1
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. J Cell Biol 2025; 224:e202406153. [PMID: 40261303 PMCID: PMC12013514 DOI: 10.1083/jcb.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells, macrophages, and cultured human cells by facilitating the trafficking of cargos that are acted on by peripherally localized dynein. Our data suggest that CCSer2 disfavors the interaction between dynein and its regulator Ndel1 at the cell edge, resulting in localized dynein activation. These findings support a model where the spatial specificity of dynein is achieved by the localization of proteins that trigger Ndel1's release from dynein. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via regulating Ndel1-dynein interaction.
Collapse
Affiliation(s)
- Juliana L. Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Morgan E. DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Yang J, Zhao Y, Chai P, Yildiz A, Zhang K. Nde1 Promotes Lis1 Binding to Full-Length Autoinhibited Human Dynein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630764. [PMID: 39803456 PMCID: PMC11722290 DOI: 10.1101/2024.12.30.630764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi. We discover a key intermediate step in the dynein activation pathway where a single Lis1 dimer binds between the Phi-like (PhiL) motor rings of dynein. In this "PhiL-Lis1", Lis1 interacts with one of the motor domains through its canonical interaction sites at the AAA+ ring and stalk and binds to the newly identified AAA5, AAA6, and linker regions of the other motor domain. Mutagenesis and motility assays confirm the critical role of the PhiL-Lis1 interface. This intermediate state is instantly and efficiently formed in the presence of Nde1, but Nde1 is not part of the PhiL-Lis1. These findings provide key insights into the mechanism of how Nde1 promotes the Lis1-mediated opening of Phi dynein.
Collapse
Affiliation(s)
- Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- These authors contributed equally
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94709, USA
- These authors contributed equally
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- These authors contributed equally
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94709, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
3
|
Zhao Y, Oten S, Yildiz A. Nde1 promotes Lis1-mediated activation of dynein. Nat Commun 2023; 14:7221. [PMID: 37940657 PMCID: PMC10632352 DOI: 10.1038/s41467-023-42907-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Cytoplasmic dynein drives the motility and force generation functions towards the microtubule minus end. The assembly of dynein with dynactin and a cargo adaptor in an active transport complex is facilitated by Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 relieves dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigate how human Nde1 and Lis1 regulate the assembly and subsequent motility of mammalian dynein using in vitro reconstitution and single molecule imaging. We find that Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin adaptor complexes. Nde1 can compete with the α2 subunit of platelet activator factor acetylhydrolase 1B (PAF-AH1B) for the binding of Lis1, which suggests that Nde1 may disrupt PAF-AH1B recruitment of Lis1 as a noncatalytic subunit, thus promoting Lis1 binding to dynein. Before the initiation of motility, the association of dynactin with dynein triggers the dissociation of Nde1 from dynein by competing against Nde1 binding to the dynein intermediate chain. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, 94709, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, 94709, USA.
| |
Collapse
|
4
|
Okada K, Iyer BR, Lammers LG, Gutierrez PA, Li W, Markus SM, McKenney RJ. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat Commun 2023; 14:5833. [PMID: 37730751 PMCID: PMC10511499 DOI: 10.1038/s41467-023-41466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Processive transport by the microtubule motor cytoplasmic dynein requires the regulated assembly of a dynein-dynactin-adapter complex. Interactions between dynein and dynactin were initially ascribed to the dynein intermediate chain N-terminus and the dynactin subunit p150Glued. However, recent cryo-EM structures have not resolved this interaction, questioning its importance. The intermediate chain also interacts with Nde1/Ndel1, which compete with p150Glued for binding. We reveal that the intermediate chain N-terminus is a critical evolutionarily conserved hub that interacts with dynactin and Ndel1, the latter of which recruits LIS1 to drive complex assembly. In additon to revealing that the intermediate chain N-terminus is likely bound to p150Glued in active transport complexes, our data support a model whereby Ndel1-LIS1 must dissociate prior to LIS1 being handed off to dynein in temporally discrete steps. Our work reveals previously unknown steps in the dynein activation pathway, and provide insight into the integrated activities of LIS1/Ndel1 and dynactin/cargo-adapters.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Bharat R Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Zhao Y, Oten S, Yildiz A. Nde1 Promotes Lis1-Mediated Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542537. [PMID: 37292665 PMCID: PMC10246013 DOI: 10.1101/2023.05.26.542537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein is the primary motor that drives the motility and force generation functions towards the microtubule minus end. The activation of dynein motility requires its assembly with dynactin and a cargo adaptor. This process is facilitated by two dynein-associated factors, Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 rescues dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigated how human Nde1 and Lis1 regulate the assembly and subsequent motility of the mammalian dynein/dynactin complex using in vitro reconstitution and single molecule imaging. We found that Nde1 promotes the assembly of active dynein complexes in two distinct ways. Nde1 competes with the α2 subunit of platelet activator factor acetylhydrolase (PAF-AH) 1B, which recruits Lis1 as a noncatalytic subunit and prevents its binding to dynein. Second, Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin-adaptor complexes. However, excess Nde1 inhibits dynein, presumably by competing against dynactin to bind the dynein intermediate chain. The association of dynactin with dynein triggers Nde1 dissociation before the initiation of dynein motility. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
- Biophysics Graduate Group, University of California, Berkeley, CA, USA, 94709
| |
Collapse
|
6
|
Garrott SR, Gillies JP, Siva A, Little SR, El Jbeily R, DeSantis ME. Ndel1 disfavors dynein-dynactin-adaptor complex formation in two distinct ways. J Biol Chem 2023; 299:104735. [PMID: 37086789 PMCID: PMC10248797 DOI: 10.1016/j.jbc.2023.104735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita El Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Abstract
The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Garrott SR, Gillies JP, Siva A, Little SR, Jbeily REI, DeSantis ME. Ndel1 modulates dynein activation in two distinct ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525437. [PMID: 36747695 PMCID: PMC9900795 DOI: 10.1101/2023.01.25.525437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita EI Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Okada K, Iyer BR, Lammers LG, Gutierrez P, Li W, Markus SM, McKenney RJ. Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523097. [PMID: 36711700 PMCID: PMC9882231 DOI: 10.1101/2023.01.13.523097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytoplasmic dynein, the primary retrograde microtubule transport motor within cells, must be activated for processive motility through the regulated assembly of a dynein-dynactin-adapter (DDA) complex. The interaction between dynein and dynactin was initially ascribed to the N-terminus of the dynein intermediate chain (IC) and a coiled-coil of the dynactin subunit p150 Glued . However, cryo-EM structures of DDA complexes have not resolve these regions of the IC and p150 Glued , raising questions about the importance of this interaction. The IC N-terminus (ICN) also interacts with the dynein regulators Nde1/Ndel1, which compete with p150 Glued for binding to ICN. Using a combination of approaches, we reveal that the ICN plays critical, evolutionarily conserved roles in DDA assembly by interacting with dynactin and Ndel1, the latter of which recruits the DDA assembly factor LIS1 to the dynein complex. In contrast to prior models, we find that LIS1 cannot simultaneously bind to Ndel1 and dynein, indicating that LIS1 must be handed off from Ndel1 to dynein in temporally discrete steps. Whereas exogenous Ndel1 or p150 Glued disrupts DDA complex assembly in vitro , neither perturbs preassembled DDA complexes, indicating that the IC is stably bound to p150 Glued within activated DDA complexes. Our study reveals previously unknown regulatory steps in the dynein activation pathway, and provides a more complete model for how the activities of LIS1/Ndel1 and dynactin/cargo-adapters are integrated to regulate dynein motor activity.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Bharat R. Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G. Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Pedro Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
Janczyk PŁ, Żyłkiewicz E, De Hoyos H, West T, Matson DR, Choi WC, Young HMR, Derewenda ZS, Stukenberg PT. Aurora A phosphorylates Ndel1 to reduce the levels of Mad1 and NuMA at spindle poles. Mol Biol Cell 2023; 34:br1. [PMID: 36350697 PMCID: PMC9816647 DOI: 10.1091/mbc.e21-09-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Dynein inactivates the spindle assembly checkpoint (SAC) by transporting checkpoint proteins away from kinetochores toward spindle poles in a process known as "stripping." We find that inhibition of Aurora A kinase, which is localized to spindle poles, enables the accumulation of the spindle checkpoint activator Mad1 at poles where it is normally absent. Aurora kinases phosphorylate the dynein activator NudE neurodevelopment protein 1 like 1 (Ndel1) on Ser285 and Mad1 accumulates at poles when Ndel1 is replaced by a nonphosphorylatable mutant in human cells. The pole focusing protein NuMA, transported to poles by dynein, also accumulates at poles in cells harboring a mutant Ndel1. Phosphorylation of Ndel1 on Ser285 is required for robust spindle checkpoint activity and regulates the poles of asters in Xenopus extracts. Our data suggest that dynein/SAC complexes that are generated at kinetochores and then transported directionally toward poles on microtubules are inhibited by Aurora A before they reach spindle poles. These data suggest that Aurora A generates a spatial signal at spindle poles that controls dynein transport and spindle function.
Collapse
Affiliation(s)
- Paweł Ł. Janczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Eliza Żyłkiewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Henry De Hoyos
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Thomas West
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Daniel R. Matson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Won-Chan Choi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Heather M. Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
11
|
Jara KA, Loening NM, Reardon PN, Yu Z, Woonnimani P, Brooks C, Vesely CH, Barbar EJ. Multivalency, autoinhibition, and protein disorder in the regulation of interactions of dynein intermediate chain with dynactin and the nuclear distribution protein. eLife 2022; 11:e80217. [PMID: 36416224 PMCID: PMC9771362 DOI: 10.7554/elife.80217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
As the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150Glued and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions. Here we use a suite of biophysical methods to reveal how multivalent binding of the three light chains regulates IC interactions with p150Glued and NudE. Using IC from Chaetomium thermophilum, a tractable species to interrogate IC interactions, we identify a significant reduction in binding affinity of IC to p150Glued and a loss of binding to NudE for constructs containing the entire N-terminal domain as well as for full-length constructs when compared to the tight binding observed with short IC constructs. We attribute this difference to autoinhibition caused by long-range intramolecular interactions between the N-terminal single α-helix of IC, the common site for p150Glued, and NudE binding, and residues closer to the end of the N-terminal domain. Reconstitution of IC subcomplexes demonstrates that autoinhibition is differentially regulated by light chains binding, underscoring their importance both in assembly and organization of IC, and in selection between multiple binding partners at the same site.
Collapse
Affiliation(s)
- Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | | | - Patrick N Reardon
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
- Oregon State University NMR FacilityCorvallisUnited States
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Prajna Woonnimani
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Cat H Vesely
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
12
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
13
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
14
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
15
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
16
|
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor that drives the movement of diverse cargos along the microtubule cytoskeleton, including organelles, vesicles and RNAs. A long-standing question is how a single form of dynein can be adapted to a wide range of cellular functions in both interphase and mitosis. Recent progress has provided new insights - dynein interacts with a group of activating adaptors that provide cargo-specific and/or function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the complex that dynein forms with its required activator dynactin, leading to highly processive motility toward the microtubule minus end. Furthermore, activating adaptors mediate specific interactions of the motor complex with cargos such as Rab6-positive vesicles or ribonucleoprotein particles for BICD2, and signaling endosomes for Hook1. In this Cell Science at a Glance article and accompanying poster, we highlight the conserved structural features found in dynein activators, the effects of these activators on biophysical parameters, such as motor velocity and stall force, and the specific intracellular functions they mediate.
Collapse
Affiliation(s)
- Mara A Olenick
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Wynne CL, Vallee RB. Cdk1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J Cell Biol 2018; 217:3019-3029. [PMID: 29930206 PMCID: PMC6122996 DOI: 10.1083/jcb.201707081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/06/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
Cytoplasmic dynein is involved in diverse cell cycle-dependent functions regulated by several accessory factors, including Nde1 and Ndel1. Little is known about the role of these proteins in dynein cargo binding, and less is known about their cell cycle--dependent dynein regulation. Using Nde1 RNAi, mutant cDNAs, and a phosphorylation site-specific antibody, we found a specific association of phospho-Nde1 with the late G2-M nuclear envelope and prophase to anaphase kinetochores, comparable to the pattern for the Nde1 interactor CENP-F. Phosphomutant-Nde1 associated only with prometaphase kinetochores and showed weaker CENP-F binding in in vitro assays. Nde1 RNAi caused severe delays in mitotic progression, which were substantially rescued by both phosphomimetic and phosphomutant Nde1. Expression of a dynein-binding-deficient Nde1 mutant reduced kinetochore dynein by half, indicating a major role for Nde1 in kinetochore dynein recruitment. These results establish CENP-F as the first well-characterized Nde1 cargo protein, and reveal phosphorylation control of Nde1 cargo binding throughout a substantial fraction of the cell cycle.
Collapse
Affiliation(s)
- Caitlin L Wynne
- Pathology and Cell Biology, Columbia University, New York, NY
| | | |
Collapse
|
18
|
Monda JK, Cheeseman IM. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol Biol Cell 2018; 29:2336-2345. [PMID: 30024347 PMCID: PMC6249811 DOI: 10.1091/mbc.e18-07-0418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nde1 is a key regulator of cytoplasmic dynein, binding directly to both dynein itself and the dynein adaptor, Lis1. Nde1 and Lis1 are thought to function together to promote dynein function, yet mutations in each result in distinct neurodevelopment phenotypes. To reconcile these phenotypic differences, we sought to dissect the contribution of Nde1 to dynein regulation and explore the cellular functions of Nde1. Here we show that an Nde1–Lis1 interaction is required for spindle pole focusing and Golgi organization but is largely dispensable for centrosome placement, despite Lis1 itself being required. Thus, diverse functions of dynein rely on distinct Nde1- and Lis1-mediated regulatory mechanisms. Additionally, we discovered a robust, isoform-specific interaction between human Nde1 and the 26S proteasome and identify precise mutations in Nde1 that disrupt the proteasome interaction. Together, our work suggests that Nde1 makes unique contributions to human neurodevelopment through its regulation of both dynein and proteasome function.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
19
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
20
|
Simões PA, Celestino R, Carvalho AX, Gassmann R. NudE regulates dynein at kinetochores but is dispensable for other dynein functions in the C. elegans early embryo. J Cell Sci 2018; 131:jcs.212159. [PMID: 29192061 PMCID: PMC5818066 DOI: 10.1242/jcs.212159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
In mitosis, the molecular motor dynein is recruited to kinetochores by the Rod-Zw10-Zwilch complex (RZZ) and Spindly to control spindle assembly checkpoint (SAC) signaling and microtubule attachment. How the ubiquitous dynein co-factors Lis1 and NudE contribute to these functions remains poorly understood. Here, we show that the C. elegans NudE homolog NUD-2 is dispensable for dynein- and LIS-1-dependent mitotic spindle assembly in the zygote. This facilitates functional characterization of kinetochore-localized NUD-2, which is recruited by the CENP-F-like proteins HCP-1 and HCP-2 independently of RZZ-Spindly and dynein-LIS-1. Kinetochore dynein levels are reduced in Δnud-2 embryos, and, as occurs upon RZZ inhibition, loss of NUD-2 delays the formation of load-bearing kinetochore-microtubule attachments and causes chromatin bridges in anaphase. Survival of Δnud-2 embryos requires a functional SAC, and kinetochores without NUD-2 recruit an excess of SAC proteins. Consistent with this, SAC signaling in early Δnud-2 embryos extends mitotic duration and prevents high rates of chromosome mis-segregation. Our results reveal that both NUD-2 and RZZ-Spindly are essential for dynein function at kinetochores, and that the gain in SAC strength during early embryonic development is relevant under conditions that mildly perturb mitosis.
Collapse
Affiliation(s)
- Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
21
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
22
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
23
|
Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker M, Hofenk J, Rodrigues R, Kapitein L, Akhmanova A, Jaarsma D, Hoogenraad C. Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron 2016; 89:461-71. [DOI: 10.1016/j.neuron.2016.01.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/15/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
24
|
Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL. Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 2015; 31:83-108. [PMID: 26436706 DOI: 10.1146/annurev-cellbio-100814-125438] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| |
Collapse
|
25
|
Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell 2015; 26:3379-89. [PMID: 26246603 PMCID: PMC4591684 DOI: 10.1091/mbc.e15-07-0482] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022] Open
Abstract
Nuclear lamins counterbalance dynein forces on nuclear pore complexes through BICD2 and ensure even nuclear pore complex distribution and proper centrosome separation at prophase. Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Yixian Zheng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
26
|
Gao FJ, Hebbar S, Gao XA, Alexander M, Pandey JP, Walla MD, Cotham WE, King SJ, Smith DS. GSK-3β Phosphorylation of Cytoplasmic Dynein Reduces Ndel1 Binding to Intermediate Chains and Alters Dynein Motility. Traffic 2015; 16:941-61. [PMID: 26010407 PMCID: PMC4543430 DOI: 10.1111/tra.12304] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022]
Abstract
Glycogen synthase kinase 3 (GSK‐3) has been linked to regulation of kinesin‐dependent axonal transport in squid and flies, and to indirect regulation of cytoplasmic dynein. We have now found evidence for direct regulation of dynein by mammalian GSK‐3β in both neurons and non‐neuronal cells. GSK‐3β coprecipitates with and phosphorylates mammalian dynein. Phosphorylation of dynein intermediate chain (IC) reduces its interaction with Ndel1, a protein that contributes to dynein force generation. Two conserved residues, S87/T88 in IC‐1B and S88/T89 in IC‐2C, have been identified as GSK‐3 targets by both mass spectrometry and site‐directed mutagenesis. These sites are within an Ndel1‐binding domain, and mutation of both sites alters the interaction of IC's with Ndel1. Dynein motility is stimulated by (i) pharmacological and genetic inhibition of GSK‐3β, (ii) an insulin‐sensitizing agent (rosiglitazone) and (iii) manipulating an insulin response pathway that leads to GSK‐3β inactivation. Thus, our study connects a well‐characterized insulin‐signaling pathway directly to dynein stimulation via GSK‐3 inhibition.
Collapse
Affiliation(s)
- Feng J Gao
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Sachin Hebbar
- Bioinformatics Group, Immune Tolerance Network, Bethesda, MD, 20814, USA
| | - Xu A Gao
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael Alexander
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jai P Pandey
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - William E Cotham
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Stephen J King
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32828, USA
| | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
27
|
Xiang X, Qiu R, Yao X, Arst HN, Peñalva MA, Zhang J. Cytoplasmic dynein and early endosome transport. Cell Mol Life Sci 2015; 72:3267-80. [PMID: 26001903 DOI: 10.1007/s00018-015-1926-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA,
| | | | | | | | | | | |
Collapse
|
28
|
Arthur AL, Yang SZ, Abellaneda AM, Wildonger J. Dendrite arborization requires the dynein cofactor NudE. J Cell Sci 2015; 128:2191-201. [PMID: 25908857 PMCID: PMC4450295 DOI: 10.1242/jcs.170316] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/10/2015] [Indexed: 12/28/2022] Open
Abstract
The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sihui Z Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison M Abellaneda
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Roberts AJ, Goodman BS, Reck-Peterson SL. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 2014; 3:e02641. [PMID: 24916158 PMCID: PMC4046564 DOI: 10.7554/elife.02641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein powers intracellular movement of cargo toward the microtubule minus end. The first step in a variety of dynein transport events is the targeting of dynein to the dynamic microtubule plus end, but the molecular mechanism underlying this spatial regulation is not understood. Here, we reconstitute dynein plus-end transport using purified proteins from S. cerevisiae and dissect the mechanism using single-molecule microscopy. We find that two proteins–homologs of Lis1 and Clip170–are sufficient to couple dynein to Kip2, a plus-end-directed kinesin. Dynein is transported to the plus end by Kip2, but is not a passive passenger, resisting its own plus-end-directed motion. Two microtubule-associated proteins, homologs of Clip170 and EB1, act as processivity factors for Kip2, helping it overcome dynein's intrinsic minus-end-directed motility. This reveals how a minimal system of proteins transports a molecular motor to the start of its track. DOI:http://dx.doi.org/10.7554/eLife.02641.001 Eukaryotic cells use transport systems to efficiently move materials from one location to another. Much transport in the cell interior is achieved using molecular motors, which carry cargoes along tracks called microtubules. Unlike roads of human construction, microtubules are very dynamic. One of their ends (the ‘plus’ end) explores the outskirts of the cell, growing and shrinking through the addition and loss of protein building blocks. The other microtubule end (the ‘minus’ end) typically lies in a hub near the center of the cell. There are two types of molecular motor that move on microtubules. Kinesin motors move toward the plus end of the microtubule, and dynein motors move in the opposite direction, toward the minus end. But if dynein only moves to the minus end of the microtubule, a problem arises: how would dynein initially reach the plus end of the microtubule and the outskirts of the cell, where it collects cargoes? Using purified yeast proteins, Roberts et al. reveal that a group of three proteins can solve this problem by transporting dynein to the plus end of the microtubule. The proteins comprise a kinesin motor, and two additional proteins that connect the dynein motor to the kinesin. Imaging the transport process shows that the dynein motor is not a passive passenger: it is able to resist against the kinesin. However, an additional microtubule-associated protein can help the kinesin motor to win this ‘tug of war’, and so the protein complex—including the dynein motor—moves toward the plus end of the microtubule. DOI:http://dx.doi.org/10.7554/eLife.02641.002
Collapse
Affiliation(s)
- Anthony J Roberts
- Department of Cell Biology, Harvard Medical School, Boston, United States Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Brian S Goodman
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
30
|
Raaijmakers JA, Medema RH. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 2014; 123:407-22. [PMID: 24871939 DOI: 10.1007/s00412-014-0468-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.
Collapse
Affiliation(s)
- J A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
31
|
Zhang J, Qiu R, Arst HN, Peñalva MA, Xiang X. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. ACTA ACUST UNITED AC 2014; 204:1009-26. [PMID: 24637327 PMCID: PMC3998793 DOI: 10.1083/jcb.201308009] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HookA is a novel linker protein that binds to endosomes and to dynein–dynactin and promotes dynein–early endosome interaction in Aspergillus. Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein–cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA–early endosome interaction occurs independently of dynein–early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA–early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein–dynactin, and loss of HookA significantly weakens dynein–early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein–early endosome interaction in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | | | | | | | |
Collapse
|
32
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
33
|
Wang S, Ketcham SA, Schön A, Goodman B, Wang Y, Yates J, Freire E, Schroer TA, Zheng Y. Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol Biol Cell 2013; 24:3522-33. [PMID: 24025714 PMCID: PMC3826990 DOI: 10.1091/mbc.e13-05-0283] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nudel/NudE facilitates the binding of Lis1 to dynein, which subsequently enhances the recruitment of dynactin to dynein, and dynactin antagonizes Lis1 to relieve Lis1-induced dynein stall on microtubules. Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.
Collapse
Affiliation(s)
- Shusheng Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 Department of Biology, Johns Hopkins University, Baltimore, MD 21218 Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reiner O, Sapir T. LIS1 functions in normal development and disease. Curr Opin Neurobiol 2013; 23:951-6. [PMID: 23973156 DOI: 10.1016/j.conb.2013.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
LIS1, the first gene to be identified as involved in a neuronal migration disease, is a dosage-sensitive gene whose proper levels are required for multiple aspects of cortical development. Deletions in LIS1 result in a severe brain malformation, known as lissencephaly, whereas duplications delay brain development. LIS1 affects the proliferation of progenitors, spindle orientation and interkinetic nuclear movement in the ventricular zone, as well as nucleokinesis and migration of neurons. LIS1 regulatory interaction with the minus end directed molecular motor cytoplasmic dynein is the key for understanding its complex cellular functions. LIS1-dynein interaction decreases the average velocity of the molecular motor in vitro, shows more complex effects in vivo, and may be of importance in high-load transport especially in neurons.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
35
|
Qiu R, Zhang J, Xiang X. Identification of a novel site in the tail of dynein heavy chain important for dynein function in vivo. J Biol Chem 2012; 288:2271-80. [PMID: 23212922 DOI: 10.1074/jbc.m112.412403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The minus end-directed microtubule motor cytoplasmic dynein is responsible for the intracellular movements of many organelles, including nuclei and endosomes. The dynein heavy chain contains a C-terminal motor domain and an N-terminal tail domain. The tail binds other dynein subunits and the cargo-interacting dynactin complex but is dispensable for movement of single dynein molecules in vitro. Here, we identified a mutation in the Aspergillus nidulans heavy chain tail domain, nudA(F208V), which causes obvious defects in dynein-mediated nuclear positioning and early endosome movement. Astonishingly, the nudA(F208I) mutation in the same position does not cause the same defects, suggesting that a subtle difference in the size of the amino acid side chain at this position has a significant consequence. Importantly, our biochemical analyses indicate that the nudA(F208V) mutation does not affect dynein subunit interactions and the mutant dynein is also able to bind dynactin and another dynein regulator, NUDF/LIS1. The mutant dynein is able to physically interact with the early endosome cargo, but dynein-mediated early endosome movement away from the hyphal tip occurs at a significantly reduced frequency. Within the small group of early endosomes that move away from the hyphal tip in the mutant, the average speed of movement is lower than that in the wild type. Given the dispensability of the dynein tail in dynein motility in vitro, our results support the notion that the structural integrity of the dynein tail is critical in vivo for the coordination of dynein force production and movement when the motor is heavily loaded.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
36
|
Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor. Cell 2012; 150:975-86. [PMID: 22939623 PMCID: PMC3438448 DOI: 10.1016/j.cell.2012.07.022] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/23/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
Abstract
The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a “clutch” that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments.
Collapse
|
37
|
Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Böttcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012; 287:32381-93. [PMID: 22843697 PMCID: PMC3463352 DOI: 10.1074/jbc.m112.393439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8-167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.
Collapse
Affiliation(s)
- Dinesh C. Soares
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nicholas J. Bradshaw
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- the Institut für Neuropathologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Juan Zou
- the Wellcome Trust Centre for Cell Biology and
| | - Christopher K. Kennaway
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Russell S. Hamilton
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | - Martin A. Wear
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Elizabeth A. Blackburn
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Janice Bramham
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Bettina Böttcher
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - J. Kirsty Millar
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul N. Barlow
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Juri Rappsilber
- the Wellcome Trust Centre for Cell Biology and
- the Department of Biotechnology, Technische Universität Berlin, 13353 Berlin, Germany
| | - David J. Porteous
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
38
|
Egan MJ, Tan K, Reck-Peterson SL. Lis1 is an initiation factor for dynein-driven organelle transport. ACTA ACUST UNITED AC 2012; 197:971-82. [PMID: 22711696 PMCID: PMC3384415 DOI: 10.1083/jcb.201112101] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The dynein-associated protein Lis1 may be a ubiquitous determinant of dynein-dependent transport required primarily at the stage of motility initiation. The molecular motor cytoplasmic dynein is responsible for most minus-end–directed, microtubule-based transport in eukaryotic cells. It is especially important in neurons, where defects in microtubule-based motility have been linked to neurological diseases. For example, lissencephaly is caused by mutations in the dynein-associated protein Lis1. In this paper, using the long, highly polarized hyphae of the filamentous fungus Aspergillus nidulans, we show that three morphologically and functionally distinct dynein cargos showed transport defects in the genetic absence of Lis1/nudF, raising the possibility that Lis1 is ubiquitously used for dynein-based transport. Surprisingly, both dynein and its cargo moved at normal speeds in the absence of Lis1 but with reduced frequency. Moreover, Lis1, unlike dynein and dynactin, was absent from moving dynein cargos, further suggesting that Lis1 is not required for dynein-based cargo motility once it has commenced. Based on these observations, we propose that Lis1 has a general role in initiating dynein-driven motility.
Collapse
Affiliation(s)
- Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Nyarko A, Song Y, Barbar E. Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J Biol Chem 2012; 287:24884-93. [PMID: 22669947 DOI: 10.1074/jbc.m112.376038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional diversity of cytoplasmic dynein is in part attributed to multiple interactions between noncatalytic dynein subunits and an array of regulatory proteins. This study focuses on the interaction between the dynein intermediate chain subunit (IC) and a dynein regulator protein (NudE). We use isothermal titration calorimetry and NMR spectroscopy to map their interacting sections to their respective N-terminal domains, which are predicted to form dimeric coiled-coils. Interestingly, the specific residues within IC that interact with NudE are a subset of the bi-segmental binding region reported for p150(Glued), a subunit of the dynein activator protein dynactin. Although the IC binding domains of both NudE and p150(Glued) form dimeric coiled-coils and bind IC at a common site, we observe distinct binding modes for each regulatory protein: 1) NudE binds region 1 of the bi-segmental binding footprint of p150(Glued), whereas p150(Glued) requires regions 1 and 2 to match the binding affinity of NudE with region 1 alone. 2) Compared with unbound IC, NudE-bound IC shows a slight increase in flexibility in region 2, in contrast to the increase in ordered structure observed for p150(Glued)-bound IC (Morgan, J. L., Song, Y., and Barbar, E. (2011) J. Biol. Chem. 286, 39349-39359). 3) Although NudE has a higher affinity for the common binding segment on IC, when all three proteins are in solution, IC preferentially binds p150(Glued). These results underscore the importance of a bi-segmental binding region of IC and disorder in region 2 and flanking linkers in selecting which regulatory protein binds IC.
Collapse
Affiliation(s)
- Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
40
|
Misfolded Gβ is recruited to cytoplasmic dynein by Nudel for efficient clearance. Cell Res 2012; 22:1140-54. [PMID: 22430153 DOI: 10.1038/cr.2012.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Gβγ heterodimer is an important signal transducer. Gβ, however, is prone to misfolding due to its requirement for Gγ and chaperones for proper folding. How cells dispose of misfolded Gβ (mfGβ) is not clear. Here, we showed that mfGβ was able to be polyubiquitinated and subsequently degraded by the proteasome. It was sequestered in aggresomes after the inhibition of the proteasome activity with MG132. Sustained activation of Gβγ signaling further elevated cellular levels of the ubiquitinated Gβ. Moreover, Nudel, a regulator of cytoplasmic dynein, the microtubule minus end-directed motor, directly interacted with both the unubiquitinated and ubiquitinated mfGβ. Increasing the levels of both mfGβ and Nudel promoted the association of Gβ with both Nudel and dynein, resulting in robust aggresome formation in a dynein-dependent manner. Depletion of Nudel by RNAi reduced the dynein-associated mfGβ, impaired the MG132-induced aggresome formation, and markedly prolonged the half-life of nascent Gβ. Therefore, cytosolic mfGβ is recruited to dynein by Nudel and transported to the centrosome for rapid sequestration and degradation. Such a process not only eliminates mfGβ efficiently for the control of protein quality, but may also help to terminate the Gβγ signaling.
Collapse
|
41
|
|
42
|
Abstract
The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.
Collapse
|
43
|
A Cdk5-dependent switch regulates Lis1/Ndel1/dynein-driven organelle transport in adult axons. J Neurosci 2012; 31:17207-19. [PMID: 22114287 DOI: 10.1523/jneurosci.4108-11.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lissencephaly is a human developmental brain abnormality caused by LIS1 haploinsufficiency. This disorder is in large part attributed to altered mitosis and migration in the developing brain. LIS1 and an interacting protein, NDEL1, bind to cytoplasmic dynein, a microtubule motor protein. While the tripartite complex is clearly important for developmental events, we are intrigued by the fact that Lis1 and Ndel1 expression remain high in the adult mouse nervous system. Dynein plays a crucial role in retrograde axonal transport, a process that is used by mature neurons. Here, we monitored acidic organelles moving in axons of adult rat sensory neurons to determine whether Lis1 and Ndel1 contribute to axonal transport. Lis1 RNAi significantly reduced axon transport of these organelles. Ndel1 RNAi had little impact, but combined Lis1 and Ndel1 RNAi caused a more severe phenotype than Lis1 RNAi alone, essentially shutting down transport. Lis1 overexpression stimulated retrograde transport, while a Lis1 dynein-binding mutant severely disrupted transport. Overexpression of Ndel1 or a Lis1 Ndel1-binding mutant only mildly perturbed transport. However, expressing a mutant Ndel1 lacking key phosphorylation sites shut down transport completely, as did a dominant-negative Cdk5 construct. We propose that, in axons, unphosphorylated Ndel1 inhibits the capacity of dynein to transport acidic organelles. Phosphorylation of Ndel1 by Cdk5 not only reduces this inhibition but also allows Lis1 to further stimulate the cargo transport capacity of dynein. Our data raise the possibility that defects in a Lis1/Ndel1 regulatory switch could contribute to neurodegenerative diseases linked to axonal pathology in adults.
Collapse
|
44
|
Segal M, Soifer I, Petzold H, Howard J, Elbaum M, Reiner O. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biol Open 2012; 1:220-31. [PMID: 23213412 PMCID: PMC3507287 DOI: 10.1242/bio.2012307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.
Collapse
Affiliation(s)
- Michal Segal
- Department of Molecular Genetics, The Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | | | | | | | | |
Collapse
|
45
|
McKenney RJ, Weil SJ, Scherer J, Vallee RB. Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 2011; 286:39615-22. [PMID: 21911489 PMCID: PMC3234784 DOI: 10.1074/jbc.m111.289017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/02/2011] [Indexed: 12/27/2022] Open
Abstract
Cytoplasmic dynein is responsible for a wide range of cellular roles. How this single motor protein performs so many functions has remained a major outstanding question for many years. Part of the answer is thought to lie in the diversity of dynein regulators, but how the effects of these factors are coordinated in vivo remains unexplored. We previously found NudE to bind dynein through its light chain 8 (LC8) and intermediate chain (IC) subunits (1), the latter of which also mediates the dynein-dynactin interaction (2). We report here that NudE and dynactin bind to a common region within the IC, and compete for this site. We find LC8 to bind to a novel sequence within NudE, without detectably affecting the dynein-NudE interaction. We further find that commonly used dynein inhibitory reagents have broad effects on the interaction of dynein with its regulatory factors. Together these results reveal an unanticipated mechanism for preventing dual regulation of individual dynein molecules, and identify the IC as a nexus for regulatory interactions within the dynein complex.
Collapse
Affiliation(s)
- Richard J. McKenney
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Sarah J. Weil
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Julian Scherer
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Richard B. Vallee
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| |
Collapse
|
46
|
Pawlisz AS, Feng Y. Three-dimensional regulation of radial glial functions by Lis1-Nde1 and dystrophin glycoprotein complexes. PLoS Biol 2011; 9:e1001172. [PMID: 22028625 PMCID: PMC3196477 DOI: 10.1371/journal.pbio.1001172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/30/2011] [Indexed: 01/09/2023] Open
Abstract
Lis1-Nde1 integrates cerebral cortical neurogenesis with neuronal migration by stabilizing the basal-lateral surface of radial glial cells. Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex. The processes of neurogenesis and neuronal migration within the developing cerebral cortex must be tightly orchestrated to enable ordered generation and transportation of neurons to designated cortical layers. The mechanism by which these two processes are integrated remains elusive. Radial glial cells, the major neural stem cells in the developing brain, serve both as progenitors and migration scaffolds for cortical neurons as they migrate. The cortical developmental disease lissencephaly (smooth brain) is a result of defects in neurogenesis and neuronal migration, and is associated with the protein LIS1 and its binding partner NDE1. In this study, we show that several key players in human cerebral cortical development, including LIS1, NDE1, dystrophin, and dystroglycan, form a molecular complex to regulate cortical neurogenesis and neuronal migration in a mouse model. This multi-protein complex is active on the basal-lateral surface of radial glial cells, which is known to provide guidance to migrating neurons. When we depleted NDE1 in mice, dystrophin and dystroglycan were lost from the membrane and radial glial cells were deformed, indicating the importance of the multi-protein complex for proper cell morphology. This effect on morphology resulted in a loss of normal migration and cortical phenotypes similar to lissencephaly. Our findings suggest that genes that regulate the structure and function of the basal-lateral membrane of radial glial cells may integrate the dual functions of these cells and determine the size, shape, and function of the cerebral cortex.
Collapse
Affiliation(s)
- Ashley S. Pawlisz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yuanyi Feng
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
48
|
Zyłkiewicz E, Kijańska M, Choi WC, Derewenda U, Derewenda ZS, Stukenberg PT. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. ACTA ACUST UNITED AC 2011; 192:433-45. [PMID: 21282465 PMCID: PMC3101096 DOI: 10.1083/jcb.201011142] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ndel1 has been implicated in a variety of dynein-related processes, but its specific function is unclear. Here we describe an experimental approach to evaluate a role of Ndel1 in dynein-dependent microtubule self-organization using Ran-mediated asters in meiotic Xenopus egg extracts. We demonstrate that extracts depleted of Ndel1 are unable to form asters and that this defect can be rescued by the addition of recombinant N-terminal coiled-coil domain of Ndel1. Ndel1-dependent microtubule self-organization requires an interaction between Ndel1 and dynein, which is mediated by the dimerization fragment of the coiled-coil. Full rescue by the coiled-coil domain requires LIS1 binding, and increasing LIS1 concentration partly rescues aster formation, suggesting that Ndel1 is a recruitment factor for LIS1. The interactions between Ndel1 and its binding partners are positively regulated by phosphorylation of the unstructured C terminus. Together, our results provide important insights into how Ndel1 acts as a regulated scaffold to temporally and spatially regulate dynein.
Collapse
Affiliation(s)
- Eliza Zyłkiewicz
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|