1
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
2
|
Shi Y, Berking A, Baade T, Legate KR, Fässler R, Hauck CR. PIP5KIγ90-generated phosphatidylinositol-4,5-bisphosphate promotes the uptake of Staphylococcus aureus by host cells. Mol Microbiol 2021; 116:1249-1267. [PMID: 34519119 DOI: 10.1111/mmi.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus, a Gram-positive pathogen, invades cells mainly in an integrin-dependent manner. As the activity or conformation of several integrin-associated proteins can be regulated by phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ), we investigated the roles of PI-4,5-P2 and PI-4,5-P2 -producing enzymes in cellular invasion by S. aureus. PI-4,5-P2 accumulated upon contact of S. aureus with the host cell, and targeting of an active PI-4,5-P2 phosphatase to the plasma membrane reduced bacterial invasion. Knockdown of individual phosphatidylinositol-4-phosphate 5-kinases revealed that phosphatidylinositol-4-phosphate 5-kinase γ (PIP5KIγ) plays an important role in bacterial internalization. Specific ablation of the talin and FAK-binding motif in PIP5KIγ90 reduced bacterial invasion, which could be rescued by reexpression of an active, but not inactive PIP5KIγ90. Furthermore, PIP5KIγ90-deficient cells showed normal basal PI-4,5-P2 levels in the plasma membrane but reduced the accumulation of PI-4,5-P2 and talin at sites of S. aureus attachment and overall lower levels of FAK phosphorylation. These results highlight the importance of local synthesis of PI-4,5-P2 by a focal adhesion-associated lipid kinase for integrin-mediated internalization of S. aureus.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Anne Berking
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Timo Baade
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | | | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Hammerschmidt S, Rohde M, Preissner KT. Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0041-2018. [PMID: 31004421 PMCID: PMC11590433 DOI: 10.1128/microbiolspec.gpp3-0041-2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
The main strategies used by pathogenic bacteria to infect eukaryotic tissue include their adherence to cells and the extracellular matrix (ECM), the subsequent colonization and invasion as well as the evasion of immune defences. A variety of structurally and functionally characterized adhesins and binding proteins of gram-positive bacteria facilitate these processes by specifically recognizing and interacting with various components of the host ECM, including different collagens, fibronectin and other macromolecules. The ECM affects the cellular physiology of our body and is critical for adhesion, migration, proliferation, and differentiation of many host cell types, but also provides the support for infiltrating pathogens, particularly under conditions of injury and trauma. Moreover, microbial binding to a variety of adhesive components in host tissue fluids leads to structural and/or functional alterations of host proteins and to the activation of cellular mechanisms that influence tissue and cell invasion of pathogens. Since the diverse interactions of gram-positive bacteria with the ECM represent important pathogenicity mechanisms, their characterization not only allows a better understanding of microbial invasion but also provides clues for the design of novel therapeutic strategies to manage infectious diseases.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Center for Infection Research, D-38124 Braunschweig, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| |
Collapse
|
4
|
Plasma fibronectin stabilizes Borrelia burgdorferi-endothelial interactions under vascular shear stress by a catch-bond mechanism. Proc Natl Acad Sci U S A 2017; 114:E3490-E3498. [PMID: 28396443 DOI: 10.1073/pnas.1615007114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial dissemination via the cardiovascular system is the most common cause of infection mortality. A key step in dissemination is bacterial interaction with endothelia lining blood vessels, which is physically challenging because of the shear stress generated by blood flow. Association of host cells such as leukocytes and platelets with endothelia under vascular shear stress requires mechanically specialized interaction mechanisms, including force-strengthened catch bonds. However, the biomechanical mechanisms supporting vascular interactions of most bacterial pathogens are undefined. Fibronectin (Fn), a ubiquitous host molecule targeted by many pathogens, promotes vascular interactions of the Lyme disease spirochete Borrelia burgdorferi Here, we investigated how B. burgdorferi exploits Fn to interact with endothelia under physiological shear stress, using recently developed live cell imaging and particle-tracking methods for studying bacterial-endothelial interaction biomechanics. We found that B. burgdorferi does not primarily target insoluble matrix Fn deposited on endothelial surfaces but, instead, recruits and induces polymerization of soluble plasma Fn (pFn), an abundant protein in blood plasma that is normally soluble and nonadhesive. Under physiological shear stress, caps of polymerized pFn at bacterial poles formed part of mechanically loaded adhesion complexes, and pFn strengthened and stabilized interactions by a catch-bond mechanism. These results show that B. burgdorferi can transform a ubiquitous but normally nonadhesive blood constituent to increase the efficiency, strength, and stability of bacterial interactions with vascular surfaces. Similar mechanisms may promote dissemination of other Fn-binding pathogens.
Collapse
|
5
|
Two repetitive, biofilm-forming proteins from Staphylococci: from disorder to extension. Biochem Soc Trans 2016; 43:861-6. [PMID: 26517895 DOI: 10.1042/bst20150088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are an important cause of medical device-related infections that are difficult to treat with antibiotics. Biofilms, in which bacteria are embedded in a bacterially-produced exopolymeric matrix, form on the surface of the implanted medical device. Our understanding of the molecular mechanisms underlying the initial surface attachment and subsequent intercellular interactions as the biofilm matures is improving. Biofilm accumulation can be mediated by a partially deacetylated form of poly-N-acetylglucosamine (PNAG) but, more recently, the role of bacterial surface proteins is being recognized. Here we describe the structure and function of two S. aureus cell surface proteins, FnBPA and SasG, implicated in host interactions and biofilm accumulation. These multifunctional proteins employ intrinsic disorder for distinct molecular outcomes. In the case of FnBPA, disorder generates adhesive arrays that bind fibronectin (Fn); in the case of SasG, disorder is, counterintuitively, used to maintain a strong extended fold.
Collapse
|
6
|
Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NAG, Potts JR, Humphries MJ, Höök M. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs. PLoS One 2016; 11:e0159118. [PMID: 27434228 PMCID: PMC4951027 DOI: 10.1371/journal.pone.0159118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs.
Collapse
Affiliation(s)
- Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Brandon L. Garcia
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Livia Visai
- Dep. of Molecular Medicine, UdR INSTM, Center for Tissue Engineering (C.I.T.), University of Pavia, 27100, Pavia, Italy
- Dep. of Occupational Medicine, Ergonomy and Disability, Salvatore Maugeri Foundation, IRCCS, Nanotechnology Laboratory, 27100, Pavia, Italy
| | - Sabitha Prabhakaran
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | | | - Jennifer R. Potts
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|
8
|
Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathog 2016; 12:e1005404. [PMID: 26808924 PMCID: PMC4725857 DOI: 10.1371/journal.ppat.1005404] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/26/2015] [Indexed: 12/03/2022] Open
Abstract
Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. The human complement system is a connected network of blood proteins capable of recognizing and eliminating microbial intruders. To avoid the destructive force of complement activation, many microorganisms that enter the bloodstream express molecules that disrupt key steps of the complement cascade by interacting with specific complement components. In this study we show that the causative agent of Lyme disease, Borrelia burgdorferi, expresses a surface-protein termed BBK32 that targets and inhibits the first component of complement, designated C1. Upon binding to human C1, BBK32 traps this initiating protease complex of the classical pathway of complement in an inactive state, and prevents the downstream proteolytic events of the pathway. Our study defines a new mechanism by which microbes are able to escape the human innate immune system and identifies complement protease C1r as a previously unknown target of bacterial anti-complement molecules. Thus, discovery of the complement inhibitory activity of the borrelial protein BBK32 significantly advances our understanding of how disease-causing bacteria survive in immune competent hosts.
Collapse
|
9
|
Ma W, Ma H, Mosher DF. On-Off Kinetics of Engagement of FNI Modules of Soluble Fibronectin by β-Strand Addition. PLoS One 2015; 10:e0124941. [PMID: 25919138 PMCID: PMC4412574 DOI: 10.1371/journal.pone.0124941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered sequences within bacterial adhesins bind to E-strands in the β-sheets of multiple FNI modules of fibronectin (FN) by anti-parallel β-strand addition, also called tandem β-zipper formation. The FUD segment of SfbI of Streptococcus pyogenes and Bbk32 segment of BBK32 of Borrelia burgdorferi, despite being imbedded in different adhesins from different bacteria, target the same 2-5,8-9 FNI modules, 2-5,8-9 FNI, in the N-terminal 70-kDa region (FN70K) of FN. To facilitate further comparisons, FUD, Bbk32, two other polypeptides based on SfbI that target 1-5 FNI (HADD) and 2-5 FNI (FRD), and mutant Bbk32 (ΔBbk32) were produced with fluorochromes placed just outside of the binding sequences. Unlabeled FUD competed ~ 1000-fold better for binding of labeled Bbk32 to FN than unlabeled Bbk32 competed for binding of labeled FUD to FN. Binding kinetics were determined by fluorescence polarization in a stopped-flow apparatus. On-rates for FUD, Bbk32, HADD, and FRD were similar, and all bound more rapidly to FN70K fragment than to full length FN. In stopped-flow displacement and size exclusion chromatographic assays, however, k off for FUD or HADD to FN70K or FN was considerably lower compared to k off of FRD or Bbk32. FUD and Bbk32 differ in the spacing between sequences that interact with 3FNI and 4FNI or with 5FNI and 8FNI. ΔBbk32, in which 2 residues were removed from Bbk32 to make the spacing more like FUD, had a k off intermediate between that of Bbk32 and FUD. These results indicate a "folding-after-binding" process after initial association of certain polypeptide sequences to FN that results in formation of a stable complex and is a function of number of FNI modules engaged by the polypeptide, spacing of engagement sites, and perhaps flexibility within the polypeptide-FN complex. We suggest that contributions of SfbI and BBK32 adhesins to bacterial pathogenicity may be determined in part by stability of adhesin-FN complexes.
Collapse
Affiliation(s)
- Wenjiang Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanqing Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zhao H, Piszczek G, Schuck P. SEDPHAT--a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 2015; 76:137-148. [PMID: 25477226 PMCID: PMC4380758 DOI: 10.1016/j.ymeth.2014.11.012] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/02/2023] Open
Abstract
Isothermal titration calorimetry experiments can provide significantly more detailed information about molecular interactions when combined in global analysis. For example, global analysis can improve the precision of binding affinity and enthalpy, and of possible linkage parameters, even for simple bimolecular interactions, and greatly facilitate the study of multi-site and multi-component systems with competition or cooperativity. A pre-requisite for global analysis is the departure from the traditional binding model, including an 'n'-value describing unphysical, non-integral numbers of sites. Instead, concentration correction factors can be introduced to account for either errors in the concentration determination or for the presence of inactive fractions of material. SEDPHAT is a computer program that embeds these ideas and provides a graphical user interface for the seamless combination of biophysical experiments to be globally modeled with a large number of different binding models. It offers statistical tools for the rigorous determination of parameter errors, correlations, as well as advanced statistical functions for global ITC (gITC) and global multi-method analysis (GMMA). SEDPHAT will also take full advantage of error bars of individual titration data points determined with the unbiased integration software NITPIC. The present communication reviews principles and strategies of global analysis for ITC and its extension to GMMA in SEDPHAT. We will also introduce a new graphical tool for aiding experimental design by surveying the concentration space and generating simulated data sets, which can be subsequently statistically examined for their information content. This procedure can replace the 'c'-value as an experimental design parameter, which ceases to be helpful for multi-site systems and in the context of gITC.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Harris G, Ma W, Maurer LM, Potts JR, Mosher DF. Borrelia burgdorferi protein BBK32 binds to soluble fibronectin via the N-terminal 70-kDa region, causing fibronectin to undergo conformational extension. J Biol Chem 2014; 289:22490-9. [PMID: 24962582 DOI: 10.1074/jbc.m114.578419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BBK32 is a fibronectin (FN)-binding protein expressed on the cell surface of Borrelia burgdorferi, the causative agent of Lyme disease. There is conflicting information about where and how BBK32 interacts with FN. We have characterized interactions of a recombinant 86-mer polypeptide, "Bbk32," comprising the unstructured FN-binding region of BBK32. Competitive enzyme-linked assays utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies showed that Bbk32 binding involves both the fibrin-binding and the gelatin-binding domains of the 70-kDa N-terminal region (FN70K). Crystallographic and NMR analyses of smaller Bbk32 peptides complexed, respectively, with (2-3)FNI and (8-9)FNI, demonstrated that binding occurs by β-strand addition. Isothermal titration calorimetry indicated that Bbk32 binds to isolated FN70K more tightly than to intact FN. In a competitive enzyme-linked binding assay, complex formation with Bbk32 enhanced binding of FN with mAbIII-10 to the (10)FNIII module. Thus, Bbk32 binds to multiple FN type 1 modules of the FN70K region by a tandem β-zipper mechanism, and in doing so increases accessibility of FNIII modules that interact with other ligands. The similarity in the FN-binding mechanism of BBK32 and previously studied streptococcal proteins suggests that the binding and associated conformational change of FN play a role in infection.
Collapse
Affiliation(s)
- Gemma Harris
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Wenjiang Ma
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Lisa M Maurer
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer R Potts
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
12
|
Stemberk V, Jones RPO, Moroz O, Atkin KE, Edwards AM, Turkenburg JP, Leech AP, Massey RC, Potts JR. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). J Biol Chem 2014; 289:12842-51. [PMID: 24627488 PMCID: PMC4007472 DOI: 10.1074/jbc.m113.543546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for "latch" strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues.
Collapse
Affiliation(s)
| | | | - Olga Moroz
- Chemistry, University of York, York YO10 5DD, United Kingdom and
| | | | - Andrew M. Edwards
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | - Ruth C. Massey
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jennifer R. Potts
- From the Departments of Biology and , Recipient of British Heart Foundation Senior Basic Science Research Fellowship FS/12/36/29588. To whom correspondence should be addressed. Tel.: 44-1904-328679; E-mail:
| |
Collapse
|
13
|
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.
Collapse
|
14
|
The fibronectin-binding motif within FlpA facilitates Campylobacter jejuni adherence to host cell and activation of host cell signaling. Emerg Microbes Infect 2013; 2:e65. [PMID: 26038437 PMCID: PMC3826066 DOI: 10.1038/emi.2013.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/12/2022]
Abstract
Campylobacter jejuni is a gram-negative, curved and rod-shaped bacterium that causes human gastroenteritis. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Epithelial cells infected with C. jejuni strains containing mutations in the FlpA and CadF fibronectin (Fn)-binding proteins exhibit reduced invasion of host cells and a C. jejuni CadF FlpA double mutant is impaired in the activation of epidermal growth factor receptor (EGFR) and Rho GTPase Rac1. Although these observations establish a role for Fn-binding proteins during C. jejuni invasion, their mechanistic contributions to invasion-associated signaling are unclear. We examined FlpA, a C. jejuni Fn-binding protein composed of three FNIII-like repeats D1, D2 and D3, to identify the interactions required for cellular adherence on pathogen-induced host cell signaling. We report that FlpA binds the Fn gelatin-binding domain via a motif within the D2 repeat. Epithelial cells infected with a flpA mutant exhibited decreased Rac1 activation and reduced membrane ruffling that coincided with impaired delivery of the secreted Cia proteins and reduced cell association. Phosphorylation of the Erk1/2 kinase, a downstream effector of EGFR signaling, was specifically associated with FlpA-mediated activation of β1-integrin and EGFR signaling. In vivo experiments revealed that FlpA is necessary for C. jejuni disease based on bacterial dissemination to the spleen of IL-10−/− germ-free mice. Thus, a novel Fn-binding motif within FlpA potentiates activation of Erk1/2 signaling via β1-integrin during C. jejuni infection.
Collapse
|
15
|
Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S. The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 2012; 87:672-89. [PMID: 23217101 DOI: 10.1111/mmi.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C' loop region recognized by the α(9)β(1) integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.
Collapse
Affiliation(s)
- Heaven Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamaguchi M, Terao Y, Kawabata S. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins. Cell Microbiol 2012. [PMID: 23190012 DOI: 10.1111/cmi.12083] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 β1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | | | | |
Collapse
|
17
|
Hertig S, Chabria M, Vogel V. Engineering mechanosensitive multivalent receptor-ligand interactions: why the nanolinker regions of bacterial adhesins matter. NANO LETTERS 2012; 12:5162-5168. [PMID: 22938173 DOI: 10.1021/nl302153h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inspired by bacterial adhesins, we present a promising strategy of how to engineer peptides to probe various mechanical strains of extracellular matrix fibers. Functional sequence alignment of bacterial adhesins reveals that the bacterial linkers connecting the multivalent binding motifs recognizing fibronectin show considerable heterogeneity in length. Their length regulates the tunable affinities for fibronectin fibrils when stretched into different mechanical strain states. This platform has potential applications in probing extracellular matrix fiber strains in tissues.
Collapse
Affiliation(s)
- Samuel Hertig
- Department of Health Sciences and Technology, ETH Zurich, CH-8093, Zürich, Switzerland
| | | | | |
Collapse
|
18
|
Hauck CR, Borisova M, Muenzner P. Exploitation of integrin function by pathogenic microbes. Curr Opin Cell Biol 2012; 24:637-44. [PMID: 22884865 DOI: 10.1016/j.ceb.2012.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/26/2023]
Abstract
Numerous pathogens express adhesive proteins to directly or indirectly associate with integrins. It is well established that by targeting integrins, microbes not only establish an intimate contact with host tissues, but also trigger cellular responses including bacterial internalization. This review will summarize current knowledge about the role of these integrin-dependent processes during infection and how bacteria assure that they efficiently connect to integrins for host cell invasion or translocation of effector molecules. Furthermore, we will discuss recent insight demonstrating that bacteria can harness the physiological, matrix-binding function of integrins for promoting host colonization. From these combined studies, it is becoming evident that integrins are a common nexus for the manipulation of cellular functions by bacterial pathogens. Approaches to disrupt this connection might be an appropriate means to obtain broad-acting tools to modulate a spectrum of infectious diseases.
Collapse
Affiliation(s)
- Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany.
| | | | | |
Collapse
|
19
|
Voss S, Gámez G, Hammerschmidt S. Impact of pneumococcal microbial surface components recognizing adhesive matrix molecules on colonization. Mol Oral Microbiol 2012; 27:246-56. [PMID: 22759310 DOI: 10.1111/j.2041-1014.2012.00654.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microorganisms have evolved elaborate strategies to adhere to host cells and to evade the host complement and immune attack, ensuring survival in various host niches and dissemination into sterile parts of the human body. Streptococcus pneumoniae (the pneumococcus) is not only a commensal of the human respiratory tract but also the etiological agent of severe and life-threatening diseases. Pneumococcal attachment to mucosal surfaces is a highly dynamic process requiring the contact of pneumococcal surface-exposed proteins with soluble or immobilized host factors. These avid interactions may trigger proteolytic cascades or result in engagement of cell surface receptors and intracellularly associated signaling machineries for subsequent uptake of pneumococci into host cells. In the present review, the intimate communication of S. pneumoniae molecules recognizing adhesive matrix molecules (microbial surface components recognizing adhesive matrix molecules) with their host counterparts and their individual role in pneumococcal colonization is discussed.
Collapse
Affiliation(s)
- S Voss
- Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
20
|
Maurer LM, Ma W, Eickstaedt NL, Johnson IA, Tomasini-Johansson BR, Annis DS, Mosher DF. Ligation of the fibrin-binding domain by β-strand addition is sufficient for expansion of soluble fibronectin. J Biol Chem 2012; 287:13303-12. [PMID: 22351755 PMCID: PMC3339936 DOI: 10.1074/jbc.m111.294041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/02/2012] [Indexed: 11/06/2022] Open
Abstract
How fibronectin (FN) converts from a compact plasma protein to a fibrillar component of extracellular matrix is not understood. "Functional upstream domain" (FUD), a polypeptide based on F1 adhesin of Streptococcus pyogenes, binds by anti-parallel β-strand addition to discontinuous sets of N-terminal FN type I modules, (2-5)FNI of the fibrin-binding domain and (8-9)FNI of the gelatin-binding domain. Such binding blocks assembly of FN. To learn whether ligation of (2-5)FNI, (8-9)FNI, or the two sets in combination is important for inhibition, we tested "high affinity downstream domain" (HADD), which binds by β-strand addition to the continuous set of FNI modules, (1-5)FNI, comprising the fibrin-binding domain. HADD and FUD were similarly active in blocking fibronectin assembly. Binding of HADD or FUD to soluble plasma FN exposed the epitope to monoclonal antibody mAbIII-10 in the tenth FN type III module ((10)FNIII) and caused expansion of FN as assessed by dynamic light scattering. Soluble N-terminal constructs truncated after (9)FNI or (3)FNIII competed better than soluble FN for binding of FUD or HADD to adsorbed FN, indicating that interactions involving type III modules more C-terminal than (3)FNIII limit β-strand addition to (1-5)FNI within intact soluble FN. Preincubation of FN with mAbIII-10 or heparin modestly increased binding to HADD or FUD. Thus, ligation of FNIII modules involved in binding of integrins and glycosaminoglycans, (10)FNIII and (12-14)FNIII, increases accessibility of (1-5)FNI. Allosteric loss of constraining interactions among (1-5)FNI, (10)FNIII, and (12-14)FNIII likely enables assembly of FN into extracellular fibrils.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ian A. Johnson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Bianca R. Tomasini-Johansson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
21
|
Kneidl J, Löffler B, Erat MC, Kalinka J, Peters G, Roth J, Barczyk K. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell Microbiol 2012; 14:914-36. [PMID: 22309204 DOI: 10.1111/j.1462-5822.2012.01766.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD163 is a multi-ligand scavenger receptor exclusively expressed by monocytes and macrophages, which is released after their activation during sepsis (sCD163). The biological relevance of sCD163, however, is not yet clear. We now demonstrate that sCD163 exhibits direct antimicrobial effects by recognizing a specific subfragment ((6) F1(1) F2(2) F2(7) F1) of fibronectin (FN) bound to staphylococcal surface molecules. Moreover, contact with staphylococci promotes sCD163-shedding from monocyte surface via induction of metalloproteinases ADAM10 and ADAM17. sCD163 subsequently binds to Staphylococcus aureus via FN peptides and strongly amplifies phagocytosis as well as killing by monocytes and to a lesser extend by neutrophils. This mechanism exhibits additional paracrine effects because staphylococci additionally opsonized by sCD163 induce higher activation and more efficient killing activity of non-professional phagocytes like endothelial cells. Targeting pathogen-bound FN by sCD163 would be a very sophisticated strategy to attack S. aureus as any attempt of the pathogen to avoid this defence mechanism will automatically bring about loss of adherence to the host protein FN, which is a pivotal patho-mechanism of highly invasive staphylococcal strains. Thus, we report a novel function for sCD163 that is of particular importance for immune defence of the host against S. aureus infections.
Collapse
Affiliation(s)
- Jessica Kneidl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Maurer LM, Annis DS, Mosher DF. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly. PLoS One 2012; 7:e30615. [PMID: 22355321 PMCID: PMC3280255 DOI: 10.1371/journal.pone.0030615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022] Open
Abstract
Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K) of fibronectin (FN) stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD) motifs in four of the nine FN type 1 (FNI) modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3)FNI and (5)FNI; (7)FNI and (9)FNI; or (3)FNI, (5)FNI, (7)FNI, and (9)FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3)FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9)FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.
Collapse
Affiliation(s)
- Lisa M. Maurer
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Douglas S. Annis
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Rohde M, Chhatwal GS. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 2012. [PMID: 23203001 DOI: 10.1007/82_2012_281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptococcal adhesion, invasion, intracellular trafficking, dissemination, and persistence in eukaryotic cells have a variety of implications in the infection pathogenesis. While cell adhesion establishes the initial host contact, adhering bacteria exploit the host cell for their own benefit. Internalization into the host cell is an essential step for bacterial survival and subsequent dissemination and persistence, thus playing a key role in the course of infection. This chapter summarizes the current knowledge about the diverse mechanisms of streptococcal adhesion to and invasion into different eukaryotic cells and the impact on dissemination and persistence which is reflected by consequences for the pathogenesis of streptococcal infections.
Collapse
Affiliation(s)
- Manfred Rohde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | |
Collapse
|
24
|
Ohashi T, Erickson HP. Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 2011; 286:39188-99. [PMID: 21949131 DOI: 10.1074/jbc.m111.262337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region ((I)1-9) is commonly accepted as one of the assembly sites. We previously found that (I)1-9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that (I)1-9 bound to the aggregate formed by anastellin and a small FN fragment, (III)1-2. An engineered disulfide bond in (III)2, which stabilizes folding, inhibited aggregation, but a disulfide bond in (III)1 did not. A gelatin precipitation assay showed that (I)1-9 did not interact with anastellin, (III)1, (III)2, (III)1-2, or several (III)1-2 mutants including (III)1-2KADA. (In contrast to previous studies, we found that the (III)1-2KADA mutant was identical in conformation to wild-type (III)1-2.) Because (I)1-9 only bound to the aggregate and the unfolding of (III)2 played a role in aggregation, we generated a (III)2 domain that was destabilized by deletion of the G strand. This mutant bound (I)1-9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in (III)2, (III)3, and (III)11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in (III)2 reduced the FN matrix. These results suggest that the unfolding of (III)2 is one of the key factors for FN aggregation and assembly.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
25
|
Edwards AM, Potter U, Meenan NAG, Potts JR, Massey RC. Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA. PLoS One 2011; 6:e18899. [PMID: 21526122 PMCID: PMC3081306 DOI: 10.1371/journal.pone.0018899] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/11/2011] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a commensal organism and a frequent cause of skin and soft tissue infections, which can progress to serious invasive disease. This bacterium uses its fibronectin binding proteins (FnBPs) to invade host cells and it has been hypothesised that this provides a protected niche from host antimicrobial defences, allows access to deeper tissues and provides a reservoir for persistent or recurring infections. FnBPs contain multiple tandem fibronectin-binding repeats (FnBRs) which bind fibronectin with varying affinity but it is unclear what selects for this configuration. Since both colonisation and skin infection are dependent upon the interaction of S. aureus with keratinocytes we hypothesised that this might select for FnBP function and thus composition of the FnBR region. Initial experiments revealed that S. aureus attachment to keratinocytes is rapid but does not require FnBRs. By contrast, invasion of keratinocytes was dependent upon the FnBR region and occurred via similar cellular processes to those described for endothelial cells. Despite this, keratinocyte invasion was relatively inefficient and appeared to include a lag phase, most likely due to very weak expression of α(5)β(1) integrins. Molecular dissection of the role of the FnBR region revealed that efficient invasion of keratinocytes was dependent on the presence of at least three high-affinity (but not low-affinity) FnBRs. Over-expression of a single high-affinity or three low-affinity repeats promoted invasion but not to the same levels as S. aureus expressing an FnBPA variant containing three high-affinity repeats. In summary, invasion of keratinocytes by S. aureus requires multiple high-affinity FnBRs within FnBPA, and given the importance of the interaction between these cell types and S. aureus for both colonisation and infection, may have provided the selective pressure for the multiple binding repeats within FnBPA.
Collapse
Affiliation(s)
- Andrew M Edwards
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | | | | | | | | |
Collapse
|