1
|
Sengupta A, Chakraborty S, Biswas S, Patra SK, Ghosh S. S-nitrosoglutathione (GSNO) induces necroptotic cell death in K562 cells: Involvement of p73, TSC2 and SIRT1. Cell Signal 2024; 124:111377. [PMID: 39222864 DOI: 10.1016/j.cellsig.2024.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nitric oxide and Reactive Nitrogen Species are known to effect tumorigenicity. GSNO is one of the main NO carrying signalling moiety in cell. In the current study, we tried to delve into the effect of GSNO induced nitrosative stress in three different myelogenous leukemic K562, U937 and THP-1 cell lines. METHOD WST-8 assay was performed to investigate cell viability. RT-PCR and western-blot analysis were done to investigate mRNA and protein expression. Spectrophotometric and fluorimetric assays were done to investigate enzyme activities. RESULT We found that GSNO exposure led to reduced cell viability and the mode of cell death in K562 was non apoptotic in nature. GSNO promoted impaired autophagic flux and necroptosis. GSNO treatment heightened phosphorylation of AMPK and TSC2 and inhibited mTOR pathway. We observed increase in NAD+/ NADH ratio following GSNO treatment. Increase in both SIRT1 m-RNA and protein expression was observed. While total SIRT activity remained unaltered. GSNO increased tumor suppressor TAp73/ oncogenic ∆Np73 ratio in K562 cells which was correlated with cell mortality. Surprisingly, GSNO did not alter cellular redox status or redox associated protein expression. However, steep increase in total SNO and PSNO content was observed. Furthermore, inhibition of autophagy, AMPK phosphorylation or SIRT1 exacerbated the effect of GSNO. Altogether our work gives insights into GSNO mediated necroptotic event in K562 cells which can be excavated to develop NO based anticancer therapeutics. CONCLUSION Our data suggests that GSNO could induce necroptotic cell death in K562 through mitochondrial dysfunctionality and PTM of different cellular proteins.
Collapse
Affiliation(s)
- Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanchita Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
2
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
3
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Cabrié A, Guittet O, Tomasini R, Vincendeau P, Lepoivre M. Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 2019; 134:617-629. [PMID: 30753884 DOI: 10.1016/j.freeradbiomed.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.
Collapse
Affiliation(s)
- Aimeric Cabrié
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Olivier Guittet
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Richard Tomasini
- CRCM, INSERM, U1068, F-13288, Marseille Cedex 9, France; Paoli-Calmettes Institute, F-13288, Marseille Cedex 9, France; Aix-Marseille University, UM 105, F-13288, Marseille Cedex 9, France; CNRS, UMR7258, F-13288, Marseille Cedex 9, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD/CIRAD "INTERTRYP", Université Bordeaux, F-33000, Bordeaux, France
| | - Michel Lepoivre
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
5
|
Datta S, Chakraborty S, Panja C, Ghosh S. Reactive nitrogen species control apoptosis and autophagy in K562 cells: implication of TAp73α induction in controlling autophagy. Free Radic Res 2018; 52:491-506. [DOI: 10.1080/10715762.2018.1449210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sampurna Datta
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | - Chiranjit Panja
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Tebbi A, Levillayer F, Jouvion G, Fiette L, Soubigou G, Varet H, Boudjadja N, Cairo S, Hashimoto K, Suzuki AM, Carninci P, Carissimo A, di Bernardo D, Wei Y. Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress. Carcinogenesis 2016; 37:39-48. [PMID: 26542370 PMCID: PMC4700935 DOI: 10.1093/carcin/bgv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 (-/-) mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 (-/-) embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 (-/-) MEFs undergo spontaneous transformation and that Mdr2 (-/-) mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2-/- MEFs and cap analysis of gene expression in Mdr2 (-/-) HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 (-/-) -associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA Damage
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Intestinal Neoplasms/metabolism
- Intestinal Neoplasms/pathology
- Lipid Peroxidation
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Oxidative Stress/physiology
- Reactive Oxygen Species/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Ali Tebbi
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Florence Levillayer
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | - Guillaume Soubigou
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Hugo Varet
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Nesrine Boudjadja
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | - Kosuke Hashimoto
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Ana Maria Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Yu Wei
- *To whom correspondence should be addressed. Tel: +33 145688866; Fax: +33 140613841;
| |
Collapse
|
7
|
Ragot T, Provost C, Prignon A, Cohen R, Lepoivre M, Lausson S. Apoptosis induction by combination of drugs or a conjugated molecule associating non-steroidal anti-inflammatory and nitric oxide donor effects in medullary thyroid cancer models: implication of the tumor suppressor p73. Thyroid Res 2015; 8:13. [PMID: 26273323 PMCID: PMC4535850 DOI: 10.1186/s13044-015-0025-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Medullary thyroid cancer (MTC) is a C-cell neoplasm. Surgery remains its main treatment. Promising therapies based on tyrosine kinase inhibitors demand careful patient selection. We previously observed that two non-steroidal anti-inflammatory drugs (NSAID), indomethacin, celecoxib, and nitric oxide (NO) prevented tumor growth in a model of human MTC cell line (TT) in nude mice. METHODS In the present study, we tested the NO donor: glyceryl trinitrate (GTN), at pharmacological dose, alone and in combination with each of the two NSAIDs on TT cells. We also assessed the anti-proliferative potential of NO-indomethacin, an indomethacin molecule chemically conjugated with a NO moiety (NCX 530, Nicox SA) on TT cells and indomethacin/GTN association in rMTC 6-23 cells. The anti-tumoral action of the combined sc. injections of GTN with oral delivery of indomethacin was also studied on subcutaneous TT tumors in nude mice. Apoptosis mechanisms were assessed by expression of caspase-3, TAp73α, TAp73α inhibition by siRNA or Annexin V externalisation. RESULTS The two NSAIDs and GTN reduced mitotic activity in TT cells versus control (cell number and PCNA protein expression). The combined treatments amplified the anti-tumor effect of single agents in the two tested cell lines and promoted cell death. Moreover, indomethacin/GTN association stopped the growth of established TT tumors in nude mice. We observed a significant cleavage of full length PARP, a caspase-3 substrate. The cell death appearance was correlated with a two-fold increase in TAp73α expression, with inhibition of apoptosis after TAp73α siRNA addition, demonstrating its crucial role in apoptosis. CONCLUSION Association of NO with NSAID exhibited amplified anti-tumoral effects on in vitro and in vivo MTC models by inducing p73-dependent apoptotic cell death.
Collapse
Affiliation(s)
- Thierry Ragot
- UMR 8203, Gustave Roussy, Laboratoire de Vectorologie et de Thérapeutiques Anticancéreuses, Villejuif, 94805 France ; UMR 8203, CNRS, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Villejuif, 94805 France ; UMR 8203, Univ Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Villejuif, 94805 France
| | - Claire Provost
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| | - Aurélie Prignon
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| | - Régis Cohen
- Hopital Delafontaine, Endocrinology Unit, Saint Denis, France
| | - Michel Lepoivre
- IBBMC, CNRS 8619, bat 430, Université Paris Sud XI, Orsay, Paris, 91405 France
| | - Sylvie Lausson
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| |
Collapse
|
8
|
Abstract
p53 plays a key role in regulating DNA damage response by suppressing cell cycle progression or inducing apoptosis depending on extent of DNA damage. However, it is not clear why mild genotoxic stress favors growth arrest, whereas excessive lesions signal cells to die. Here we showed that TAp73, a p53 homologue thought to have a similar function as p53, restrains the transcriptional activity of p53 and prevents excessive activation of its downstream targets upon low levels of DNA damage, which results in cell cycle arrest. Extensive DNA damage triggers TAp73 depletion through ubiquitin/proteasome-mediated degradation of E2F1, leading to enhanced transcriptional activation by p53 and subsequent induction of apoptosis. These findings provide novel insights into the regulation of p53 function and suggest that TAp73 keeps p53 activity in check in regulating cell fate decisions upon genotoxic stress.
Collapse
|
9
|
Tebbi A, Guittet O, Tuphile K, Cabrié A, Lepoivre M. Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis. J Biol Chem 2015; 290:14077-90. [PMID: 25878246 DOI: 10.1074/jbc.m115.649640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication. The p53R2 protein is expressed throughout the cell cycle and in quiescent cells where it provides dNTPs for mitochondrial DNA synthesis. Participation of R2 and p53R2 in DNA repair has also been suggested. In this study, we investigated the fate of the RnR subunits during apoptosis. The p53R2 protein was cleaved in a caspase-dependent manner in K-562 cells treated with inhibitors of the Bcr-Abl oncogenic kinase and in HeLa 229 cells incubated with TNF-α and cycloheximide. The cleavage site was mapped between Asp(342) and Asn(343). Caspase attack released a C-terminal p53R2 peptide of nine residues containing the conserved heptapeptide essential for R1 binding. As a consequence, the cleaved p53R2 protein was inactive. In vitro, purified caspase-3 and -8 could release the C-terminal tail of p53R2. Knocking down these caspases, but not caspase-2, -7, and -10, also inhibited p53R2 cleavage in cells committed to die via the extrinsic death receptor pathway. The R2 subunit was subjected to caspase- and proteasome-dependent proteolysis, which was prevented by siRNA targeting caspase-8. Knocking down caspase-3 was ineffective. Protein R1 was not subjected to degradation. Adding deoxyribonucleosides to restore dNTP pools transiently protected cells from apoptosis. These data identify RnR activity as a prosurvival function inactivated by proteolysis during apoptosis.
Collapse
Affiliation(s)
- Ali Tebbi
- From the Université Paris Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, 91405 Orsay, France, CNRS, 91405 Orsay, France, and Department of Virology, Institut Pasteur, Pathogenesis of Hepatitis B Virus, 75015 Paris, France
| | - Olivier Guittet
- From the Université Paris Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, 91405 Orsay, France, CNRS, 91405 Orsay, France, and
| | - Karine Tuphile
- From the Université Paris Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, 91405 Orsay, France, CNRS, 91405 Orsay, France, and
| | - Aimeric Cabrié
- From the Université Paris Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, 91405 Orsay, France, CNRS, 91405 Orsay, France, and
| | - Michel Lepoivre
- From the Université Paris Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, 91405 Orsay, France, CNRS, 91405 Orsay, France, and
| |
Collapse
|
10
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Ferretti C, Lucarini G, Andreoni C, Salvolini E, Bianchi N, Vozzi G, Gigante A, Mattioli-Belmonte M. Human Periosteal Derived Stem Cell Potential: The Impact of age. Stem Cell Rev Rep 2014; 11:487-500. [DOI: 10.1007/s12015-014-9559-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
D’Alessandro A, Marrocco C, Rinalducci S, Peschiaroli A, Timperio AM, Bongiorno-Borbone L, Finazzi Agrò A, Melino G, Zolla L. Analysis of TAp73-Dependent Signaling via Omics Technologies. J Proteome Res 2013; 12:4207-20. [DOI: 10.1021/pr4005508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angelo D’Alessandro
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Cristina Marrocco
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | | | - Anna Maria Timperio
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Finazzi Agrò
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Medical Research Council, Toxicology
Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester LE1 9HN, U.K
| | - Lello Zolla
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| |
Collapse
|