1
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
2
|
Bridges MC, Nair-Menon J, Risner A, Jimenez DW, Daulagala AC, Kingsley C, Davis ME, Kourtidis A. Actin-dependent recruitment of AGO2 to the zonula adherens. Mol Biol Cell 2023; 34:ar129. [PMID: 37819702 PMCID: PMC10848941 DOI: 10.1091/mbc.e22-03-0099-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.
Collapse
Affiliation(s)
- Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Madison E. Davis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
3
|
Koppers M, Özkan N, Farías GG. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Front Cell Dev Biol 2020; 8:618733. [PMID: 33409284 PMCID: PMC7779554 DOI: 10.3389/fcell.2020.618733] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
Collapse
Affiliation(s)
| | | | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Myosin 5a regulates tumor migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma: utility as a prognostic factor. Hum Pathol 2018; 80:113-122. [DOI: 10.1016/j.humpath.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
|
5
|
Perez-Pepe M, Fernández-Alvarez AJ, Boccaccio GL. Life and Work of Stress Granules and Processing Bodies: New Insights into Their Formation and Function. Biochemistry 2018; 57:2488-2498. [PMID: 29595960 DOI: 10.1021/acs.biochem.8b00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamic formation of stress granules (SGs), processing bodies (PBs), and related RNA organelles regulates diverse cellular processes, including the coordination of functionally connected messengers, the translational regulation at the synapse, and the control of viruses and retrotransposons. Recent studies have shown that pyruvate kinase and other enzymes localize in SGs and PBs, where they become protected from stress insults. These observations may have implications for enzyme regulation and metabolic control exerted by RNA-based organelles. The formation of these cellular bodies is governed by liquid-liquid phase separation (LLPS) processes, and it needs to be strictly controlled to prevent pathogenic aggregation. The intracellular concentration of key metabolites, such as ATP and sterol derivatives, may influence protein solubility, thus affecting the dynamics of liquid organelles. LLPS in vitro depends on the thermal diffusion of macromolecules, which is limited inside cells, where the condensation and dissolution of membrane-less organelles are helped by energy-driven processes. The active transport by the retrograde motor dynein helps SG assembly, whereas the anterograde motor kinesin mediates SG dissolution; a tug of war between these two molecular motors allows transient SG formation. There is evidence that the efficiency of dynein-mediated transport increases with the number of motor molecules associated with the cargo. The dynein-dependent transport may be influenced by cargo size as larger cargos can load a larger number of motors. We propose a model based on this emergent property of dynein motors, which would be collectively stronger during SG condensation and weaker during SG breakdown, thus allowing kinesin-mediated dispersion.
Collapse
Affiliation(s)
- Marcelo Perez-Pepe
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| | - Ana J Fernández-Alvarez
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| | - Graciela L Boccaccio
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| |
Collapse
|
6
|
Rajgor D, Mellad JA, Soong D, Rattner JB, Fritzler MJ, Shanahan CM. Mammalian microtubule P-body dynamics are mediated by nesprin-1. ACTA ACUST UNITED AC 2014; 205:457-75. [PMID: 24862572 PMCID: PMC4033771 DOI: 10.1083/jcb.201306076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nesprins are a multi-isomeric family of spectrin-repeat (SR) proteins, predominantly known as nuclear envelope scaffolds. However, isoforms that function beyond the nuclear envelope remain poorly examined. Here, we characterize p50(Nesp1), a 50-kD isoform that localizes to processing bodies (PBs), where it acts as a microtubule-associated protein capable of linking mRNP complexes to microtubules. Overexpression of dominant-negative p50(Nesp1) caused Rck/p54, but not GW182, displacement from microtubules, resulting in reduced PB movement and cross talk with stress granules (SGs). These cells disassembled canonical SGs induced by sodium arsenite, but not those induced by hydrogen peroxide, leading to cell death and revealing PB-microtubule attachment is required for hydrogen peroxide-induced SG anti-apoptotic functions. Furthermore, p50(Nesp1) was required for miRNA-mediated silencing and interacted with core miRISC silencers Ago2 and Rck/p54 in an RNA-dependent manner and with GW182 in a microtubule-dependent manner. These data identify p50(Nesp1) as a multi-functional PB component and microtubule scaffold necessary for RNA granule dynamics and provides evidence for PB and SG micro-heterogeneity.
Collapse
Affiliation(s)
- Dipen Rajgor
- Cardiovascular Division, BHF Centre of Excellence, James Black Centre, King's College London, London SE5 9NU, England, UK
| | - Jason A Mellad
- Cardiovascular Division, BHF Centre of Excellence, James Black Centre, King's College London, London SE5 9NU, England, UK
| | - Daniel Soong
- Cardiovascular Division, BHF Centre of Excellence, James Black Centre, King's College London, London SE5 9NU, England, UK
| | - Jerome B Rattner
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| | - Catherine M Shanahan
- Cardiovascular Division, BHF Centre of Excellence, James Black Centre, King's College London, London SE5 9NU, England, UK
| |
Collapse
|
7
|
Abstract
In eukaryotic cells, non-translating mRNAs can accumulate into cytoplasmic mRNP (messenger ribonucleoprotein) granules such as P-bodies (processing bodies) and SGs (stress granules). P-bodies contain the mRNA decay and translational repression machineries and are ubiquitously expressed in mammalian cells and lower eukaryote species including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. In contrast, SGs are only detected during cellular stress when translation is inhibited and form from aggregates of stalled pre-initiation complexes. SGs and P-bodies are related to NGs (neuronal granules), which are essential in the localization and control of mRNAs in neurons. Importantly, RNA granules are linked to the cytoskeleton, which plays an important role in mediating many of their dynamic properties. In the present review, we discuss how P-bodies, SGs and NGs are linked to cytoskeletal networks and the importance of these linkages in maintaining localization of their RNA cargoes.
Collapse
|
8
|
Czaplinski K. Understanding mRNA trafficking: Are we there yet? Semin Cell Dev Biol 2014; 32:63-70. [DOI: 10.1016/j.semcdb.2014.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
9
|
Steffens A, Jaegle B, Tresch A, Hülskamp M, Jakoby M. Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1. PLANT PHYSIOLOGY 2014; 164:1879-92. [PMID: 24525673 PMCID: PMC3982750 DOI: 10.1104/pp.113.233031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
Processing (P)-bodies are cytoplasmic RNA protein aggregates responsible for the storage, degradation, and quality control of translationally repressed messenger RNAs in eukaryotic cells. In mammals, P-body-related RNA and protein exchanges are actomyosin dependent, whereas P-body movement requires intact microtubules. In contrast, in plants, P-body motility is actin based. In this study, we show the direct interaction of the P-body core component DECAPPING PROTEIN1 (DCP1) with the tails of different unconventional myosins in Arabidopsis (Arabidopsis thaliana). By performing coexpression studies with AtDCP1, dominant-negative myosin fragments, as well as functional full-length myosin XI-K, the association of P-bodies and myosins was analyzed in detail. Finally, the combination of mutant analyses and characterization of P-body movement patterns showed that myosin XI-K is essential for fast and directed P-body transport. Together, our data indicate that P-body movement in plants is governed by myosin XI members through direct binding to AtDCP1 rather than through an adapter protein, as known for membrane-coated organelles. Interspecies and intraspecies interaction approaches with mammalian and yeast protein homologs suggest that this mechanism is evolutionarily conserved among eukaryotes.
Collapse
|
10
|
Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system. Dev Neurobiol 2014; 74:382-96. [DOI: 10.1002/dneu.22155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 11/07/2022]
|
11
|
Lindsay AJ, McCaffrey MW. Myosin Va is required for the transport of fragile X mental retardation protein (FMRP) granules. Biol Cell 2014; 106:57-71. [PMID: 24175909 DOI: 10.1111/boc.201200076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Fragile X mental retardation protein (FMRP) is a selective RNA binding protein that functions as a translational inhibitor. It also plays a role in directing the transport of a subset of mRNAs to their site of translation and several recent reports have implicated microtubule motor proteins in the transport of FMRP-messenger ribonucleoprotein (mRNP) granules in neurons. Earlier work reported the association of the actin-based motor protein myosin Va with FMRP granules. RESULTS Here, we follow up on this finding and confirm that myosin Va does in fact associate with FMRP and is required for its correct intracellular localisation. FMRP is concentrated in the perinuclear region of myosin Va-null mouse melanoma cells which contrasts starkly with the evenly distributed punctate pattern observed in wild-type cells. Similarly, overexpression of a dominant-negative mutant of myosin Va results in the accumulation of FMRP in large aggregate-like structures. FRAP experiments demonstrate that FMRP is largely immobile in the absence of myosin Va. CONCLUSIONS Combining these data, we propose a model in which myosin Va and kinesin play key roles in the assembly and subsequent transport of FMRP granules along microtubules to the periphery of the cell. Myosin Va captures the complex onto peripheral actin structures and mediates the local delivery of the FMRP granule to the site of mRNA translation.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
12
|
Maldonado-Bonilla LD. Composition and function of P bodies in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:201. [PMID: 24860588 PMCID: PMC4030149 DOI: 10.3389/fpls.2014.00201] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/24/2014] [Indexed: 05/20/2023]
Abstract
mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB) are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation, and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.
Collapse
Affiliation(s)
- Luis D. Maldonado-Bonilla
- *Correspondence: Luis D. Maldonado-Bonilla, Laboratory of Plant Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, Mexico e-mail:
| |
Collapse
|
13
|
Abstract
Mammals express three class V myosins. Myosin Va is widely expressed, but enriched in the brain, testes and melanocytes, myosin Vb is expressed ubiquitously, and myosin Vc is believed to be epithelium-specific. Myosin Va is the best characterized of the three and plays a key role in the transport of cargo to the plasma membrane. Its cargo includes cell-surface receptors, pigment and organelles such as the endoplasmic reticulum. It is also emerging that RNA and RNA-BPs (RNA-binding proteins) make up another class of myosin Va cargo. It has long been established that the yeast class V myosin, Myo4p, transports mRNAs along actin cables into the growing bud, and now several groups have reported a similar role for class V myosins in higher eukaryotes. Myosin Va has also been implicated in the assembly and maintenance of P-bodies (processing bodies), cytoplasmic foci that are involved in mRNA storage and degradation. The present review examines the evidence that myosin Va plays a role in the transport and turnover of mRNA.
Collapse
|
14
|
Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane. J Neurosci 2012; 32:2564-77. [PMID: 22396429 DOI: 10.1523/jneurosci.2724-11.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.
Collapse
|
15
|
Zheng D, Chen CYA, Shyu AB. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA (NEW YORK, N.Y.) 2011; 17:1619-34. [PMID: 21750099 PMCID: PMC3162328 DOI: 10.1261/rna.2789611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Chyi-Ying A. Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
- Corresponding author.E-mail .
| |
Collapse
|