1
|
Linton C, Wesolowski J, Lobley A, Yamaji T, Hanada K, Paumet F. Specialized contact sites regulate the fusion of chlamydial inclusion membranes. Nat Commun 2024; 15:9250. [PMID: 39461996 PMCID: PMC11513123 DOI: 10.1038/s41467-024-53443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The intracellular bacterial pathogen Chlamydia trachomatis replicates within a membrane-bound compartment called the inclusion. Upon infection with several chlamydiae, each bacterium creates its own inclusion, resulting in multiple inclusions within each host cell. Ultimately, these inclusions fuse together in a process that requires the chlamydial protein IncA. Here, we show that inclusions form unique contact sites (inclusion contact sites, ICSs) prior to fusion, that serve as fusogenic platforms in which specific lipids and chlamydial proteins concentrate. Fusion depends on IncA clustering within ICSs and is regulated by PI(3,4)P2 and sphingolipids. As IncA concentrates within ICSs, its C-terminus likely interacts in trans with IncA on the apposing membrane, securing a high concentration of IncA at fusion sites. This regulatory mechanism contrasts with eukaryotic or viral fusion systems that are either composed of multiple proteins or use a change in pH to initiate membrane fusion. Thus, our study demonstrates that Chlamydia-mediated membrane fusion is primarily regulated by specific structural domains in IncA and its local organization on the inclusion membrane, which is affected by the host cell lipid composition.
Collapse
Affiliation(s)
- Christine Linton
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Anna Lobley
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Integral Molecular, Philadelphia, PA, USA
| | - Toshiyuki Yamaji
- Department of Microbiology and Immunology, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institue of Infectious Diseases, Shinjuku-ku, Japan
| | - Kentaro Hanada
- Center for Quality Management Systems, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Starr ML, Fratti RA. The Participation of Regulatory Lipids in Vacuole Homotypic Fusion. Trends Biochem Sci 2018; 44:546-554. [PMID: 30587414 DOI: 10.1016/j.tibs.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022]
Abstract
In eukaryotes, organelles and vesicles modulate their contents and identities through highly regulated membrane fusion events. Membrane trafficking and fusion are carried out through a series of stages that lead to the formation of SNARE complexes between cellular compartment membranes to trigger fusion. Although the protein catalysts of membrane fusion are well characterized, their response to their surrounding microenvironment, provided by the lipid composition of the membrane, remains to be fully understood. Membranes are composed of bulk lipids (e.g., phosphatidylcholine), as well as regulatory lipids that undergo constant modifications by kinases, phosphatases, and lipases. These lipids include phosphoinositides, diacylglycerol, phosphatidic acid, and cholesterol/ergosterol. Here we describe the roles of these lipids throughout the stages of yeast vacuole homotypic fusion.
Collapse
Affiliation(s)
- Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Munc18a clusters SNARE-bearing liposomes prior to trans-SNARE zippering. Biochem J 2017; 474:3339-3354. [PMID: 28827281 DOI: 10.1042/bcj20170494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Sec1-Munc18 (SM) proteins co-operate with SNAREs {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] receptors} to mediate membrane fusion in eukaryotic cells. Studies of Munc18a/Munc18-1/Stxbp1 in neurotransmission suggest that SM proteins accelerate fusion kinetics primarily by activating the partially zippered trans-SNARE complex. However, accumulating evidence has argued for additional roles for SM proteins in earlier steps in the fusion cascade. Here, we investigate the function of Munc18a in reconstituted exocytic reactions mediated by neuronal and non-neuronal SNAREs. We show that Munc18a plays a direct role in promoting proteoliposome clustering, underlying vesicle docking during exocytosis. In the three different fusion reactions examined, Munc18a-dependent clustering requires an intact N-terminal peptide (N-peptide) motif in syntaxin that mediates the binary interaction between syntaxin and Munc18a. Importantly, clustering is preserved under inhibitory conditions that abolish both trans-SNARE complex formation and lipid mixing, indicating that Munc18a promotes membrane clustering in a step that is independent of trans-SNARE zippering and activation.
Collapse
|
4
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
5
|
Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J 2016; 35:561-79. [PMID: 26888746 DOI: 10.15252/embj.201593564] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.
Collapse
Affiliation(s)
- Andrea L Marat
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
6
|
Sugiura S, Mima J. Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p. Sci Rep 2016; 6:20407. [PMID: 26838333 PMCID: PMC4738300 DOI: 10.1038/srep20407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/06/2016] [Indexed: 11/09/2022] Open
Abstract
Homotypic fusion of the endoplasmic reticulum (ER) is required for generating and maintaining the characteristic reticular ER membrane structures. This organelle membrane fusion process depends on the ER-bound dynamin-related GTPases, such as atlastins in animals and Sey1p in yeast. Here, to investigate whether specific lipid molecules facilitate GTPase-dependent ER membrane fusion directly, we comprehensively evaluated membrane docking and lipid mixing of reconstituted proteoliposomes bearing purified Sey1p and a set of ER-mimicking lipids, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and ergosterol. Remarkably, we revealed that each specific lipid species contributed little to membrane docking mediated by Sey1p. Nevertheless, Sey1p-dependent lipid mixing was strongly reduced by omitting three major acidic lipids from the ER-mimicking set and, moreover, was entirely abolished by omitting either phosphatidylethanolamine or ergosterol. Our reconstitution studies thus established that physiological lipid composition is vital for lipid bilayer rearrangements in GTPase-mediated homotypic ER membrane fusion.
Collapse
Affiliation(s)
- Shintaro Sugiura
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Zick M, Wickner WT. A distinct tethering step is vital for vacuole membrane fusion. eLife 2014; 3:e03251. [PMID: 25255215 PMCID: PMC4200421 DOI: 10.7554/elife.03251] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was required for efficient lumenal compartment mixing. While the physiological HOPS tethering complex caused a few-fold increase of trans-SNARE association, the rate of content mixing increased more than 100-fold. Thus tethering has a role in promoting membrane fusion that extends beyond simply increasing the amount of total trans-SNARE complex. DOI:http://dx.doi.org/10.7554/eLife.03251.001 Cells of higher organisms contain compartments called organelles and structures called vesicles that transfer molecules and proteins between these organelles. Each organelle and each vesicle is enclosed within a membrane, and these membranes must fuse together to allow these transfers to take place. A certain group of proteins, called SNAREs, have a central role in these fusion events. Since membrane fusion is difficult to observe directly, many researchers have used a method called ‘fluorescent lipid dequenching’ to study it indirectly. In this approach, one fraction of vesicles is labeled with two fluorescent molecules, with one of these molecules quenching the fluorescence of the other. However, when a labeled vesicle fuses with an unlabeled vesicle, the surface concentrations of the fluorescent molecules are diluted. This reduces the amount of quenching and the resulting increase in fluorescence can be measured. Experiments utilizing this technique had suggested that SNARE proteins are sufficient for fusion to take place, and that no other protein complexes need to be present. However, when a different assay method called ‘lumenal compartment mixing’ was used, little fusion was seen when the only proteins present were the SNAREs. The lumenal compartment mixing approach relies on measuring the degree of mixing between the contents of two vesicles. To address these conflicting results, Zick and Wickner used both methods to study fusion in a yeast-based system. The lumenal compartment mixing approach, which is the more reliable method, revealed that rapid and efficient membrane fusion in fact requires another protein complex, called HOPS, to hold the two membrane vesicles together. Zick and Wickner found that the HOPS complex does not enable fusion by just increasing the amount of interactions between the SNARE proteins. Rather, it seems to facilitate the formation of a particular quality of SNARE interactions. Future work is needed to work out how the SNARE complexes become ‘fusion-competent’, and to explore the mechanism that allows the HOPS complex to assist in the formation of fusion-competent SNARE complexes. DOI:http://dx.doi.org/10.7554/eLife.03251.002
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
8
|
Jović M, Kean MJ, Dubankova A, Boura E, Gingras AC, Brill JA, Balla T. Endosomal sorting of VAMP3 is regulated by PI4K2A. J Cell Sci 2014; 127:3745-56. [PMID: 25002402 DOI: 10.1242/jcs.148809] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase IIα (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.
Collapse
Affiliation(s)
- Marko Jović
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michelle J Kean
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada Program in Cell Biology, The Hospital for Sick Children, PGCRL, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Zick M, Stroupe C, Orr A, Douville D, Wickner WT. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife 2014; 3:e01879. [PMID: 24596153 PMCID: PMC3937803 DOI: 10.7554/elife.01879] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI:http://dx.doi.org/10.7554/eLife.01879.001 All cells are enclosed with a membrane that is made of phospholipid molecules, and many of the structures found inside cells—such as the vacuoles in plant and fungal cells—are also enclosed with a phospholipid membrane. To form a membrane, the phospholipid molecules—which have a phosphate head and two fatty acid tails—arrange themselves in two layers, with the fatty acid tails pointing into the membrane, and the phosphate heads pointing outwards. This structure is known as a phospholipid bilayer. Vacuoles are filled with water that contains various proteins and molecules in solution, and adjust their volume to keep the concentrations of substances in the cell in balance. To do this, the vacuoles fuse with each other. This fusion process requires dramatic spatial rearrangements of the phospholipid molecules. The SNARE family of proteins plays a key role in membrane fusion. As the two membranes come together, SNARE proteins located on each membrane form a complex known as a trans-SNARE complex. This docks the vacuole in place beside another vacuole while the phospholipid molecules in the two membranes rearrange. However, much less is known about the phospholipid molecules that are involved in the fusion process. Now, Zick et al. have shown that three types of phospholipid molecules must be present for membrane fusion to be completed. These have in common that their phosphate ‘headgroups’ are small and they do not tend to form bilayers. The vacuoles can dock beside each other if these small headgroup phospholipid molecules are not present, but the bilayer lipids in the vacuole membranes cannot rearrange themselves in the absence of these particular lipids. The importance of these nonbilayer lipid molecules had not previously been established, as the majority of experiments investigating membrane fusion used concentrations of SNARE proteins that were much higher than those found physiologically. At such high concentrations, fusion can go ahead without the nonbilayer lipid molecules being present. DOI:http://dx.doi.org/10.7554/eLife.01879.002
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | | | | | | | | |
Collapse
|
10
|
Solinger JA, Spang A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 2013; 280:2743-57. [PMID: 23351085 DOI: 10.1111/febs.12151] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/10/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Endocytosis describes the processes by which proteins, peptides and solutes, and also pathogens, enter the cell. Endocytosed material progresses to endosomes. Genetic studies in yeast, worms, flies and mammals have identified a set of universally conserved proteins that are essential for early-to-late endosome transition and lysosome biogenesis, and for endolysosomal trafficking pathways, including autophagy. The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. In addition, several of the CORVET and HOPS subunits have diversified in metazoans, and probably form additional specialized complexes to accomodate the higher complexity of trafficking pathways in these cells. Recent studies offer new insights into the complex relationships between CORVET and HOPS complexes and other factors of the endolysosomal pathway. Interactions with V-ATPase, the ESCRT machinery, phosphoinositides, the cytoskeleton and the Rab switch suggest an intricate cooperative network for endosome maturation. Accumulating evidence supports the view that endosomal tethering complexes implement a regulatory logic that governs endomembrane identity and dynamics.
Collapse
|
11
|
N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc Natl Acad Sci U S A 2012; 109:17936-41. [PMID: 23071309 DOI: 10.1073/pnas.1216201109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on its physical connection to the Vam7p SNARE domain. By attaching a transmembrane anchor to the C terminus of Vam7p to create Vam7tm, we bypass the requirement for the N-domain to anchor Vam7tm to reconstituted proteoliposomes. The N-domain of Vam7tm is indispensible for trans-SNARE complex assembly in SNARE-only reactions. Introducing Vam7(1-125)p as a separate recombinant protein suppresses the defect caused by N-domain deletion from Vam7tm, demonstrating that the function of this N-domain is not constrained to covalent attachment to Vam7p. The Vam7p N-domain catalyzes the docking of apposed membranes by promoting transinteractions between R- and Q-SNAREs. This function of the Vam7p N-domain depends on the presence of PI3P and its affinity for PI3P. Added N-domain can even promote SNARE complex assembly when Vam7 still bears its own N-domain.
Collapse
|
12
|
Thi EP, Lambertz U, Reiner NE. Class IA phosphatidylinositol 3-kinase p110α regulates phagosome maturation. PLoS One 2012; 7:e43668. [PMID: 22928013 PMCID: PMC3425514 DOI: 10.1371/journal.pone.0043668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/24/2012] [Indexed: 12/31/2022] Open
Abstract
Of the various phosphatidylinositol 3- kinases (PI3Ks), only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5)P3; however, p110α and PI(3,4,5)P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP) and homotypic vacuole fusion and protein sorting (HOPs) components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.
Collapse
Affiliation(s)
- Emily P. Thi
- Departments of Medicine, Experimental Medicine Program, Division of Infectious Diseases, University of British Columbia and the Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, B.C., Canada
| | - Ulrike Lambertz
- Departments of Medicine, Experimental Medicine Program, Division of Infectious Diseases, University of British Columbia and the Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, B.C., Canada
| | - Neil E. Reiner
- Departments of Medicine, Experimental Medicine Program, Division of Infectious Diseases, University of British Columbia and the Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, B.C., Canada
- Microbiology and Immunology, University of British Columbia and the Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
13
|
Izawa R, Onoue T, Furukawa N, Mima J. Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 2011; 287:3445-53. [PMID: 22174414 DOI: 10.1074/jbc.m111.307439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.
Collapse
Affiliation(s)
- Ryota Izawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
14
|
Sasser T, Qiu QS, Karunakaran S, Padolina M, Reyes A, Flood B, Smith S, Gonzales C, Fratti RA. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem 2011; 287:2221-36. [PMID: 22121197 DOI: 10.1074/jbc.m111.317420] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of PAH1 was sufficient to cause marked vacuole fragmentation and abolish vacuole fusion. The function of Pah1p solely depended on its phosphatase activity as complementation studies showed that wild type Pah1p restored fusion, whereas the phosphatase dead mutant Pah1p(D398E) had no effect. We discovered that the lack of PA phosphatase activity blocked fusion by inhibiting the binding of SNAREs to Sec18p, an N-ethylmaleimide-sensitive factor homologue responsible for priming inactive cis-SNARE complexes. In addition, pah1Δ vacuoles were devoid of the late endosome/vacuolar Rab Ypt7p, the phosphatidylinositol 3-kinase Vps34p, and Vps39p, a subunit of the HOPS (homotypic fusion and vacuole protein sorting) tethering complex, all of which are required for vacuole fusion. The lack of Vps34p resulted in the absence of phosphatidylinositol 3-phosphate, a lipid required for SNARE activity and vacuole fusion. These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion.
Collapse
Affiliation(s)
- Terry Sasser
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Intracellular membrane fusion requires R-SNAREs and Q-SNAREs to assemble into a four-helical parallel coiled-coil, with their hydrophobic anchors spanning the two apposed membranes. Based on the fusion properties of chemically defined SNARE- proteoliposomes, it has been proposed that the assembly of this helical bundle transduces force through the entire bilayer via the transmembrane SNARE anchor domains to drive fusion. However, an R-SNARE, Nyv1p, with a genetically engineered lipid anchor that spans half of the bilayer suffices for the fusion of isolated vacuoles, although this organelle has other R-SNAREs. To demonstrate unequivocally the fusion activity of lipid-anchored Nyv1p, we reconstituted proteoliposomes with purified lipid-anchored Nyv1p as the only protein. When these proteoliposomes were incubated with those bearing cognate Q-SNAREs, there was trans-SNARE complex assembly but, in accord with prior studies of the neuronal SNAREs, little lipid mixing. However, the addition of physiological fusion accessory proteins (HOPS, Sec17p, and Sec18p) allows lipid-anchored Nyv1p to support fusion, suggesting that trans-SNARE complex function is not limited to force transduction across the bilayers through the transmembrane domains.
Collapse
|
16
|
Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. Bioessays 2011; 33:448-57. [PMID: 21538413 PMCID: PMC3107950 DOI: 10.1002/bies.201000152] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.
Collapse
Affiliation(s)
- Dongbiao Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Xiang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|