1
|
Zhang Z, Shen Z, Xie S, Li J, Zhang Z, Zhang S, Peng B, Huang Q, Li M, Ma S, Huang Q. Rapamycin exerts neuroprotective effects by inhibiting FKBP12 instead of mTORC1 in the mouse model of Parkinson's disease. Neuropharmacology 2025; 275:110504. [PMID: 40345576 DOI: 10.1016/j.neuropharm.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD), characterized by the selective loss of nigral dopaminergic neurons, is a common neurodegenerative disorder for which effective disease-modifying therapies remain unavailable. Rapamycin, a clinical immunosuppressant used for decades, has demonstrated neuroprotective effects in various animal models of neurological diseases, including PD. These effects are believed to be mediated through the inhibition of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling, with rapamycin binding to FKBP12. However, recent studies have suggested that mTOR activation can be neuroprotective in degenerating dopaminergic neurons, presenting a paradox to the neuroprotective mechanism of rapamycin via mTORC1 inhibition. In this study, we showed that mTORC1 signaling was inactivated in nigral dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Notably, the optimal neuroprotective dose of rapamycin did not inhibit mTORC1 signaling nor restore autophagy defects in nigral dopaminergic neurons of MPTP-treated male C57BL/6 mice. Furthermore, acute Raptor knockout in dopaminergic neurons, which abolishes mTORC1 activity, did not diminish rapamycin's neuroprotective effects, suggesting that its protection is independent of mTORC1 inhibition. Importantly, rapamycin is also a potent inhibitor of FKBP12, a peptidyl-prolyl cis-trans isomerase highly expressed in the brain. Selective knockdown of FKBP12 in nigral dopaminergic neurons confers neuroprotective effects comparable to that of rapamycin, with no synergism observed when the two are combined. Collectively, our results indicate that rapamycin exerts neuroprotective effects in parkinsonian mice through inhibition of FKBP12 rather than mTORC1 signaling. These findings suggest that FKBP12 may serve as a novel target for disease-modifying therapies in PD.
Collapse
Affiliation(s)
- Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziyue Shen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shiming Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo Peng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 200032, China
| | - Qianchu Huang
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Sjekloća L, Buratti E. Conserved region of human TDP-43 is structurally similar to membrane binding protein FARP1 and protein chaperons BAG6 and CYP33. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001388. [PMID: 39583578 PMCID: PMC11582883 DOI: 10.17912/micropub.biology.001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Transactive response DNA-binding protein of 43 KDa (TDP-43) is important for RNA metabolism in all animals and in humans is involved in neuromuscular diseases. Full-length TDP-43 is prone to oligomerization and misfolding what renders difficult its characterization. We report that TDP-43 domains are structurally similar to lipid binding protein FARP1 and protein chaperons BAG6 and CYP33. Sequence analysis suggests putative lipid binding sites throughout TDP-43 and in vitro thioflavin T fluorescence assays show that cholesterol and phosphatidylcholine affect fibrillation of recombinant TDP-43 fragments. Our findings suggest that TDP-43 can bind lipids directly and it may contribute to its own chaperoning.
Collapse
Affiliation(s)
- Ljiljana Sjekloća
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
3
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
4
|
Alvariño R, Alfonso A, Pech-Puch D, Gegunde S, Rodríguez J, Vieytes MR, Jiménez C, Botana LM. Furanoditerpenes from Spongia (Spongia) tubulifera Display Mitochondrial-Mediated Neuroprotective Effects by Targeting Cyclophilin D. ACS Chem Neurosci 2022; 13:2449-2463. [PMID: 35901231 PMCID: PMC9686139 DOI: 10.1021/acschemneuro.2c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuroprotective properties of five previously described furanoditerpenes 1-5, isolated from Spongia (Spongia) tubulifera, were evaluated in an in vitro oxidative stress model in SH-SY5Y cells. Dose-response treatments revealed that 1-5 improved cell survival at nanomolar concentrations through the restoration of mitochondrial membrane potential and the reduction of reactive oxygen species. Their ability to prevent the mitochondrial permeability transition pore opening was also assessed, finding that 4 and 5 inhibited the channel at 0.001 μM. This inhibition was accompanied by a decrease in the expression of cyclophilin D, the main regulator of the pore, which was also reduced by 1 and 2. However, the activation of ERK and GSK3β, upstream modulators of the channel, was not affected by compounds. Therefore, their ability to bind cyclophilin D was evaluated by surface plasmon resonance, observing that 2-5 presented equilibrium dissociation constants in the micromolar range. All compounds also showed affinity for cyclophilin A, being 1 selective toward this isoform, while 2 and 5 exhibited selectivity for cyclophilin D. When the effects on the intracellular expression of cyclophilins A-C were determined, it was found that only 1 decreased cyclophilin A, while cyclophilins B and C were diminished by most compounds, displaying enhanced effects under oxidative stress conditions. Results indicate that furanoditerpenes 1-5 have mitochondrial-mediated neuroprotective properties through direct interaction with cyclophilin D. Due to the important role of this protein in oxidative stress and inflammation, compounds are promising drugs for new therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Dawrin Pech-Puch
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,Departamento
de Biología Marina, Campus de Ciencias Biológicas y
Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, 97100 Mérida, Yucatán, Mexico
| | - Sandra Gegunde
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Fundación
Instituto de Investigación Sanitario Santiago de Compostela
(FIDIS), Hospital Universitario Lucus Augusti, 27002 Lugo, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mercedes R. Vieytes
- Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,. Phone/Fax: +34881012170
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,. Phone/Fax: +34982822233
| |
Collapse
|
5
|
Chambraud B, Byrne C, Meduri G, Baulieu EE, Giustiniani J. FKBP52 in Neuronal Signaling and Neurodegenerative Diseases: A Microtubule Story. Int J Mol Sci 2022; 23:ijms23031738. [PMID: 35163662 PMCID: PMC8836061 DOI: 10.3390/ijms23031738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Béatrice Chambraud
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
| | - Cillian Byrne
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Laboratoire des Biomolécules, LBM7203, CNRS, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Geri Meduri
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
| | - Etienne Emile Baulieu
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| | - Julien Giustiniani
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| |
Collapse
|
6
|
Dash PK, Gorantla S, Poluektova L, Hasan M, Waight E, Zhang C, Markovic M, Edagwa B, Machhi J, Olson KE, Wang X, Mosley RL, Kevadiya B, Gendelman HE. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021; 18:13. [PMID: 34090462 PMCID: PMC8179712 DOI: 10.1186/s12977-021-00557-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavesh Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Torpey J, Madine J, Wood A, Lian LY. Cyclophilin D binds to the acidic C-terminus region of α-Synuclein and affects its aggregation characteristics. Sci Rep 2020; 10:10159. [PMID: 32576835 PMCID: PMC7311461 DOI: 10.1038/s41598-020-66200-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclophilin D (CypD) is a peptidyl-prolyl isomerase expressed in the nucleus and transported into the mitochondria where it is best associated with the regulation of the mitochondrial permeability transition pore (MPTP). There are, however, other possible roles of CypD in the mitochondria which may or may not be linked with the MPTP. Alpha synuclein (αSyn) is shown here to interact directly with CypD via its acidic proline-rich C-terminus region and binding at the putative ligand binding pocket of CypD. The study shows that CypD binding with soluble αSyn prevents its aggregation. Furthermore, the addition of CypD to preformed αSyn fibrils leads to the disassembly of these fibrils. Enzymatically-compromised mutants of CypD show reduced abilities to dissociate αSyn aggregates, suggesting that fibril disassembly is linked to the increased rate of peptidyl-prolyl isomerisation catalysed by CypD. Protein aggregation in the mitochondria is increasingly seen as the cause of neurodegeneration. However, protein aggregation is a reversible process but disaggregation requires help from other proteins such as isomerases and chaperones. The results here demonstrate a possible mechanism by which CypD achieves this and suggest that disaggregation could be one of the many functions of this protein.
Collapse
Affiliation(s)
- James Torpey
- NMR Centre for Structural Biology and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jillian Madine
- NMR Centre for Structural Biology and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Amy Wood
- NMR Centre for Structural Biology and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
8
|
Favretto F, Baker JD, Strohäker T, Andreas LB, Blair LJ, Becker S, Zweckstetter M. The Molecular Basis of the Interaction of Cyclophilin A with α‐Synuclein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Filippo Favretto
- Translational Structural Biology in Dementia German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Jeremy D. Baker
- Department of Molecular Medicine Morsani College of Medicine USF Health Byrd Alzheimer's Institute University of South Florida Tampa FL 33613 USA
| | - Timo Strohäker
- Translational Structural Biology in Dementia German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Loren B. Andreas
- Department for NMR-based Structural Biology Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Laura J. Blair
- Department of Molecular Medicine Morsani College of Medicine USF Health Byrd Alzheimer's Institute University of South Florida Tampa FL 33613 USA
| | - Stefan Becker
- Department for NMR-based Structural Biology Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Markus Zweckstetter
- Translational Structural Biology in Dementia German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
- Department for NMR-based Structural Biology Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
9
|
Favretto F, Baker JD, Strohäker T, Andreas LB, Blair LJ, Becker S, Zweckstetter M. The Molecular Basis of the Interaction of Cyclophilin A with α-Synuclein. Angew Chem Int Ed Engl 2020; 59:5643-5646. [PMID: 31830361 PMCID: PMC7085457 DOI: 10.1002/anie.201914878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Peptidylprolyl isomerases (PPIases) catalyze cis/trans isomerization of prolines. The PPIase CypA colocalizes with the Parkinson's disease (PD)-associated protein α-synuclein in cells and interacts with α-synuclein oligomers. Herein, we describe atomic insights into the molecular details of the α-synuclein/CypA interaction. NMR spectroscopy shows that CypA catalyzes isomerization of proline 128 in the C-terminal domain of α-synuclein. Strikingly, we reveal a second CypA-binding site formed by the hydrophobic sequence 47 GVVHGVATVA56 , termed PreNAC. The 1.38 Å crystal structure of the CypA/PreNAC complex displays a contact between alanine 53 of α-synuclein and glutamine 111 in the catalytic pocket of CypA. Mutation of alanine 53 to glutamate, as found in patients with early-onset PD, weakens the interaction of α-synuclein with CypA. Our study provides high-resolution insights into the structure of the PD-associated protein α-synuclein in complex with the most abundant cellular cyclophilin.
Collapse
Affiliation(s)
- Filippo Favretto
- Translational Structural Biology in DementiaGerman Center for Neurodegenerative Diseases (DZNE)Von-Siebold-Str. 3a37075GöttingenGermany
| | - Jeremy D. Baker
- Department of Molecular MedicineMorsani College of MedicineUSF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFL33613USA
| | - Timo Strohäker
- Translational Structural Biology in DementiaGerman Center for Neurodegenerative Diseases (DZNE)Von-Siebold-Str. 3a37075GöttingenGermany
| | - Loren B. Andreas
- Department for NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Laura J. Blair
- Department of Molecular MedicineMorsani College of MedicineUSF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFL33613USA
| | - Stefan Becker
- Department for NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Markus Zweckstetter
- Translational Structural Biology in DementiaGerman Center for Neurodegenerative Diseases (DZNE)Von-Siebold-Str. 3a37075GöttingenGermany
- Department for NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| |
Collapse
|
10
|
Caminati G, Martina MR, Menichetti S, Procacci P. Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor. J Enzyme Inhib Med Chem 2019; 34:1711-1715. [PMID: 31547734 PMCID: PMC6764402 DOI: 10.1080/14756366.2019.1667342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (α-syn), a disordered cytoplasmatic protein, plays a fundamental role in the pathogenesis of Parkinson’s disease (PD). Here, we have shown, using photophysical measurements, that addition of FKBP12 to α-syn solutions, dramatically accelerates protein aggregation, leading to an explosion of dendritic structures revealed by fluorescence and phase-contrast microscopy. We have further demonstrated that this aberrant α-syn aggregation can be blocked using a recently discovered non-immunosuppressive synthetic inhibitor of FKBP12, ElteN378. The role of FKBP12 and of ElteN378 in the α-syn aggregation mechanism has been elucidated using molecular dynamics simulations based on an effective coarse-grained model. The reported data not only reveal a new potent synthetic drug as a candidate for early stage treatment of α-syn dependent neurodegenerations but also pave the way to a deeper understanding of the mechanism of action of FKBP12 on α-syn oligomeric aggregation, a topic which is still controversial.
Collapse
Affiliation(s)
- Gabriella Caminati
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino , Italy.,Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Maria Raffaella Martina
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino , Italy.,Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Stefano Menichetti
- Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Piero Procacci
- Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
11
|
Tang X, Xu P, Wang B, Luo J, Fu R, Huang K, Dai L, Lu J, Cao G, Peng H, Zhang L, Zhang Z, Chen Q. Identification of a Specific Gene Module for Predicting Prognosis in Glioblastoma Patients. Front Oncol 2019; 9:812. [PMID: 31508371 PMCID: PMC6718733 DOI: 10.3389/fonc.2019.00812] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common and malignant variant of intrinsic glial brain tumors. The poor prognosis of GBM has not significantly improved despite the development of innovative diagnostic methods and new therapies. Therefore, further understanding the molecular mechanism that underlies the aggressive behavior of GBM and the identification of appropriate prognostic markers and therapeutic targets is necessary to allow early diagnosis, to develop appropriate therapies and to improve prognoses. Methods: We used a weighted gene co-expression network analysis (WGCNA) to construct a gene co-expression network with 524 glioblastoma samples from The Cancer Genome Atlas (TCGA). A risk score was then constructed based on four module genes and the patients' overall survival (OS) rate. The prognostic and predictive accuracy of the risk score were verified in the GSE16011 cohort and the REMBRANDT cohort. Results: We identified a gene module (the green module) related to prognosis. Then, multivariate Cox analysis was performed on 4 hub genes to construct a Cox proportional hazards regression model from 524 glioblastoma patients. A risk score for predicting survival time was calculated with the following formula based on the top four genes in the green module: risk score = (0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 × EXPFKBP9) + (0.1557 × EXPLGALS8). The 5-year survival rate of the high-risk group (survival rate: 2.7%, 95% CI: 1.2–6.3%) was significantly lower than that of the low-risk group (survival rate: 8.8%, 95% CI: 5.5–14.1%). Conclusions: This study demonstrated the potential application of a WGCNA-based gene prognostic model for predicting the survival outcome of glioblastoma patients.
Collapse
Affiliation(s)
- Xiangjun Tang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurosurgery, Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengfei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rui Fu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kuanming Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junti Lu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Gang Cao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Solomentsev G, Diehl C, Akke M. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations. Biochemistry 2018; 57:1451-1461. [DOI: 10.1021/acs.biochem.7b01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gleb Solomentsev
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Carl Diehl
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Honjo Y, Ayaki T, Horibe T, Ito H, Takahashi R, Kawakami K. FKBP12-immunopositive inclusions in patients with α-synucleinopathies. Brain Res 2017; 1680:39-45. [PMID: 29246765 DOI: 10.1016/j.brainres.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023]
Abstract
α-Synuclein (α-SYN), a presynaptic protein with the tendency to aggregate, is linked to α-synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). α-SYN is the main component of round intracytoplasmic inclusions called Lewy bodies (LBs), which are the hallmark of PD and DLB. In addition, accumulation of amyloid-β and neurofibrillary tangles as in the pathology of Alzheimer's disease has been found in the DLB brain. Glial cytoplasmic inclusions are an MSA-specific type of inclusion found in oligodendrocytes and mainly comprise α-SYN. FK506-binding protein (FKBP) 12 is a member of the immunophilin family with peptidyl-prolyl isomerase activity that promotes protein folding and is believed to act as a chaperone protein. Previous in vitro work indicated that FKBP12 accelerated α-SYN aggregation more than other peptidyl-prolyl isomerases. The enzymatic activity of FKBP12 increases the formation of α-SYN fibrils at subnanomolar concentrations. In this study, we found that FKBP12 colocalized with α-SYN in LBs and neurites in PD and DLB brains. Furthermore, FKBP12-immunopositive neurofibrillary tangles colocalized with phosphorylated tau in DLB and FKBP12-immunopositive glial cytoplasmic inclusions colocalized with α-SYN in MSA. These findings suggest that FKBP12 is linked to the accumulation of α-SYN and phosphorylated tau protein in α-synucleinopathies. FKBP12 may play important roles in the pathogenesis of α-synucleinopathies through its strong aggregation function. Thus, FKBP12 could be an important drug target for α-synucleinopathies.
Collapse
Affiliation(s)
- Yasuyuki Honjo
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan; Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan.
| | - Hidefumi Ito
- Department of Neurology, Graduate School of Medicine, Wakayama Medical University, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan
| |
Collapse
|
15
|
Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Sarovar Bhavesh N, Ranjan Jana N, Kanti Maiti T. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep 2017; 7:44558. [PMID: 28300150 PMCID: PMC5353675 DOI: 10.1038/srep44558] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal Hydrolase-1 (UCHL1) is a deubiquitinating enzyme, which plays a key role in Parkinson’s disease (PD). It is one of the most important proteins, which constitute Lewy body in PD patient. However, how this well folded highly soluble protein presents in this proteinaceous aggregate is still unclear. We report here that UCHL1 undergoes S-nitrosylation in vitro and rotenone induced PD mouse model. The preferential nitrosylation in the Cys 90, Cys 152 and Cys 220 has been observed which alters the catalytic activity and structural stability. We show here that nitrosylation induces structural instability and produces amorphous aggregate, which provides a nucleation to the native α-synuclein for faster aggregation. Our findings provide a new link between UCHL1-nitrosylation and PD pathology.
Collapse
Affiliation(s)
- Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Deepak K Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Garima Verma
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashi Shekhar
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nihar Ranjan Jana
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| |
Collapse
|
16
|
Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C. Inhibition of Aβ(1-40) fibril formation by cyclophilins. Biochem J 2016; 473:1355-68. [PMID: 26994210 DOI: 10.1042/bcj20160098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Collapse
Affiliation(s)
- Marten Villmow
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Rolf Sachs
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Marcus Fändrich
- Institute for Pharmaceutical Biotechnology, Ulm University, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Macchi F, Deleersnijder A, Van den Haute C, Munck S, Pottel H, Michiels A, Debyser Z, Gerard M, Baekelandt V. High-content analysis of α-synuclein aggregation and cell death in a cellular model of Parkinson's disease. J Neurosci Methods 2015; 261:117-27. [PMID: 26620202 DOI: 10.1016/j.jneumeth.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SYN) aggregates represent a key feature of Parkinson's disease, but the exact relationship between α-SYN aggregation and neurodegeneration remains incompletely understood. Therefore, the availability of a cellular assay that allows medium-throughput analysis of α-SYN-linked pathology will be of great value for studying the aggregation process and for advancing α-SYN-based therapies. NEW METHOD Here we describe a high-content neuronal cell assay that simultaneously measures oxidative stress-induced α-SYN aggregation and apoptosis. RESULTS We optimized an automated and reproducible assay to quantify both α-SYN aggregation and cell death in human SH-SY5Y neuroblastoma cells. COMPARISON WITH EXISTING METHODS Quantification of α-SYN aggregates in cells has typically relied on manual imaging and counting or cell-free assays, which are time consuming and do not allow a concurrent analysis of cell viability. Our high-content analysis method for quantification of α-SYN aggregation allows simultaneous measurements of multiple cell parameters at a single-cell level in a fast, objective and automated manner. CONCLUSIONS The presented analysis approach offers a rapid, objective and multiparametric approach for the screening of compounds and genes that might alter α-SYN aggregation and/or toxicity.
Collapse
Affiliation(s)
- Francesca Macchi
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Angélique Deleersnijder
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Sebastian Munck
- KU Leuven, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Hans Pottel
- KU Leuven Campus Kulak Kortrijk, Public Health and Primary Care, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Melanie Gerard
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; KU Leuven campus Kulak Kortrijk, Laboratory of Biochemistry, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium.
| |
Collapse
|
18
|
Labrador‐Garrido A, Cejudo‐Guillén M, Daturpalli S, Leal MM, Klippstein R, De Genst EJ, Villadiego J, Toledo‐Aral JJ, Dobson CM, Jackson SE, Pozo D, Roodveldt C. Chaperome screening leads to identification of Grp94/Gp96 and FKBP4/52 as modulators of the α‐synuclein‐elicited immune response. FASEB J 2015; 30:564-77. [DOI: 10.1096/fj.15-275131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Adahir Labrador‐Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Marta Cejudo‐Guillén
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Soumya Daturpalli
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - María M. Leal
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
| | - Rebecca Klippstein
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Erwin J. De Genst
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Javier Villadiego
- Department of Medical Physiology and BiophysicsSchool of MedicineUniversity of SevilleSevilleSpain
- Institute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocioConsejo Superior de Investigaciones Científicas (CSIC)University of SevilleSevilleSpain
- Centers for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)SevilleSpain
| | - Juan J. Toledo‐Aral
- Department of Medical Physiology and BiophysicsSchool of MedicineUniversity of SevilleSevilleSpain
- Institute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocioConsejo Superior de Investigaciones Científicas (CSIC)University of SevilleSevilleSpain
- Centers for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)SevilleSpain
| | | | - Sophie E. Jackson
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
| |
Collapse
|
19
|
Noninvasive bioluminescence imaging of α-synuclein oligomerization in mouse brain using split firefly luciferase reporters. J Neurosci 2015; 34:16518-32. [PMID: 25471588 DOI: 10.1523/jneurosci.4933-13.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alpha-synuclein (αSYN) aggregation plays a pivotal role in the pathogenesis of Parkinson's disease and other synucleinopathies. In this multistep process, oligomerization of αSYN monomers is the first step in the formation of fibrils and intracytoplasmic inclusions. Although αSYN oligomers are generally considered to be the culprit of these diseases, the methodology currently available to follow-up oligomerization in cells and in brain is inadequate. We developed a split firefly luciferase complementation system to visualize oligomerization of viral vector-encoded αSYN fusion proteins. αSYN oligomerization resulted in successful luciferase complementation in cell culture and in mouse brain. Oligomerization of αSYN was monitored noninvasively with bioluminescence imaging in the mouse striatum and substantia nigra up to 8 months after injection. Moreover, the visualized αSYN oligomers retained their toxic and aggregation properties in both model systems. Next, the effect of two small molecules, FK506 and (-)-epigallocatechin-3-gallate (EGCG), known to inhibit αSYN fibril formation, was investigated. FK506 inhibited the observed αSYN oligomerization both in cell culture and in mouse brain. In conclusion, the split firefly luciferase-αSYN complementation assay will increase our insight in the role of αSYN oligomers in synucleinopathies and opens new opportunities to evaluate potential αSYN-based neuroprotective therapies.
Collapse
|
20
|
Van der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, de Loor H, Kuypers DRJ, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson's disease. Neurobiol Aging 2015; 36:1559-68. [PMID: 25660193 DOI: 10.1016/j.neurobiolaging.2015.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Alpha-synuclein (α-synuclein) is considered a key player in Parkinson's disease (PD), but the exact relationship between α-synuclein aggregation and dopaminergic neurodegeneration remains unresolved. There is increasing evidence that neuroinflammatory processes are closely linked to dopaminergic cell death, but whether the inflammatory process is causally involved in PD or rather reflects secondary consequences of nigrostriatal pathway injury is still under debate. We evaluated the therapeutic effect of the immunophilin ligand FK506 in a rAAV2/7 α-synuclein overexpression rat model. Treatment with FK506 significantly increased the survival of dopaminergic neurons in a dose-dependent manner. No reduction in α-synuclein aggregation was apparent in this time window, but FK506 significantly lowered the infiltration of both T helper and cytotoxic T cells and the number and subtype of microglia and macrophages. These data suggest that the anti-inflammatory properties of FK506 decrease neurodegeneration in this α-synuclein-based PD model, pointing to a causal role of neuroinflammation in the pathogenesis of PD.
Collapse
Affiliation(s)
- Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Francesca Macchi
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Jaan Toelen
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne S Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Michael Maris
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Henriette de Loor
- Division of Nephrology and Renal Transplantation, Department of Microbiology and Immunology, Leuven University Hospital and KU Leuven, Leuven, Belgium
| | - Dirk R J Kuypers
- Division of Nephrology and Renal Transplantation, Department of Microbiology and Immunology, Leuven University Hospital and KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Hausch F. FKBPs and their role in neuronal signaling. Biochim Biophys Acta Gen Subj 2015; 1850:2035-40. [PMID: 25615537 DOI: 10.1016/j.bbagen.2015.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ligands for FK506-binding proteins, also referred to as neuroimmunophilin ligands, have repeatedly been described as neuritotrophic, neuroprotective or neuroregenerative agents. However, the precise molecular mechanism of action underlying the observed effects has remained elusive, which eventually led to a reduced interest in FKBP ligand development. SCOPE OF REVIEW A survey is presented on the pharmacology of neuroimmunophilin ligands, of the current understanding of individual FKBP homologs in neuronal processes and an assessment of their potential as drug targets for CNS disorders. MAJOR CONCLUSIONS FKBP51 is the major target accounting for the neuritotrophic effect of neuroimmunophilin ligands. Selectivity against the homolog FKBP52 is essential for optimal neuritotrophic efficacy. GENERAL SIGNIFICANCE Selectivity within the FKBP family, in particular selective inhibition of FKBP12 or FKBP51, is possible. FKBP51 is a pharmacologically tractable target for stress-related disorders. The role of FKBPs in neurodegeneration remains to be clarified. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Felix Hausch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
22
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
23
|
Coughlin JM, Kundu R, Cooper JC, Ball ZT. Inhibiting prolyl isomerase activity by hybrid organic–inorganic molecules containing rhodium(II) fragments. Bioorg Med Chem Lett 2014; 24:5203-6. [DOI: 10.1016/j.bmcl.2014.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
|
24
|
Brown CA, Schmidt C, Poulter M, Hummerich H, Klöhn PC, Jat P, Mead S, Collinge J, Lloyd SE. In vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum Mol Genet 2014; 23:5102-8. [PMID: 24833721 PMCID: PMC4159154 DOI: 10.1093/hmg/ddu233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022] Open
Abstract
Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. While genome-wide association studies in human and quantitative trait loci mapping in mice have provided evidence for multiple susceptibility genes, few of these have been confirmed functionally. Phenotyping mouse models is generally the method of choice. However, this is not a feasible option where many novel genes, without pre-existing models, would need to be tested. We have therefore developed and applied an in-vitro screen to triage and prioritize candidate modifier genes for more detailed future studies which is faster, far more cost effective and ethical relative to mouse bioassay models. An in vitro prion bioassay, the scrapie cell assay, uses a neuroblastoma-derived cell line (PK1) that is susceptible to RML prions and able to propagate prions at high levels. In this study, we have generated stable gene silencing and/or overexpressing PK1-derived cell lines to test whether perturbation of 14 candidate genes affects prion susceptibility. While no consistent differences were determined for seven genes, highly significant changes were detected for Zbtb38, Sorcs1, Stmn2, Hspa13, Fkbp9, Actr10 and Plg, suggesting that they play key roles in the fundamental processes of prion propagation or clearance. Many neurodegenerative diseases involve the accumulation of misfolded protein aggregates and 'prion-like' seeding and spread has been implicated in their pathogenesis. It is therefore expected that some of these prion-modifier genes may be of wider relevance in neurodegeneration.
Collapse
Affiliation(s)
- Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christian Schmidt
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter-C Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
25
|
Liu FL, Liu TY, Kung FL. FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines. J Biosci 2014; 39:85-95. [PMID: 24499793 DOI: 10.1007/s12038-013-9400-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the pathological hallmarks of Alzheimer's disease is the presence of insoluble extracellular amyloid plaques. These plaques are mainly constituted of amyloid beta peptide (A beta), a proteolytic product of amyloid precursor protein (APP). APP processing also generates the APP intracellular domain (AICD). We have previously demonstrated that AICD interacts with FKBP12, a peptidyl-prolyl cis-trans isomerase (PPIase) ubiquitous in nerve systems. This interaction was interfered by FK506, a clinically used immunosuppressant that has recently been reported to be neuroprotective. To elucidate the roles of FKBP12 in the pathogenesis of Alzheimer's disease, the effect of FKBP12 overexpression on APP processing was evaluated. Our results revealed that APP processing was shifted towards the amyloidogenic pathway, accompanied by a change in the subcellular localization of APP, upon FKBP12 overexpression. This FKBP12-overexpression-induced effect was reverted by FK506. These findings support our hypothesis that FKBP12 may participate in the regulation of APP processing. FKBP12 overexpression may lead to the stabilization of a certain isomer (presumably the cis form) of the Thr668-Pro669 peptide bond in AICD, therefore change its affinity to flotillin-1 or other raft-associated proteins, and eventually change the localization pattern and cause a shift in the proteolytic processing of APP.
Collapse
Affiliation(s)
- Fan-Lun Liu
- School of Pharmacy, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | | | | |
Collapse
|
26
|
Oliveras-Salvá M, Macchi F, Coessens V, Deleersnijder A, Gérard M, Van der Perren A, Van den Haute C, Baekelandt V. Alpha-synuclein-induced neurodegeneration is exacerbated in PINK1 knockout mice. Neurobiol Aging 2014; 35:2625-2636. [PMID: 25037286 DOI: 10.1016/j.neurobiolaging.2014.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations in the PINK1 gene lead to recessive forms of Parkinson's disease. Animal models with depleted PINK1 expression have failed to reproduce significant nigral dopaminergic neurodegeneration and clear alpha-synuclein pathology, main characteristics of the disease. In this study, we investigated whether alpha-synuclein pathology is altered in the absence of PINK1 in cell culture and in vivo. We observed that downregulation of PINK1 enhanced alpha-synuclein aggregation and apoptosis in a neuronal cell culture model for synucleinopathy. Silencing of PINK1 expression in mouse substantia nigra using recombinant adeno-associated viral vectors did not induce dopaminergic neurodegeneration in a long-term study up to 10 months, nor did it enhance or accelerate dopaminergic neurodegeneration after alpha-synuclein overexpression. However, in PINK1 knockout mice, overexpression of alpha-synuclein in the substantia nigra resulted in enhanced dopaminergic neurodegeneration as well as significantly higher levels of alpha-synuclein phosphorylation at serine 129 at 4 weeks postinjection. In conclusion, our results demonstrate that total loss of PINK1 leads to an increased sensitivity to alpha-synuclein-induced neuropathology and cell death in vivo.
Collapse
Affiliation(s)
- Marusela Oliveras-Salvá
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Francesca Macchi
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Valérie Coessens
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Angélique Deleersnijder
- Laboratory of Biochemistry, Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk, Belgium
| | - Melanie Gérard
- Laboratory of Biochemistry, Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants. Int J Mol Sci 2014; 15:1040-67. [PMID: 24434619 PMCID: PMC3907855 DOI: 10.3390/ijms15011040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/17/2022] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN.
Collapse
|
28
|
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 2013; 19:368-77. [DOI: 10.1016/j.molmed.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/21/2022]
|
29
|
Shin E, Im H, Lee K. Accelerated Fibril Formation of α-Synuclein by an IF-Inserted F36V Mutant. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.2.665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Myöhänen TT, Hannula MJ, Van Elzen R, Gerard M, Van Der Veken P, García-Horsman JA, Baekelandt V, Männistö PT, Lambeir AM. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. Br J Pharmacol 2012; 166:1097-113. [PMID: 22233220 DOI: 10.1111/j.1476-5381.2012.01846.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg(-1) a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes.
Collapse
Affiliation(s)
- T T Myöhänen
- Division of Pharmacology and Toxicology, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Aggregated a-synuclein is the major component of inclusions in Parkinson's disease and other synucleinopathy brains indicating that a-syn aggregation is associated with the pathogenesis of neurodegenerative disorders. Although the mechanisms underlying a-syn aggregation and toxicity are not fully elucidated, it is clear that a-syn undergoes post-translational modifications and interacts with numerous proteins and other macromolecules, metals, hormones, neurotransmitters, drugs and poisons that can all modulate its aggregation propensity. The current and most recent findings regarding the factors modulating a-syn aggregation process are discussed in detail.
Collapse
|