the epidermis, intestine, and skeletal muscles, whereas BM fluorescence was unclear in several other tissues, such as the lung and heart. In the retina, Nid1-mCherry fluorescence visualized the BMs of vascular endothelium and pericytes. In the developing retina, Nid1-mCherry fluorescence labeled the BM of the major central vessels; however, the BM fluorescence were hardly observed in the peripheral growing tips of the vascular network, despite the presence of endothelial BM. Time-lapse observation of the retinal vascular BM after photobleaching revealed gradual recovery of Nid1-mCherry fluorescence, suggesting the turnover of BM components in developing retinal blood vessels. To the best of our knowledge, this is the first demonstration of in vivo BM imaging using a genetically engineered mammalian model. Although R26-CAG-Nid1-mCherry has some limitations as an in vivo BM imaging model, it has potential applications in the study of BM dynamics during mammalian embryogenesis, tissue regeneration, and pathogenesis.
Collapse
Affiliation(s)
- Sugiko Futaki
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
- Corresponding author.
| | - Ayano Horimoto
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoko Norioka
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukimasa Taniguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
9
|
Spanou CES, Wohl AP, Doherr S, Correns A, Sonntag N, Lütke S, Mörgelin M, Imhof T, Gebauer JM, Baumann U, Grobe K, Koch M, Sengle G. Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation. FASEB J 2023; 37:e22717. [PMID: 36563024 DOI: 10.1096/fj.202200904r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
Collapse
Affiliation(s)
- Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Doherr
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annkatrin Correns
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Sonntag
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Colzyx AB, Lund, Sweden
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
10
|
Arkenberg MR, Koehler K, Lin CC. Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells. Biomacromolecules 2022; 23:4141-4152. [PMID: 36074748 PMCID: PMC9554908 DOI: 10.1021/acs.biomac.2c00585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemically defined
hydrogels are increasingly utilized to define
the effects of extracellular matrix (ECM) components on cellular fate
determination of human embryonic and induced pluripotent stem cell
(hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal
click chemistry, including thiol-norbornene photopolymerization and
inverse electron demand Diels–Alder (iEDDA) reactions, are
explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency,
cytocompatibility, and modularity of the cross-linking reactions.
In this work, we exploited the modularity of thiol-norbornene photopolymerization
to create a biomimetic hydrogel platform for 3D culture and differentiation
of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin
derivative, gelatin-norbornene (GelNB), was used as the backbone polymer
for constructing hiPSC-laden biomimetic hydrogels. GelNB was further
heparinized via the iEDDA click reaction using tetrazine-modified
heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly
cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol
(PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA).
The formulations of these hydrogels were modularly tuned to afford
biomimetic matrices with similar elastic moduli but varying bioactive
components, enabling the understanding of each bioactive component
on supporting hiPSC growth and ectodermal, mesodermal, and endodermal
fate commitment under identical soluble differentiation cues.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karl Koehler
- Departments of Otolaryngology and Plastic and Oral Surgery, F.M. Kirby Neurobiology Center, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
11
|
Karimi F, Lau K, Kim HN, Och Z, Lim KS, Whitelock J, Lord M, Rnjak-Kovacina J. Surface Biofunctionalization of Silk Biomaterials Using Dityrosine Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31551-31566. [PMID: 35793155 DOI: 10.1021/acsami.2c03345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofunctionalization of silk biomaterial surfaces with extracellular matrix (ECM) molecules, cell binding peptides, or growth factors is important in a range of applications, including tissue engineering and development of implantable medical devices. Passive adsorption is the most common way to immobilize molecules of interest on preformed silk biomaterials but can lead to random molecular orientations and displacement from the surface, limiting their applications. Herein, we developed techniques for covalent immobilization of biomolecules using enzyme- or photoinitiated formation of dityrosine bonds between the molecule of interest and silk. Using recombinantly expressed domain V of the human basement membrane proteoglycan perlecan (rDV) as a model molecule, we demonstrated that rDV can be covalently immobilized via dityrosine cross-linking without the need to modify rDV or silk biomaterials. Dityrosine-based immobilization resulted in a different molecular orientation to passively absorbed rDV with less C- and N-terminal region exposure on the surface. Dityrosine-based immobilization supported functional rDV immobilization where immobilized rDV supported endothelial cell adhesion, spreading, migration, and proliferation. These results demonstrate the utility of dityrosine-based cross-linking in covalent immobilization of tyrosine-containing molecules on silk biomaterials in the absence of chemical modification, adding a simple and accessible technique to the silk biofunctionalization toolbox.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kieran Lau
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ha Na Kim
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zachary Och
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Le VQ, Iacob RE, Zhao B, Su Y, Tian Y, Toohey C, Engen JR, Springer TA. Protection of the Prodomain α1-Helix Correlates with Latency in the Transforming Growth Factor-β Family. J Mol Biol 2022; 434:167439. [PMID: 34990654 PMCID: PMC8981510 DOI: 10.1016/j.jmb.2021.167439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022]
Abstract
The 33 members of the transforming growth factor beta (TGF-β) family are fundamentally important for organismal development and homeostasis. Family members are synthesized and secreted as pro-complexes of non-covalently associated prodomains and growth factors (GF). Pro-complexes from a subset of family members are latent and require activation steps to release the GF for signaling. Why some members are latent while others are non-latent is incompletely understood, particularly because of large family diversity. Here, we have examined representative family members in negative stain electron microscopy (nsEM) and hydrogen deuterium exchange (HDX) to identify features that differentiate latent from non-latent members. nsEM showed three overall pro-complex conformations that differed in prodomain arm domain orientation relative to the bound growth factor. Two cross-armed members, TGF-β1 and TGF-β2, were each latent. However, among V-armed members, GDF8 was latent whereas ActA was not. All open-armed members, BMP7, BMP9, and BMP10, were non-latent. Family members exhibited remarkably varying HDX patterns, consistent with large prodomain sequence divergence. A strong correlation emerged between latency and protection of the prodomain α1-helix from exchange. Furthermore, latency and protection from exchange correlated structurally with increased α1-helix buried surface area, hydrogen bonds, and cation-pi bonds. Moreover, a specific pattern of conserved basic and hydrophobic residues in the α1-helix and aromatic residues in the interacting fastener were found only in latent members. Thus, this first comparative survey of TGF-β family members reveals not only diversity in conformation and dynamics but also unique features that distinguish latent members.
Collapse
Affiliation(s)
- Viet Q Le
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Immunology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Yuan Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Cameron Toohey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States. https://twitter.com/jrengen
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
13
|
Adachi H, Morizane A, Torikoshi S, Raudzus F, Taniguchi Y, Miyamoto S, Sekiguchi K, Takahashi J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:767-777. [PMID: 35605097 PMCID: PMC9299512 DOI: 10.1093/stcltm/szac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiromasa Adachi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Corresponding authors: Asuka Morizane, MD, PhD, Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650 0046, Japan, Tel: +81 78 302 4321; Fax: +81 78 302 7537;
| | - Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Neuronal Signaling and Regeneration Unit, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Medical Education Center/International Education Section, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Susumu Miyamoto
- Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Kiyotoshi Sekiguchi, PhD (for chimeric laminin fragments), Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 6 6105 5935; Fax: +81 6 6105 5935; Email;
| | - Jun Takahashi
- Jun Takahashi, MD, PhD, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81 75 366 7052; Fax: +81 75 366 7071;
| |
Collapse
|
14
|
Gwon K, Hong HJ, Gonzalez-Suarez AM, Slama MQ, Choi D, Hong J, Baskaran H, Stybayeva G, Peterson QP, Revzin A. Bioactive hydrogel microcapsules for guiding stem cell fate decisions by release and reloading of growth factors. Bioact Mater 2021; 15:1-14. [PMID: 35386345 PMCID: PMC8941170 DOI: 10.1016/j.bioactmat.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSC) hold considerable promise as a source of adult cells for treatment of diseases ranging from diabetes to liver failure. Some of the challenges that limit the clinical/translational impact of hPSCs are high cost and difficulty in scaling-up of existing differentiation protocols. In this paper, we sought to address these challenges through the development of bioactive microcapsules. A co-axial flow focusing microfluidic device was used to encapsulate hPSCs in microcapsules comprised of an aqueous core and a hydrogel shell. Importantly, the shell contained heparin moieties for growth factor (GF) binding and release. The aqueous core enabled rapid aggregation of hPSCs into 3D spheroids while the bioactive hydrogel shell was used to load inductive cues driving pluripotency maintenance and endodermal differentiation. Specifically, we demonstrated that one-time, 1 h long loading of pluripotency signals, fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, into bioactive microcapsules was sufficient to induce and maintain pluripotency of hPSCs over the course of 5 days at levels similar to or better than a standard protocol with soluble GFs. Furthermore, stem cell-carrying microcapsules that previously contained pluripotency signals could be reloaded with an endodermal cue, Nodal, resulting in higher levels of endodermal markers compared to stem cells differentiated in a standard protocol. Overall, bioactive heparin-containing core-shell microcapsules decreased GF usage five-fold while improving stem cell phenotype and are well suited for 3D cultivation of hPSCs. Heparin-containing microcapsules enable sustained release of inductive cues (growth factors) over the course of seven to nine days. Heparin-growth factor binding is reversible which means that different growth factors may be loaded in a sequential manner. Loading inductive cues into microcapsules results in better differentiation of pluripotent stem cells. Loading inductive cues into microcapsules allows to decrease the usage of growth factors by several fold.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | | | - Michael Q. Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Daheui Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Quinn P. Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
- Corresponding author.
| |
Collapse
|
15
|
The role of pro-domains in human growth factors and cytokines. Biochem Soc Trans 2021; 49:1963-1973. [PMID: 34495310 PMCID: PMC8589418 DOI: 10.1042/bst20200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Many growth factors and cytokines are produced as larger precursors, containing pro-domains, that require proteolytic processing to release the bioactive ligand. These pro-domains can be significantly larger than the mature domains and can play an active role in the regulation of the ligands. Mining the UniProt database, we identified almost one hundred human growth factors and cytokines with pro-domains. These are spread across several unrelated protein families and vary in both their size and composition. The precise role of each pro-domain varies significantly between the protein families. Typically they are critical for controlling bioactivity and protein localisation, and they facilitate diverse mechanisms of activation. Significant gaps in our understanding remain for pro-domain function — particularly their fate once the bioactive ligand has been released. Here we provide an overview of pro-domain roles in human growth factors and cytokines, their processing, regulation and activation, localisation as well as therapeutic potential.
Collapse
|
16
|
Controlling BMP growth factor bioavailability: The extracellular matrix as multi skilled platform. Cell Signal 2021; 85:110071. [PMID: 34217834 DOI: 10.1016/j.cellsig.2021.110071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of signaling ligands which comprise a family of pluripotent cytokines regulating a multitude of cellular events. Although BMPs were originally discovered as potent factors extractable from bone matrix that are capable to induce ectopic bone formation in soft tissues, their mode of action has been mostly studied as soluble ligands in absence of the physiologically relevant cellular microenvironment. This micro milieu is defined by supramolecular networks of extracellular matrix (ECM) proteins that specifically target BMP ligands, present them to their cellular receptors, and allow their controlled release. Here we focus on functional interactions and mechanisms that were described to control BMP bioavailability in a spatio-temporal manner within the respective tissue context. Structural disturbance of the ECM architecture due to mutations in ECM proteins leads to dysregulated BMP signaling as underlying cause for connective tissue disease pathways. We will provide an overview about current mechanistic concepts of how aberrant BMP signaling drives connective tissue destruction in inherited and chronic diseases.
Collapse
|
17
|
Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater 2021; 122:199-210. [PMID: 33453408 DOI: 10.1016/j.actbio.2020.12.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Perinatal-related tissues, such as the placenta, umbilical cord, and amniotic membrane, are generally discarded after delivery and are increasingly attracting attention as alternative sources for decellularized extracellular matrix (dECM) isolation. Recent studies indicate that glycosaminoglycans (GAGs) in the dECM play key roles during tissue regeneration. However, the dECM is organ specific, and the glycosaminoglycanomics of dECMs from perinatal tissues and the regulatory function of GAGs have been poorly investigated. In this study, we explored the glycosaminoglycanomics of dECMs from the placenta, umbilical cord and amniotic membrane. We hypothesized that the therapeutic effects of dECMs are related to the detailed composition of GAGs. Hydrogels of dECM derived from perinatal tissues were generated, and glycosaminoglycanomics analysis was employed to identify the cues that promote tissue repair and regeneration in a murine cutaneous wound-healing model. We utilized highly sensitive liquid chromatography-tandem mass spectrometry for glycosaminoglycanomics analysis. Our results revealed that placenta-derived dECM (PL-dECM) hydrogel has higher contents of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, molecular imaging showed that the PL-dECM hydrogel exerted the best anti-inflammatory and proangiogenic effects in the skin wound healing model. Further in vitro analyses demonstrated that CS with 6-O-sulfo group (CS-6S) has an anti-inflammatory effect, while HS with 6-O-sulfo group (HS-6S) plays a crucial role in angiogenesis. In conclusion, this study highlights the critical roles of GAGs in perinatal tissue-derived dECMs by promoting angiogenesis and inhibiting inflammation and indicates that it is feasible to utilize 6-sulfated GAG-enriched placental dECM hydrogel as an attractive candidate for tissue engineering and drug delivery.
Collapse
|
18
|
Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57:2002341. [PMID: 32817256 DOI: 10.1183/13993003.02341-2020] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily includes several groups of multifunctional proteins that form two major branches, namely the TGF-β-activin-nodal branch and the bone morphogenetic protein (BMP)-growth differentiation factor (GDF) branch. The response to the activation of these two branches, acting through canonical (small mothers against decapentaplegic (Smad) 2/3 and Smad 1/5/8, respectively) and noncanonical signalling pathways, are diverse and vary for different environmental conditions and cell types. An extensive body of data gathered in recent years has demonstrated a central role for the cross-talk between these two branches in a number of cellular processes, which include the regulation of cell proliferation and differentiation, as well as the transduction of signalling cascades for the development and maintenance of different tissues and organs. Importantly, alterations in these pathways, which include heterozygous germline mutations and/or alterations in the expression of several constitutive members, have been identified in patients with familial/heritable pulmonary arterial hypertension (PAH) or idiopathic PAH (IPAH). Consequently, loss or dysfunction in the delicate, finely-tuned balance between the TGF-β-activin-nodal branch and the BMP-GDF branch are currently viewed as the major molecular defect playing a critical role in PAH predisposition and disease progression. Here we review the role of the TGF-β-activin-nodal branch in PAH and illustrate how this knowledge has not only provided insight into understanding its pathogenesis, but has also paved the way for possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Dept of Respiratory and Intensive Care Medicine, French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
20
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
21
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
22
|
Ly TD, Plümers R, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Activin A-Mediated Regulation of XT-I in Human Skin Fibroblasts. Biomolecules 2020; 10:E609. [PMID: 32295230 PMCID: PMC7226200 DOI: 10.3390/biom10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
23
|
Billings PC, Bizzaro C, Yang E, Chung J, Mundy C, Pacifici M. Human and mouse activin genes: Divergent expression of activin A protein variants and identification of a novel heparan sulfate-binding domain in activin B. PLoS One 2020; 15:e0229254. [PMID: 32074129 PMCID: PMC7029874 DOI: 10.1371/journal.pone.0229254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
Activins are members of the transforming growth factor-β (TGF-β) superfamily of signaling proteins and were originally identified as components of follicular fluid. The proteins are now known to play critical roles in numerous normal and pathological processes and conditions, but less is clear about the relationships between their gene organization and protein variant expression and structure. The four human and mouse activin (Act) genes, termed INHβA, INHβB, INHβC and INHβE, differ in exon numbers. Human INHβA is the most complex with 7 exons and elicits production of three Act A variants (Act A X1, X2 and X3) differing in their pro-region, as we showed previously. Here we further analyzed the mouse INHβA gene and found that its 4 exons encode for a single open reading frame (mouse Act A), corresponding to the shortest human Act A X3 variant. Activins are synthesized and secreted as large complexes made of a long pro-region and a short mature C- terminal ligand and are known to interact with the heparan sulfate (HS) chains of cell surface and matrix proteoglycans. Human Act A X1 and X2 variants do have a HS-binding domain (HBD) with Cardin/Weintraub traits in their pro-region, while the X3 variant does not as shown previously. We found that the mouse Act A lacks a HBD as well. However, we identified a typical HBD in the pro-region of both mouse and human Act B, and synthetic peptides containing that domain interacted with immobilized HS and cell surface with nanomolar affinity. In sum, human and mouse Act A genes elicit expression of different variant sets, while there is concordance in Act B protein expression, reflecting possible evolutionary diversity in function of, and responses to, these signaling proteins in the two species.
Collapse
Affiliation(s)
- Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- * E-mail:
| | - Candice Bizzaro
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Evan Yang
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
24
|
Walton KL, Chen JL, Arnold Q, Kelly E, La M, Lu L, Lovrecz G, Hagg A, Colgan TD, Qian H, Gregorevic P, Harrison CA. Activin A-Induced Cachectic Wasting Is Attenuated by Systemic Delivery of Its Cognate Propeptide in Male Mice. Endocrinology 2019; 160:2417-2426. [PMID: 31322699 DOI: 10.1210/en.2019-00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
In cancer, elevated activin levels promote cachectic wasting of muscle, irrespective of tumor progression. In excess, activins A and B use the myostatin signaling pathway in muscle, triggering a decrease in protein synthesis and an increase in protein degradation, which ultimately leads to atrophy. Recently, we demonstrated that local delivery of engineered activin and myostatin propeptides (natural inhibitors of these growth factors) could induce profound muscle hypertrophy in healthy mice. Additionally, the expression of these propeptides effectively attenuated localized muscle wasting in models of dystrophy and cancer cachexia. In this study, we examined whether a systemically administered recombinant propeptide could reverse activin A-induced cachectic wasting in mice. Chinese hamster ovary cells stably expressing activin A were transplanted into the quadriceps of nude mice and caused an 85-fold increase in circulating activin A levels within 12 days. Elevated activin A induced a rapid reduction in body mass (-16%) and lean mass (-10%). In agreement with previous findings, we demonstrated that adeno-associated virus-mediated delivery of activin propeptide to the tibialis anterior muscle blocked activin-induced wasting. In addition, despite massively elevated levels of activin A in this model, systemic delivery of the propeptide significantly reduced activin-induced changes in lean and body mass. Specifically, recombinant propeptide reversed activin-induced wasting of skeletal muscle, heart, liver, and kidneys. This is the first study to demonstrate that systemic administration of recombinant propeptide therapy effectively attenuates tumor-derived activin A insult in multiple tissues.
Collapse
Affiliation(s)
- Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Justin L Chen
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Quinn Arnold
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Emily Kelly
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mylinh La
- National Collaborative Research Infrastructure Strategy Facility, Commonwealth Scientific and Industrial Research Organisation BioMedical Manufacturing Program, Clayton, Victoria, Australia
| | - Louis Lu
- National Collaborative Research Infrastructure Strategy Facility, Commonwealth Scientific and Industrial Research Organisation BioMedical Manufacturing Program, Clayton, Victoria, Australia
| | - George Lovrecz
- National Collaborative Research Infrastructure Strategy Facility, Commonwealth Scientific and Industrial Research Organisation BioMedical Manufacturing Program, Clayton, Victoria, Australia
| | - Adam Hagg
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy D Colgan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hongwei Qian
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Yang E, Mundy C, Rappaport EF, Pacifici M, Billings PC. Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function. PLoS One 2019; 14:e0222784. [PMID: 31536599 PMCID: PMC6752817 DOI: 10.1371/journal.pone.0222784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Evan Yang
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Rappaport
- Molecular Genetics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mikael PE, Willard C, Koyee A, Barlao CG, Liu X, Han X, Ouyang Y, Xia K, Linhardt RJ, Dordick JS. Remodeling of Glycosaminoglycans During Differentiation of Adult Human Bone Mesenchymal Stromal Cells Toward Hepatocytes. Stem Cells Dev 2019; 28:278-289. [PMID: 30572803 PMCID: PMC6389772 DOI: 10.1089/scd.2018.0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
There is a critical need to generate functional hepatocytes to aid in liver repair and regeneration upon availability of a renewable, and potentially personalized, source of human hepatocytes (hHEP). Currently, the vast majority of primary hHEP are obtained from human tissue through cadavers. Recent advances in stem cell differentiation have opened up the possibility to obtain fully functional hepatocytes from embryonic or induced pluripotent stem cells, or adult stem cells. With respect to the latter, human bone marrow mesenchymal stromal cells (hBMSCs) can serve as a source of autogenetic and allogenic multipotent stem cells for liver repair and regeneration. A major aspect of hBMSC differentiation is the extracellular matrix (ECM) composition and, in particular, the role of glycosaminoglycans (GAGs) in the differentiation process. In this study, we examine the influence of four distinct culture conditions/protocols (T1-T4) on GAG composition and hepatic markers. α-Fetoprotein and hepatocyte nuclear factor-4α were expressed continually over 21 days of differentiation, as indicated by real time quantitative PCR analysis, while albumin (ALB) expression did not begin until day 21. Hepatocyte growth factor (HGF) appears to be more effective than activin A in promoting hepatic-like cells through the mesenchymal-epithelial transition, perhaps due to the former binding to the HGF receptor to form a unique complex that diversifies the biological functions of HGF. Of the four protocols tested, uniform hepatocyte-like morphological changes, ALB secretion, and glycogen storage were found to be highest with protocol T2, which involves both early- and late-stage combinations of growth factors. The total GAG profile of the hBMSC ECM is rich in heparan sulfate (HS) and hyaluronan, both of which fluctuate during differentiation. The GAG profile of primary hHEP showed an HS-rich ECM, and thus, it may be possible to guide hBMSC differentiation to more mature hepatocytes by controlling the GAG profile expressed by differentiating cells.
Collapse
Affiliation(s)
- Paiyz E. Mikael
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Charles Willard
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Aurvan Koyee
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Charmaine-Grace Barlao
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Jonathan S. Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
27
|
Medeiros CS, Marino GK, Santhiago MR, Wilson SE. The Corneal Basement Membranes and Stromal Fibrosis. Invest Ophthalmol Vis Sci 2018; 59:4044-4053. [PMID: 30098200 PMCID: PMC6088801 DOI: 10.1167/iovs.18-24428] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this review was to provide detailed insights into the pathophysiology of myofibroblast-mediated fibrosis (scarring or late haze) after corneal injury, surgery, or infection. Method Literature review. Results The epithelium and epithelial basement membrane (EBM) and/or endothelium and Descemet's basement membrane (BM) are commonly disrupted after corneal injuries, surgeries, and infections. Regeneration of these critical regulatory structures relies on the coordinated production of BM components, including laminins, nidogens, perlecan, and collagen type IV by epithelial, endothelial, and keratocyte cells. Whether a cornea, or an area in the cornea, heals with transparency or fibrosis may be determined by whether there is injury to one or both corneal basement membranes (EBM and/or Descemet's BM) and delayed or defective regeneration or replacement of the BM. These opaque myofibroblasts, and the disordered extracellular matrix these cells produce, persist in the stroma until the EBM and/or Descemet's BM is regenerated or replaced. Conclusions Corneal stromal fibrosis (also termed "stromal scarring" or "late haze") occurs as a consequence of BM injury and defective regeneration in both the anterior (EBM) and posterior (Descemet's BM) cornea. The resolution of fibrosis and return of stromal transparency depends on reestablished BM structure and function. It is hypothesized that defective regeneration of the EBM or Descemet's BM allows key profibrotic growth factors, including transforming growth factor beta-1 (TGF-β1) and TGF-β2, to penetrate the stroma at sustained levels necessary to drive the development and maintenance of mature opacity-producing myofibroblasts from myofibroblast precursors cells, and studies suggest that perlecan and collagen type IV are the critical components in EBM and Descemet's BM that bind TGF-β1, TGF-β2, platelet-derived growth factor, and possibly other growth factors, and regulate their bioavailability and function during homeostasis and corneal wound healing.
Collapse
Affiliation(s)
- Carla S. Medeiros
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo K. Marino
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | - Marcony R. Santhiago
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
- Department of Ophthalmology at Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Steven E. Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
28
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
29
|
Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications. Colloids Surf B Biointerfaces 2016; 148:130-138. [DOI: 10.1016/j.colsurfb.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022]
|
30
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
32
|
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:97-131. [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-β family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-β proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-β biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.
Collapse
Affiliation(s)
- Justin L Chen
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia.,Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Timothy D Colgan
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Walton
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, School of Medicine, The University of Washington, Seattle, WA, USA.
| | - Craig A Harrison
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Ashtiani MK, Zandi M, Barzin J, Tahamtani Y, Ghanian MH, Moradmand A, Ehsani M, Nezari H, Larijani MR, Baharvand H. Substrate-mediated commitment of human embryonic stem cells for hepatic differentiation. J Biomed Mater Res A 2016; 104:2861-72. [DOI: 10.1002/jbm.a.35830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Mojgan Zandi
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Jalal Barzin
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Azadeh Moradmand
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Morteza Ehsani
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Hossein Nezari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mehran Rezaei Larijani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
34
|
Wang X, Fischer G, Hyvönen M. Structure and activation of pro-activin A. Nat Commun 2016; 7:12052. [PMID: 27373274 PMCID: PMC4932183 DOI: 10.1038/ncomms12052] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Activins are growth factors with multiple roles in the development and homeostasis. Like all TGF-β family of growth factors, activins are synthesized as large precursors from which mature dimeric growth factors are released proteolytically. Here we have studied the activation of activin A and determined crystal structures of the unprocessed precursor and of the cleaved pro-mature complex. Replacing the natural furin cleavage site with a HRV 3C protease site, we show how the protein gains its bioactivity after proteolysis and is as active as the isolated mature domain. The complex remains associated in conditions used for biochemical analysis with a dissociation constant of 5 nM, but the pro-domain can be actively displaced from the complex by follistatin. Our high-resolution structures of pro-activin A share features seen in the pro-TGF-β1 and pro-BMP-9 structures, but reveal a new oligomeric arrangement, with a domain-swapped, cross-armed conformation for the protomers in the dimeric protein. Activins are members of the TGF-β family of growth factors that are processed from precursors into the mature proteins. Here, the authors use structural biology and biochemistry to examine the protein domain organisation and gain insights into the activation of pro-activin A.
Collapse
Affiliation(s)
- Xuelu Wang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
35
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
36
|
Hardy CL, Rolland JM, O'Hehir RE. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin Exp Allergy 2016; 45:1510-22. [PMID: 25962695 PMCID: PMC4687413 DOI: 10.1111/cea.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activin A, a member of the TGF-β superfamily of cytokines, was originally identified as an inducer of follicle stimulating hormone release, but has since been ascribed roles in normal physiological processes, as an immunoregulatory cytokine and as a driver of fibrosis. In the last 10–15 years, it has also become abundantly clear that activin A plays an important role in the regulation of asthmatic inflammation and airway remodelling. This review provides a brief introduction to the activin A/TGF-β superfamily, focussing on the regulation of receptors and signalling pathways. We examine the contradictory evidence for generalized pro- vs. anti-inflammatory effects of activin A in inflammation, before appraising its role in asthmatic inflammation and airway remodelling specifically by evaluating data from both murine models and clinical studies. We identify key issues to be addressed, paving the way for safe exploitation of modulation of activin A function for treatment of allergic asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- C L Hardy
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - J M Rolland
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - R E O'Hehir
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| |
Collapse
|
37
|
Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, Revzin A. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 2016; 34:125-132. [PMID: 26774761 DOI: 10.1016/j.actbio.2016.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023]
Abstract
A major challenge in tissue engineering is to develop robust protocols for differentiating ES and iPS cells to functional adult tissues at a clinically relevant scale. The goal of this study is to develop a high throughput platform for generating bioactive, stem cell-laden microgels to direct differentiation in a well-defined microenvironment. We describe a droplet microfluidics system for fabricating microgels composed of polyethylene glycol and heparin, with tunable geometric, mechanical, and chemical properties, at kHz rates. Heparin-containing hydrogel particles sequestered growth factors Nodal and FGF-2, which are implicated in specifying pluripotent cells to definitive endoderm. Mouse ESCs were encapsulated into heparin microgels with a single dose of Nodal and FGF-2, and expressed high levels of endoderm markers Sox17 and FoxA2 after 5 days. These results highlight the use of microencapsulation for tailoring the stem cell microenvironment to promote directed differentiation, and may provide a straightforward path to large scale bioprocessing in the future. STATEMENT OF SIGNIFICANCE Multicellular spheroids and microtissues are valuable for tissue engineering, but fabrication approaches typically sacrifice either precision or throughput. Microfluidic encapsulation in polymeric biomaterials is a promising technique for rapidly generating cell aggregates with excellent control of microenvironmental parameters. Here we describe the microfluidic fabrication of bioactive, heparin-based microgels, and demonstrate the adsorption of heparin-binding growth factors for enhancing directed differentiation of embryonic stem cells toward endoderm. This approach also facilitated a ∼90-fold decrease in consumption of exogenous growth factors compared to conventional differentiation protocols.
Collapse
|
38
|
Johnson KE, Makanji Y, Temple-Smith P, Kelly EK, Barton PA, Al-Musawi SL, Mueller TD, Walton KL, Harrison CA. Biological activity and in vivo half-life of pro-activin A in male rats. Mol Cell Endocrinol 2016; 422:84-92. [PMID: 26687063 DOI: 10.1016/j.mce.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
Mature TGF-β proteins are used in vivo to promote bone growth, combat obesity, reverse fibrosis and pulmonary arterial hypertension, and as potential rejuvenation factors. However, the serum half-life of this family of growth factors is short (∼5 min), limiting their therapeutic potential. Because TGF-β proteins are normally secreted from cells with their prodomains attached, we considered whether these molecules could extend the in vivo half-life and activity of their respective growth factors. Using activin A as a model ligand, we initially modified the cleavage site between the pro- and mature domains to ensure complete processing of the activin A precursor. Co-immunoprecipitation studies confirmed mature activin A is secreted from cells in a non-covalent complex with its prodomain, however, the affinity of this interaction is not sufficient to suppress activin A in vitro biological activity. The plasma clearance profiles of purified pro- and mature activin A were determined over a 4 h period in adult male rats. Both activin forms demonstrated a two-phase decay, with the half-life of pro-activin A (t1/2 fast = 12.5 min, slow = 31.0 min) being greater than that of mature activin A (t1/2 fast = 5.5 min, slow = 20.3 min). Both pro- and mature activin A induced significant increases in serum follicle stimulating hormone levels after 4 h, but no differences were observed in the relative in vivo bioactivities of the two activin isoforms. Increased serum half-life of activin A in the presence of its prodomain identifies a new means to increase the therapeutic effectiveness of TGF-β proteins.
Collapse
Affiliation(s)
- Katharine E Johnson
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Emily K Kelly
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Peter A Barton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sara L Al-Musawi
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von Sachs Platz 2, Wuerzburg, Germany
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Higuchi CM, Maeda Y, Horiuchi T, Yamazaki Y. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice. PLoS One 2015; 10:e0143114. [PMID: 26571501 PMCID: PMC4646357 DOI: 10.1371/journal.pone.0143114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/01/2015] [Indexed: 12/23/2022] Open
Abstract
In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture system using a Matrigel drop and activin A supplementation (M+A) provides optimal and convenient conditions to support growth of developmentally competent oocytes in vitro.
Collapse
Affiliation(s)
- Carolyn M. Higuchi
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Yuuki Maeda
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Toshitaka Horiuchi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yukiko Yamazaki
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
40
|
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6:638-53. [PMID: 26088192 PMCID: PMC4537472 DOI: 10.1007/s13238-015-0179-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Collapse
Affiliation(s)
- Chunxiao Qi
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xiaojun Yan
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Chenyu Huang
- />Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, 102218 China
| | - Alexander Melerzanov
- />Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny, 141701 Russia
| | - Yanan Du
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
- />Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003 China
| |
Collapse
|
41
|
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β family, whose 33 members regulate multiple aspects of morphogenesis. TGF-β family members are secreted as procomplexes containing a small growth factor dimer associated with two larger prodomains. As isolated procomplexes, some members are latent, whereas most are active; what determines these differences is unknown. Here, studies on pro-BMP structures and binding to receptors lead to insights into mechanisms that regulate latency in the TGF-β family and into the functions of their highly divergent prodomains. The observed open-armed, nonlatent conformation of pro-BMP9 and pro-BMP7 contrasts with the cross-armed, latent conformation of pro-TGF-β1. Despite markedly different arm orientations in pro-BMP and pro-TGF-β, the arm domain of the prodomain can similarly associate with the growth factor, whereas prodomain elements N- and C-terminal to the arm associate differently with the growth factor and may compete with one another to regulate latency and stepwise displacement by type I and II receptors. Sequence conservation suggests that pro-BMP9 can adopt both cross-armed and open-armed conformations. We propose that interactors in the matrix stabilize a cross-armed pro-BMP conformation and regulate transition between cross-armed, latent and open-armed, nonlatent pro-BMP conformations.
Collapse
|
42
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 849] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Constam DB. Regulation of TGFβ and related signals by precursor processing. Semin Cell Dev Biol 2014; 32:85-97. [PMID: 24508081 DOI: 10.1016/j.semcdb.2014.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Secreted cytokines of the TGFβ family are found in all multicellular organisms and implicated in regulating fundamental cell behaviors such as proliferation, differentiation, migration and survival. Signal transduction involves complexes of specific type I and II receptor kinases that induce the nuclear translocation of Smad transcription factors to regulate target genes. Ligands of the BMP and Nodal subgroups act at a distance to specify distinct cell fates in a concentration-dependent manner. These signaling gradients are shaped by multiple factors, including proteases of the proprotein convertase (PC) family that hydrolyze one or several peptide bonds between an N-terminal prodomain and the C-terminal domain that forms the mature ligand. This review summarizes information on the proteolytic processing of TGFβ and related precursors, and its spatiotemporal regulation by PCs during development and various diseases, including cancer. Available evidence suggests that the unmasking of receptor binding epitopes of TGFβ is only one (and in some cases a non-essential) function of precursor processing. Future studies should consider the impact of proteolytic maturation on protein localization, trafficking and turnover in cells and in the extracellular space.
Collapse
Affiliation(s)
- Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Tournier I, Marlin R, Walton K, Charbonnier F, Coutant S, Théry JC, Charbonnier C, Spurrell C, Vezain M, Ippolito L, Bougeard G, Roman H, Tinat J, Sabourin JC, Stoppa-Lyonnet D, Caron O, Bressac-de Paillerets B, Vaur D, King MC, Harrison C, Frebourg T. Germline mutations of inhibins in early-onset ovarian epithelial tumors. Hum Mutat 2013; 35:294-7. [PMID: 24302632 PMCID: PMC4284000 DOI: 10.1002/humu.22489] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 01/26/2023]
Abstract
To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors.
Collapse
Affiliation(s)
- Isabelle Tournier
- Inserm U1079, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Cancéropôle Nord-Ouest, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
46
|
Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 2013; 13:449-54. [DOI: 10.1016/j.coph.2013.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/26/2013] [Indexed: 01/27/2023]
|
47
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
48
|
Activin, neutrophils, and inflammation: just coincidence? Semin Immunopathol 2013; 35:481-99. [PMID: 23385857 PMCID: PMC7101603 DOI: 10.1007/s00281-013-0365-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
During the 26 years that have elapsed since its discovery, activin-A, a member of the transforming growth factor β super-family originally discovered from its capacity to stimulate follicle-stimulating hormone production by cultured pituitary gonadotropes, has been established as a key regulator of various fundamental biological processes, such as development, homeostasis, inflammation, and tissue remodeling. Deregulated expression of activin-A has been observed in several human diseases characterized by an immuno-inflammatory and/or tissue remodeling component in their pathophysiology. Various cell types have been recognized as sources of activin-A, and plentiful, occasionally contradicting, functions have been described mainly by in vitro studies. Not surprisingly, both harmful and protective roles have been postulated for activin-A in the context of several disorders. Recent findings have further expanded the functional repertoire of this molecule demonstrating that its ectopic overexpression in mouse airways can cause pathology that simulates faithfully human acute respiratory distress syndrome, a disorder characterized by strong involvement of neutrophils. This finding when considered together with the recent discovery that neutrophils constitute an important source of activin-A in vivo and earlier observations of upregulated activin-A expression in diseases characterized by strong activation of neutrophils may collectively imply a more intimate link between activin-A expression and neutrophil reactivity. In this review, we provide an outline of the functional repertoire of activin-A and suggest that this growth factor functions as a guardian of homeostasis, a modulator of immunity and an orchestrator of tissue repair activities. In this context, a relationship between activin-A and neutrophils may be anything but coincidental.
Collapse
|
49
|
Role of perlecan, a basement membrane-type heparan sulfate proteoglycan, in enamel organ morphogenesis. J Oral Biosci 2013. [DOI: 10.1016/j.job.2012.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Sato Y, Shimono C, Li S, Nakano I, Norioka N, Sugiura N, Kimata K, Yamada M, Sekiguchi K. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. Matrix Biol 2013; 32:188-95. [PMID: 23357641 DOI: 10.1016/j.matbio.2013.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/25/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023]
Abstract
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|